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Abstract

Bayesian optimization (BO) has been a successful approach to optimize expensive functions whose prior knowledge can
be specified by means of a probabilistic model. Due to their expressiveness and tractable closed-form predictive
distributions,Gaussian process (GP) surrogatemodels have been the default go-to choicewhen derivingBO frameworks.
However, as nonparametric models, GPs offer very little in terms of interpretability and informative power when applied
to model complex physical phenomena in scientific applications. In addition, the Gaussian assumption also limits the
applicability of GPs to problems where the variables of interest may highly deviate from Gaussianity. In this article, we
investigate an alternative modeling framework for BO which makes use of sequential Monte Carlo (SMC) to perform
Bayesian inference with parametric models. We propose a BO algorithm to take advantage of SMC’s flexible posterior
representations and provide methods to compensate for bias in the approximations and reduce particle degeneracy.
Experimental results on simulated engineering applications in detecting water leaks and contaminant source localization
are presented showing performance improvements over GP-based BO approaches.

Impact Statement

The methodology we present in this article can be applied to a wide range of problems involving sequential
decision making. As presented in a water leak detection experiment, onemay apply the algorithm to guide robots
in automated monitoring of underground water lines. Other applications include environmental monitoring,
chemical synthesis, disease control, and so forth. One of the main advantages of the proposed framework when
compared to previous Bayesian optimization approaches is the interpretability of the model, which allows for
inferring variables important for analysis and decision support. In addition, practical performance improvements
are also observed in experiments.
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1. Introduction

Bayesian optimization (BO) offers a principled approach to integrate probabilistic models into processes
of decision making under uncertainty (Shahriari et al., 2016). In particular, BO has been successful in
optimization problems involving black-box functions and very little prior information, such as smooth-
ness of the objective function. Examples include hyperparameter tuning (Snoek et al., 2012), robotic
exploration (Souza et al., 2014), and chemical design (Shields et al., 2021), and disease control (Spooner
et al., 2020). Most of its success relies on the flexibility and well-understood properties of nonparametric
modeling frameworks, particularly Gaussian process (GP) regression (Rasmussen and Williams, 2006).
Although nonparametric models are usually the best approach for problemswith scarce prior information,
they offer little in terms of interpretability and may be a suboptimal guide when compared to expert
parametric models. In these expert models, parameters are attached to variables with physical meaning
and reveal aspects of the nature of the problem, since models are derived from domain knowledge.

As a motivating example, consider the problem of localizing leaks in underground water distribution
pipes (Mashford et al., 2012). Measurements from pipe monitoring stations are usually sparse and
excavations are costly (Sadeghioon et al., 2014). As a possible alternative, microgravimetric sensors
have recently allowed detecting gravity anomalies of parts in a billion (Brown et al., 2016; Hardman et al.,
2016), making them an interesting data source for subsurface investigations (Hauge and Kolbjørnsen,
2015; Rossi et al., 2015). One could then design a GP-based BO algorithm to localize a leak in a pipe by
searching for a maximum in the gravity signal on the surface due to the heavier wet soil. The determined
2D location, however, tells nothing of the depth or the volume of leaked water. In this case, a physics-
based probabilistic model of a simulated water leak could better guide BO and the decision-making end
users. Bayesian inference on complex parametric models, however, is usually intractable, requiring the
use of sampling-based techniques, like Markov chain Monte Carlo (MCMC) (Andrieu et al., 2003), or
variational inference methods (Bishop, 2006; Ranganath et al., 2014). Either of these approaches can lead
to high computational overheads during the posterior updates in a BO loop.

In this article, we investigate a relatively unexplored modeling approach in the BO community which
offers a balanced trade-off between MCMC and approximate inference methods for problems where
domain knowledge is available. Namely, we consider sequential Monte Carlo (SMC) (Doucet et al.,
2001), also known as particle filtering, algorithms as posterior update mechanisms for BO. SMC has an
accuracy-speed trade-off controlled by the number of particles it uses, and it suffers less of the drawbacks
of other approximate inference methods (Bishop, 2006), while still enjoying asymptotic convergence
guarantees similar to MCMC (Crisan and Doucet, 2002; Beskos et al., 2014). SMC methods have
traditionally been applied to state-space models for localization (Thrun et al., 2006) and tracking (Doucet
et al., 2000) problems, but SMC has also found use in more general areas, including experimental design
(Kuck et al., 2006) and likelihood-free inference (Sisson et al., 2007).

As contributions, we present an approach to efficiently incorporate SMC within BO frameworks. In
particular, we derive an acquisition function to take advantage of the flexibility of SMC’s particle
distributions by means of empirical quantile functions. Our approach compensates for the approximation
bias in the empirical quantiles by taking into account SMC’s effective sample size (ESS).We also propose
methods to reduce the correlation and bias among SMC samples and improve its predictive power. Lastly,
experimental results demonstrate practical performance improvements over GP-based BO approaches.

2. Related Work

Other than the GP approach, BO frameworks have applied a few other methods for surrogate modeling,
including linear parametric models with nonlinear features (Snoek et al., 2015), Bayesian neural networks
(Springenberg et al., 2016), and random forests (Hutter et al., 2011). Linear models and limits of Bayesian
neural networks when the number of neurons approaches infinity can be directly related to GPs
(Rasmussen and Williams, 2006; Khan et al., 2019). Mostly these approaches, however, consider a
black-box setting for the optimization problem, where very little is known about the stochastic process
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defining the objective function. In this article, we take BO instead toward a gray-box formulation, where
we know a parametric structure which can accurately describe the objective function, but whose true
parameters are unknown.

SMC has previously been combined with BO in GP-based approaches. Benassi et al. (2012) applies
SMC to the problem of learning the hyperparameters of the GP surrogate during the BO process by
keeping and updating a set of candidate hyperparameters according to the incoming observations. Bijl
et al. (2016) provide a method for Thompson sampling (Russo and Van Roy, 2016) using SMC to keep
track of the distribution of the global optimum. These approaches still use GPs as the main modeling
framework for the objective function. Lastly andmore related to this article, Dalibard et al. (2017) presents
an approach to use SMC for inference with semiparametric models, where one combines GPs with
informative parametric models. Their framework is tailored to automatically tuning computer programs
following dynamical systems, where the system state transitions. In contrast, our approach is based on a
static formulation of SMC, where the system state corresponds to a probabilistic model’s parameters
vector, which does not change over time. Simply adapting a dynamics-based SMC model to a static
system is problematic due to particle degeneracy in the lack of a transitionmodel (Doucet et al., 2000).We
instead apply MCMC to move and rejuvenate particles in the static SMC framework, as originally
proposed by Chopin (2002).

In the multiarmed bandits literature, whose methods have frequently been applied to BO (Srinivas
et al., 2010; Wang and Jegelka, 2017; Berkenkamp et al., 2019), SMC has also been shown as a useful
modeling framework (Kawale et al., 2015; Urteaga and Wiggins, 2018). In particular, Urteaga and
Wiggins (2018) present a SMC approach to bandits in dynamic problems, where the reward function
evolves over time. A generalization of their approach has recently been proposed to include linear and
discrete reward functions (Urteaga and Wiggins, 2019) with support by empirical results. Bandit
problems seek policies which maximize long-term payoffs. In this article, we instead focus on investi-
gating and addressing the effects of the SMC approximation on amore general class of problems.We also
provide experimental results on applications where domain knowledge offers informative models.

Lastly, BO algorithms provide model-based solutions for black-box derivative-free optimization prob-
lems (Rios and Sahinidis, 2013). In this context, there are plenty of other model-free approaches, such as
evolutionary algorithms, which include the popular covariancematrix adaptation evolution strategy (CMA-
ES) algorithm (Arnold andHansen, 2010).However, these approaches are usually not focused on improving
data efficiency as the usually require hundreds or even thousands of steps to converge to a global optimum.
In contrast, BO algorithms are usually applied to problemswhere the number of evaluations of the objective
function is very limited, usually to the order of tens of evaluations, due to a high cost of collecting
observations (Shahriari et al., 2016), for example, drilling a hole to find natural gas deposits. The algorithm
we propose in this article also targets this kind of use case, with the difference that we apply more
informative predictive models than the usual GP-based formulations.

3. Preliminaries

In this section, we specify our problem setup and review relevant theoretical background. We consider an
optimization problem over a function f :X !R within a compact search space S⊂X ⊆Rd:

x∗ ∈ argmax
x∈S

f xð Þ: (1)

We assume a parametric formulation for f xð Þ= h x,θð Þ, where h :X �Θ!R has a known form, but
θ∈Θ⊂Rm is an unknown parameter vector. The only prior information about θ is a probability
distribution p θð Þ.We are allowed to collect up toT observations ot distributed according to an observation
(or likelihood) model p otjθ,xtð Þ, for t∈ 1,…,Tf g. For instance, in the classical white Gaussian noise
setting, we have ot = f xtð Þþ εt, with εt �N 0,σ2ε

� �
, so that p otjθ,xtð Þ=N ot;h xt,θð Þ,σ2ε

� �
. However, our

optimization problem is not restricted by Gaussian noise assumptions.
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As formulated above, we highlight that the objective function f is a black-box function, and the model
h :X �Θ!R is simply an assumption over the real function, which is unknown in practice. For example,
in one of our experiments, we have f as the gravity measured on the surface above an underground water
leak of unknown location. In this case, gradients and analytic formulations for the objective function are
not available. Therefore, we need derivative-free optimization algorithms to solve Equation (1). In
addition, we assume that the budget of observations T is relatively small (in the orders of tens or a few
hundreds) and incrementally built, so that a maximum-likelihood or interpolation approach, as common
in response surface methods (Rios and Sahinidis, 2013), would lead to suboptimal results, as it would not
properly account for the uncertainty due to the limited amount of data and their inherent noise. We then
seek a Bayesian approach to solve Equation (1). In the following, we revise theoretical background on the
main components of the method we propose.

3.1. Bayesian optimization

BO approaches the problem in Equation (1) by placing a prior distribution over the objective function f
(Shahriari et al., 2016), typically represented by a GP (Rasmussen and Williams, 2006). Under the GP
assumption, considering Gaussian observation noise, finite collections of function evaluations and
observations are joint normally distributed, which allows deriving closed-form expressions for the
posterior p f xð Þj xt,otf gTt= 1

� �
. BO sequentially collects a set of observations DT ≔ xt,otf gTt= 1 by maxi-

mizing an acquisition function:

xt ∈ argmax
x∈S

a xjDt�1ð Þ, t∈ 1,…,Tf g: (2)

The acquisition function informs BO of the utility of collecting an observation at a given location x∈S
based on the posterior predictions for f xð Þ. For example, with a GP model, one can apply the upper
confidence bound (UCB) criterion:

a xjDt�1ð Þ≔ μt�1 xð Þþβtσt�1 xð Þ, (3)

where f xð Þ∣Dt�1 �N μt�1 xð Þ,σ2t�1 xð Þ� �
represents theGP posterior at iteration t≥ 1, and βt is a parameter

which can be annealed over time tomaintain a high-probability confidence interval over f xð Þ (Chowdhury
and Gopalan, 2017). Besides the UCB, the BO literature is filled with many other types of acquisition
functions, including expected improvement (Jones et al., 1998; Bull, 2011), Thompson sampling (Russo
and Van Roy, 2016), and information-theoretic criteria (Hennig and Schuler, 2012; Hernández-Lobato
et al., 2014; Wang and Jegelka, 2017).

3.2. Sequential Monte Carlo

SMCalgorithms are Bayesian inferencemethodswhich approximate posterior distributions via a finite set
of samples (Doucet et al., 2001). The random variables of interest θt ∈Θ are modeled as the state of a
dynamical system which evolves over time t∈N based on a sequence of observations o1,…,ot. SMC
algorithms rely on a conditional independence assumption p otjθt,o1,…,ot�1ð Þ= p otjθtð Þ, which allows
for the decomposition of the posterior over states into sequential updates1:

p θ1,…,θtjo1,…,otð Þ= p θ1,…,θt�1jo1,…,ot�1ð Þp otjθtð Þp θtjθt�1ð Þ
p otjo1,…,ot�1ð Þ : (4)

1 In these and the following equations, we omit the dependence on the observation locations x j

� �t
j¼1 ∈X to avoid notation

clutter. However, we will make this dependence explicit whenever needed to emphasize that locations are also part of the
observed data.
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Based on this decomposition, SMCmethodsmaintain an approximation of the posteriorp θtjo1,…,otð Þ based
on a set of particles θit

� �n
i= 1⊂Θ, where each particle θit represents a sample from the posterior. Despite the

many variants of SMC available in the literature (Doucet et al., 2001; Naesseth et al., 2019), in its basic form,
the SMC algorithm is simple and straightforward to implement, given a transition model p θtjθt�1ð Þ and an
observation model p otjθtð Þ. For instance, a time-varying spatial model h :X �Θ!Rmay have a Gaussian
observation model p otjθtð Þ= p otjθt,xtð Þ=N ot;h xt,θtð Þ,σ2ε

� �
, with σε > 0, and the transition model

p θtjθt�1ð Þmay be given by a known stochastic partial differential equation describing the system dynamics.
Basic SMC follows the procedure outlined in Algorithm 1. SMC starts with a set of particles initialized

as samples from the prior θi0
� �n

i= 1 � p θð Þ. At each time step, the algorithm proposes new particles by
moving them according to the state transitionmodel p θtjθt�1ð Þ. Given a new observation ot, SMCupdates
its particles distribution by first weighing each particle according to its likelihood wi

t = p otjθit
� �

under the
new observation. A set of n new particles is then sampled (with replacement) from the resulting weighted
empirical distribution. The new particles distribution is then carried over to the next iteration until another
observation is received. Additional steps can be performed to reduce the bias in the approximation and
improve convergence rates (Chopin, 2002; Naesseth et al., 2019).

4. BO via SMC

In this section, we present a quantile-based approach to solve Equation (1) via BO. Themethod uses SMC
particles to determine a high-probability UCB on f via an empirical quantile function. We start with a
description of the proposed version of the SMC modeling framework, followed by the UCB approach.

4.1. SMC for static models

SMC algorithms are typically applied to model time-varying stochastic processes. However, if
Algorithm 1 is naively applied to a setting where the state θt remains constant over time, as in our case,
p θtjθt�1ð Þ becomes a Dirac delta distribution Dθt�1 , and the particles no longer move to explore the state
space. To address this shortcoming, Chopin (2002) proposed an SMC variant for static problems that uses
aMCMC kernel to promote transitions of the particles distribution. TheMCMC kernel is configured with
the true posterior at time t, p θjo1,…,otð Þ, as its invariant distribution, so that the particles transition
distribution becomes a Metropolis-Hastings update:

p θjθ0ð Þ= min 1,
p o1,…,otjθð Þp θð Þq θ0jθð Þ
p o1,…,otjθ0ð Þp θ0ð Þq θjθ0ð Þ

� �
, θ,θ0 ∈Θ, (5)

where q θjθ0ð Þ is any valid MCMC proposal (Andrieu et al., 2003). Efficient proposals, such as those by
Hamiltonian Monte Carlo (HMC) (Neal, 2011), can ensure exploration and decorrelate particles.

4.1.1. The static SMC algorithm
The resulting SMC posterior update algorithm is presented in Algorithm 2. In contrast with
Algorithm 1, we accumulate old weights and use them alongside the particles to compute an ESS.
As suggested by previous approaches (Del Moral et al., 2012), one may keep a good enough posterior
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approximation by resampling the particles only when their ESS goes below a certain pre-specified
threshold2 nmin ≤ n, which reduces computational costs.Whenever this happens, we alsomove the particles
according to the MCMC kernel. This allows us to maintain a diverse particle set, avoiding particle
degeneracy. Otherwise, case the ESS is still acceptable, we simply update the particle weights and continue.

4.1.2. Computational complexity
The MCMC-based approach incurs an O ntð Þ computational cost per SMC iteration that grows linearly
with the number of particles n and observations t, instead of remaining constant atO nð Þ across iterations as
in basic SMC (Algorithm 1). However, this increased computational cost is still relatively low in terms of
run-time complexity when compared to the GP modeling approach. Namely, the time complexity for GP
updates isO t3ð Þ, which scales cubically with the number of data points (Rasmussen andWilliams, 2006).
The SMCapproach is also low in terms ofmemory storage costs, as it does not require storing a covariance
matrix (quadratic scaling O t2ð Þ) over the data points, but only the points themselves and a set of particles
with fixed size, that is, an O nþ tð Þ memory cost.

4.2. An UCB algorithm for learning with SMC models

We now define an acquisition function based on an UCB strategy. Compared to the GP-based UCB
(Srinivas et al., 2010), which is defined in terms of posterior mean and variance, SMC provides us with
flexible nonparametric distributions which can adjust well to non-Gaussian cases. A natural approach to
take advantage of this fact is to the define the UCB in terms of quantile functions (Kaufmann et al., 2012).

The quantile function q of a real random variable~swith distribution P~s corresponds to the inverse of its
cumulative distribution. We define the (upper) quantile function as:

q~s τð Þ≔ inf s∈R jP~s ~s≤ sð Þ≥ τf g, τ ∈ 0,1ð Þ: (6)

For probability distributions with compact support, we also define q~s 0ð Þ as the minimum and q~s 1ð Þ as the
maximum of ~s, respectively, of the support of P~s. In essence, a quantile q~s τð Þ is an upper bound on the
value of ~s which holds with probability at least τ.

4.2.1. Empirical quantile functions
In our case, we want to bound f xð Þ at any x∈S with high probability. However, we have no direct access
to the distribution of f xð Þ. Instead, we use SMC to keep track of its posterior by a set of weighted particles
θit,w

i
t

� �n
i= 1 at each iteration t. As f xð Þ= h x,θð Þ, we have a corresponding empirical approximation to the

2Usually nmin is set to a fraction of n, with 50% being a common setting.
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posterior probability measure of f xð Þ, denoted by bPt
f xð Þ ≔

Pn
i= 1w

i
tδh x,θitð Þ. With the empirical posterior,

we approximate the quantile function on f xð Þ as:
q f xð Þ τð Þ≈bqt x,τð Þ≔ inf s∈RjbPt

f xð Þ f xð Þ≤ sð Þ≥ τ
n o

, τ ∈ 0,1ð Þ: (7)

In practice, computing bqt x,τð Þ amounts to sorting realizations of f xð Þ, s1 ≤ s2 ≤…≤ sn, according to the
empirical posterior si � bPt f xð Þð Þ and finding the first element si whose cumulative weight

P
j≤ iw j is

greater than τ. For bqt x,τð Þ with τ set to 0 or 1, the procedure would reduce to returning the supremum or
infimum, respectively, in the support of the distribution of f xð Þ, which correspond to þ∞ or �∞ in the
unbounded case.

The quality of empirical quantile approximations for confidence intervals can be quantified via the
Dvoretzky–Kiefer–Wolfowitz inequality, which bounds the error on the empirical cumulative distribution
function (CDF). Massart, 1990 provided a tight bound in that regard.

Lemma1 (Massart (1990).LetPn ≔ 1
n

Pn
i= 1dξ i denote the empirical measure derived from n∈N i.i.d.

real-valued random variables ξ i
� �n

i= 1 �i:i:d:P. For any ξ �P, assume the cumulative distribution function
s↦P ξ ≤ s½ � is continuous, s∈R. Then we have that:

∀c∈R, P sup
s∈R

Pn ξ ≤ s½ ��P ξ ≤ s½ �j j> c

( )
≤ 2exp �2nc2

� �
:

Although SMC samples are inherently biased with respect to the true posterior, we explore methods to
transform SMC particles into approximately i.i.d. samples from the true posterior. For instance, the
MCMC moves follow the true posterior, which turn the particles into approximate samples of the true
posterior. In addition, other methods such as density estimation and the jackknife (Efron, 1992) allow for
decorrelation and bias correction. We explore these approaches in Section 5. As a consequence of Lemma
1, we have the following bound on the empirical quantiles.

Theorem 1 (Szörényi et al. (2015), Proposition 1)). Under the assumptions in Lemma 1, given x∈X
and δ∈ 0,1ð Þ, the following holds for every ρ∈ 0,1½ � with probability at least 1�δ:

∀n≥ 1, bqξ ρ� cn δð Þð Þ≤ qξ ρð Þ≤bqξ ρþ cn δð Þð Þ, (8)

where cn δð Þ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2n log

π2n2
3δ

q
.

Note that Theorem 1 provides a confidence interval around the true quantile based on i.i.d. empirical
approximations. In the case of SMC, however, its particles do not follow the i.i.d. assumption.We address
this problem in our method, with further approaches for bias reduction presented in Section 5.

4.2.2. Quantile-based UCB
Given the empirical quantile function in Equation (7), we define the following acquisition function:

a xjDtð Þ≔bqt x,δtð Þ, t≥ 0, (9)

where δt ∈ 0,1ð Þ is a parameter which can be adjusted to maintain a high-probability upper confidence
bound, as in GP-UCB (Srinivas et al., 2010). In contrast to a GP-UCB analogy, we are not using a
Gaussian approximation based on the posterior mean and variance of the SMC predictions. We are
directly using SMC’s nonparametric approximation of the posterior, which can take arbitrary shape.

Theorem 1 allows us to bound the difference between the quantile function and its empirical
approximation in the case of n i.i.d. samples. Given x∈X and δ∈ 0,1ð Þ, the following holds for every
τ ∈ 0,1½ � with probability at least 1�δ:

∀n≥ 1, bq x,τ� cn δð Þð Þ≤ q x,τð Þ≤bq x,τþ cn δð Þð Þ, (10)
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where cn δð Þ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2n log

π2n2
3δ

q
. In the non- i.i.d. case, however, the approximation above is no longer valid.

We instead replace n by the ESS nESS, which is defined as the ratio between the variance of an i.i.d. Monte
Carlo estimator and the variance, or mean squared error (Elvira et al., 2018), of the SMC estimator
(Martino et al., 2017). With ntESS denoting the ESS at iteration t, we set:

δt ≔ 1�δþ cntESS δð Þ: (11)

Several approximations for the ESS are available in the SMC literature (Martino et al., 2017; Huggins
and Roy, 2019), which are usually based on the distribution of the weights of the particles. A classical

example is bnESS ≔ Pn

i= 1
wið Þ2Pn

i= 1
w2
i

(Doucet et al., 2000; Huggins and Roy, 2019). In practice, the simple

substitution of n by bnESS defined above can be enough to compensate for the correlation and bias in the
SMC samples. In Section 5, we present further approaches to reduce the SMC approximation error with
respect to an i.i.d. sample-based estimator.

4.2.3. The SMC-UCB algorithm
In summary, the method we propose is described in Algorithm 3, which we refer to as SMC upper
confidence bound (SMC-UCB). The algorithm follows the general BO setup with a few exceptions. We
start by drawing i.i.d. samples from the model parameters’ prior and equal weights, following the SMC
setup (see Algorithm 2). At each iteration t≤T , we choose a query point by maximizing the acquisition
function given by the empirical quantile.We then collect an observation at the selected location. The SMC
particles distribution is updated using the new observation, and the algorithm proceeds. As in the usual
BO setup, this loop repeats for a given budget of T evaluations.

5. Drawing Independent Posterior Samples from SMC

Applying to SMC estimates a result similar to Theorem 1 would allow us to provide accurate confidence
intervals based on SMC. This result is not directly applicable, however, due to the bias and correlation among
SMC samples. Hencewe propose an approach to decorrelate samples and remove the bias in SMC estimates.

The approach we propose consists of three main steps. We first decorrelate SMC samples by estimating a
continuousdensity over the SMCparticles. The resulting probability distribution is thenused as a proposal for
importance sampling. The importance sampling estimate provides us with a still biased estimate of expected
values under the true posterior. To remove this bias, we finally apply the jackknife method (Efron, 1992).

Throughout this section, our main object of interest will be the expected value of a function of the
parameters u :Θ!R, whichwewill assume to be bounded and continuous.Wewant tominimize the bias
in expected value estimates:

εu ≔E u θð ÞjDt½ �� bE u θð ÞjDt½ �, (12)

where bE �½ � denotes the SMC-based expected value estimator.
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5.1. Density estimation

As a first step, we consider the problem of decorrelating SMC particles by sampling from an estimated
continuous probability distribution q over the particles. The simplest approach would be to use a
Gaussian approximation to the parameters posterior density. In this case, we approximate

p θjDtð Þ≈ p̂t θð Þ≔N θ;bθt,Σt

	 

, where bθ and Σ correspond to the sample mean and covariance of the

SMC particles. However, this approach does not properly capture multimodality and asymmetry in the
SMC posterior. In our case, instead, we use a kernel density estimator (Wand and Jones, 1994):

p̂t θð Þ≔
Xn
i= 1

wi
tkq θ,θit
� �

, (13)

with the kernel kq :Θ�Θ!R chosen so that the constraint
R
Θq θð Þdθ= 1 is satisfied. In particular,

applying normalized weights, we use a Gaussian kernel for our problems kq θ,θit
� �

≔N θ;θit,σ
2
qI

	 

,

where σq > 0 corresponds to the kernel’s bandwidth. Machine learning methods for density estimation,
such as normalizing flows (Dinh et al., 2017; Kobyzev et al., 2020) and kernel embeddings (Schuster
et al., 2020), are also available in the literature. However, we do not apply more complex methods to our
framework to preserve the simplicity of the approach, also noticing that simple kernel density estimation
provided reasonable results in preliminary experiments.

5.2. Importance reweighting

Having a probability density function p̂t and a corresponding distribution which we can directly sample

from, we draw i.i.d. samples θip̂t

n on

i= 1
�i:i:d: p̂t. The importance sampling estimator of E u θð ÞjDt½ � using p̂t

as a proposal distribution is given by:

x∈X , E u θð ÞjDt½ �=
Z

u θð Þp θjDtð Þdθ=
Z

u θð Þp θjDtð Þ
p̂t θð Þ p̂t θð Þdθ≈

Xn
i= 1

u θip̂t

	 
p θip̂t jDt

	 

p̂t θip̂t

	 
 : (14)

We, however, do not have access to p Dtð Þ to compute p θjDtð Þ. Therefore, we do another approximation
using the same proposal samples:

p Dtð Þ=
Z
Θ
p Dtjθð Þp θð Þdθ=

Z
Θ
p Dtjθð Þ p θð Þ

p̂t θð Þ p̂t θð Þdθ≈
Xn
i= 1

p Dtjθip̂t
	 
 p θip̂t

	 

p̂t θip̂t

	 
 : (15)

Setting αit ≔ p Dtjθip̂t
	 


p θip̂tð Þ
p̂t θip̂tð Þ, we then have:

E u θð ÞjDt½ �≈ 1
ηt

Xn
i= 1

αitu θip̂t

	 

, x∈X , (16)

where ηt ≔
Pn

i= 1α
i
t ≈ p Dtð Þ. This approach has been recently applied to estimate intractable marginal

likelihoods of probabilistic models (Tran et al., 2021).

5.3. Debiasing via the jackknife

There are different sources of bias in the SMC estimate and in the further steps described above. The
jackknife method provides sample-based estimates for statistics of a random variable. The method is
based on averaging leave-one-out estimates (Efron, 1992). For the case of bias in estimation, consider a set
of samples θif gni= 1 and a function u :Θ!R. Let bu denote the importance-sampling estimate of the
expected value of u according to Equation (16). If we remove a sample i∈ 1,…,nf g, we can reestimate a
proposal density and the importance-weighted expected value of u as bui. The jackknife estimate for the
bias in the approximation of E u½ � is then given by:
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bubias ≔ n�1ð Þ 1
n

Xn
i= 1

bui�bu
 !

: (17)

Having an estimate for the bias, we can subtract it from the approximation in Equation (16) to compensate
for its bias. We compare the effect of this combined with the previous approaches in preliminary
experiments presented next.

5.4. Preliminary experiments on bias correction

We ran preliminary experiments to test the effects of debiasing and decorrelation methods for the
estimation of the posterior CDF with SMC. Experiments were run with randomized settings, having
parameters for the true model sampled from the prior used by SMC. The test model consists of an
exponential-gamma model over Θ⊂R with a gamma prior θ�Γ α,βð Þ and an exponential likelihood
p ojθð Þ= θexp �θoð Þ. Given T observations, to compute the approximation error, the true posterior is
available in closed-form as:

p θjo1,…,oTð Þ=Γ θ;αþT ,βþToTð Þ, (18)

where oT ≔ 1=Tð ÞPT
i= 1oT . For this experiment, we set α= β= 1 as the prior parameters.

Within each trial, we sampled a parameter θ from the prior to serve as the true model, and generated
observations from it. We ran Algorithm 2 with an MCMC kernel equipped with a random walk proposal
q θ0jθð Þ≔N θ0;θ,σ2ð Þ with σ≔ 0:1. We applied Gaussian kernel density estimation to estimate the
parameters’ posterior density, setting the median distance between particles as the kernel bandwidth.

CDF approximation results are presented in Figures 1 and 2 for the posteriors after T = 2 and T = 5
observations, respectively. As seen the effects of bias correction methods becomes more evident for SMC

(a) No correction (b) Decorrelation

(c) Importance re-weighting (d) Jackknife

Figure 1. Posterior CDF approximation errors for the exponential-gamma model using T ¼ 2 obser-
vations. For each sample size, which corresponds to the number of SMC particles, SMC runs were

repeated 400 times for eachmethod, except for the jackknife, which was rerun 40 times due to a longer run
time.The theoretical upper confidence bound on the CDFapproximation error cn(δ) (Theorem 1) is shown
as the plotted blue line. The frequency of violation of the theoretical bounds for i.i.d. empirical CDF errors

is also presented on the top of each plot, alongside the target (δ¼ 0:1).
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posteriors after a larger number of observations is collected. In particular, we highlight the difference
between importance reweighting and jackknife results, which is more noticeable for T = 5. The main
drawback of the jackknife approach, however, is its increased computational cost due to the repeated
leave-one-out estimates. In our main experiments, therefore, we present the effects of the importance
reweighting correction compared to the standard SMC predictions.

5.5. Limitations

As a few remarks on the limitations of the proposed framework, we highlight that the use ofmore complex
forward models and bias correction methods for the predictions comes at an increased cost in terms of
runtime, when compared to simpler models, such as GPs. In practice, one should consider applications
where the cost of observations is much larger than the cost of evaluating model predictions. For example,
in mineral exploration, collecting observations may involve expensive drilling operations which take a
much higher cost than running simulations for a few minutes, or even days, to obtain an SMC estimate.
This runtime cost, however, becomes amortized as the number of observations grows, since the
computational complexity for GP updates is still O t3ð Þ, which grows cubically with the number of
observations, when compared to an O ntð Þ for SMC. Even when considering importance reweighting or
optionally combining it with the jackknife method for bias correction, the computational complexity for
SMC updates is only added by O ntð Þ or O n2tð Þ, respectively, which are both linear with respect to the
number of observations. Lastly, the compromise between accuracy and speed can be controlled by
adjusting the number of particles n used by the algorithm. As each particle corresponds to an independent
simulation by the forward model, these simulations can also be executed simultaneously in parallel,
further reducing the algorithm’s runtime. The following section presents experimental results on practical
applications involving water resources monitoring, which in practice present a suitable use case for our
framework, given the cost of observations and the availability of informative physics simulation models.

6. Experiments

In this section, we present experimental results comparing SMC-UCB against its GP-based counterpart
GP-UCB (Srinivas et al., 2010) and the GP expected improvement (GP-EI) algorithm (Jones et al.,
1998), which does not depend on a confidence parameter. We assess the effects of the SMC approxi-
mation and its optimization performance in different problem settings. As a performance metric, we use
the algorithm’s regret rt ≔ maxx∈S f xð Þ� f xtð Þ. The averaged regret provides an upper bound on the
minimum regret of the algorithm up to iteration T , that is, min t≤ Trt ≤ 1

T

PT
t= 1rt. A vanishing average

regret (as T !∞) indicates that the choices of the algorithm get arbitrarily close to the optimal solution
x∗ in Equation (1).

(a) No correction (b) Importance re-weighting (c) Jackknife

Figure 2. Posterior CDF approximation errors for the exponential-gamma model using T ¼ 5 obser-
vations. For each sample size, which corresponds to the number of SMC particles, SMC runs were

repeated 400 times for eachmethod, except for the jackknife, which was rerun 40 times due to a longer run
time.The theoretical upper confidence bound on the CDFapproximation error cn(δ) (Theorem 1) is shown
as the plotted blue line. The frequency of violation of the theoretical bounds for i.i.d. empirical CDF errors

is also presented on the top of each plot, alongside the target (δ¼ 0:1).
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6.1. Linear Gaussian case

Our first experiment is set with a linear Gaussian model, where the true posterior over the parameters is
available in closed form and corresponds to a degenerate (i.e., finite-dimensional) GP. As a synthetic data
example, we sample true parameters from their prior distribution θ�N 0,Ið Þ and set f xð Þ≔ θTϕ xð Þ,
where ϕ :X !Rm is a kernel-based feature map ϕ xð Þ= k x,x1ð Þ,…,k x,xmð Þ½ �T with xif gmi= 1 �U Sð Þ, and
S≔ 0,1½ �d, d≔ 2. We set k as a squared-exponential kernel (Rasmussen andWilliams, 2006) with length-
scale ℓ≔ 0:2. The parameters prior θ�N 0,Ið Þ and the likelihood o∣f xð Þ�N f xð Þ,σ2ε

� �
are both

Gaussian, with σε = 0:1. In this case, the posterior given t observations Dt = xt,otf gti= 1 is available in
closed form as:

θ∣Dt �N A�1
t Φ ot,σ

2
εA

�1
t

� �
, (19)

where At ≔ Φ t Φ T
t þσ2ε I, Φ t ≔ ϕ x1ð Þ,…,ϕ xtð Þ½ � and ot ≔ o1,…,ot½ �T.

As a move proposal for SMC, we use a Gaussian random walk (Andrieu et al., 2003) within a
Metropolis-Hastings kernel. We use the same standard normal prior for the parameters and the linear
Gaussian likelihood based on the same feature map. For all experiments, we set δ≔ 0:3 for SMC-UCB.

We first compared SMC-UCB against GP-UCB in the optimization setting with different settings for the
number of particles n. GP-UCB (Srinivas et al., 2010) followed Durand et al. (2018, Theorem 2) for the
setting of the UCB parameter, and the GP covariance functionwas set as the same kernel in the feature map.
We also set δ≔ 0:3 for GP-UCB. The resulting regret across iterations is shown in Figure 3a. We observe
that SMC-UCB is able to attain faster convergence rates thanGP-UCBfor n≥ 300 particles.A factor driving
this improvement is that the quantile approximation error quickly decreases with n, as seen in Figure 3b.

Another set of tests compared SMC-UCB using 400 particles and the importance reweighting method
in Section 5.5 against GP-UCB and GP-EI. The optimization performance results are presented in
Figure 3c and show that SMC-UCB is able to maintain a clear advantage against both GP-based
approaches and improve over its no-importance-correction baseline (Figure 3a). In particular, we notice
that GP-EI is outperformed by both UCBmethods. Lastly, a main concern regarding SMCmethods is the
decrease in posterior approximation performance as the dimensionality of the parameter space increases.
Figure 3d, however, shows that SMC-UCB is able to maintain reasonable optimization performance up to
dimensionality m= 60 when compared to baselines. Although this experiment involved a linear model,
we conjecture that similar effects in terms of optimization performance should be observed in models
which are at least approximately linear, such as when h x,θð Þ is Lipschitz continuous w.r.t. θ. Yet, a formal
theoretical performance analysis is left for future work.

(a) Regret (b) Quantile difference (c) Comparison with EI (d) Dimensionality effect

Figure 3. Linear Gaussian case: (a) mean regret of SMC-UCB for different n compared to the GP-UCB
baseline with parameter dimensionm≔ 10; (b) approximation error between the SMC quantile bqt xt,δtð Þ

and the true qt xt,δtð Þ at SMC-UCB’s selected query point xt for different n settings (absent values
correspond to cases where bqt x,δtð Þ¼∞); (c) comparison with the non-UCB, GP-based expected

improvement algorithm; and (d) effect of parameter dimension m on optimization performance when
compared to the median performance of the GP optimization baselines. All results were averaged over

10 runs. The shaded areas correspond to �1 standard deviation.
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6.2. Water leak detection

As an example of a realistic application scenario, we present an approach to localize leaks in water pipes
via SMC and BO. A long rectilinear underground pipe presents a 5-day water leak at an unknown location
within a porous soil medium.We have access to amobile gravimetric sensor on the surfacewith a very low
noise level σε ≔ 5�10�8 m s�2 for gravitational acceleration. The wet soil mass presents higher density
than the dry soil in its surroundings, leading to a localized maximum on the gravitational readings. We
assume that prior information on gravitational measurements in the area allows us to cancel out the gravity
from the surrounding buildings and other underground structures. We performed computational fluid
dynamics (CFD) simulations3 to provide “ground-truth” gravity readings g xð Þ= g1 xð Þ,g2 xð Þ,g3 xð Þ½ �T at
the surface, and took the vertical gravity component g3 xð Þ as our objective function for BO. Figure 5a
shows the relative gravity measurements. The true pipe is 2 m in diameter and buried 3 m underground,
quantities which are not revealed to BO.

6.2.1. Pipe leak simulation
To provide an objective function consisting of realistic gravitymeasurements, we simulated a 3Dmodel in
the COMSOL Multiphysics software environment4 using some basic assumptions related to soil prop-
erties. This tool is a finite-element analysis and simulation software for solving and post-processing
computational models of physical systems. For our simulations, in particular, we used the subsurface flow
module,5 which allows simulating fluid flows in porous media. In detail, the soil porosity is set to 0.339,
residual saturation to 1�10�3, soil storage coefficient to 3:4466�10�5Pa�1, saturated hydraulic
conductivity to 5:2546�10�6ms�1 and the leak from the pipe to 10 kg m�2s�1. For the experiments
we use the gravity measured on the surface after 5 days of leakage. Figure 4 shows the spatial arrangement
of the simulation. To provide observations to the optimization algorithms, gravity data is corrupted with
simulated noise following a quantum gravimeter noise characteristics (Hardman et al., 2016). The
resulting data is shown in Figure 5a.

6.2.2. Gravity forward model
To derive an informative model from domain knowledge for SMC, we model the pipe as an infinite
cylinder and the leak as a spherical mass, which have closed-form expressions for their gravitational field
(Young and Freedman, 2015). The gravity of an infinite cylinder of density ρP and radius rP passing by a
location xP at a given direction uP ∈R3 can be derived as:

gP xð Þ= �2GπρPr
2
PuP� x�xPð Þ�uP

∥ x�xPð Þ�uP∥22
, (20)

where G≔ 6:674�10�11m3kg�1s�2 represents Newton’s gravitation constant. For the leak, the gravity
of a uniform sphere of density ρS and radius rS centerd at location xS ∈R3 is given by:

gS xð Þ= � 4GπρSr
3
S

3∥x�xS∥22
: (21)

6.2.3. Likelihood
As an observation model, we use Equations (20) and (21) to compose a Gaussian likelihood model based
on the gravity of the pipe gP and of the wet-soil sphere gS. As gravity is an integral over distributions of
mass, Gaussian noise is a well-suited assumption due to the central limit theorem (Bauer, 1981). Sowe set
p otjθ,xð Þ=N ot;gP,3 xð ÞþgS,3 xð Þ,σ2ε

� �
for the gravity model parameters θ≔ xTP,rP,ρP,u

T
P,x

T
S ,rS,ρS

� �T

3 Simulations based on COMSOL Multiphysics software environment: https://www.comsol.com
4Available at: https://www.comsol.com
5Details at: https://www.comsol.com/subsurface-flow-module
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based on the vertical-axis gravity measurements with σε ≔ 5�10�8 m s�2, the noise level of the gravity
sensor we consider (Hardman et al., 2016).

6.2.4. Priors on the pipe
We assume uncertainty on the pipe’s location xP ≔ xP,1,xP,2,xP,3½ �T, though not on its orientation uP.6 We
place aGaussian prior on the pipe’s horizontal coordinate with xP,1 �N 0,1ð Þ and a gamma prior Γ αz,βz

� �

Figure 4.Pipe simulation diagram: Awater pipe of 2 in diameter is buried 3 underground in a large block
of soil (100�100�50m).

(a) Objective and regret (b) Final estimates (c) SMC leak location

Figure 5. Performance results for water leak detection experiment: (a) The gravity objective function
generated by CFD simulations and the mean regret curves for each algorithm. The shaded areas in the
plot correspond �1 standard deviation results from results which were averaged over 10 trials. (b) The
gravity estimates according to the final SMC and GP posteriors after 100 iterations. (c) SMC estimates
for the parameters concerning the location of the leak. The upper plot in (c) is colored according to an

estimate for the mass of leaked water.

6 The pipe can, for example, be assumed to be aligned with a street of known location.
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with α= 2 and β= 1 on the pipe’s depth, that is,�xP,3. For the radius, we set rP �Γ αr,βrð Þwith αr = 2:25
and βr = 0:75, yielding a 95% confidence interval of rP ∈ 0:4,8½ � m. The pipe’s density is set as
tightly around the water density ρP �N bρP,σ2ρP	 


with bρP ≔ 1000 kg m�3 and σρP ≔ 10 kg m�3, which
allows for small variations in the pipe’s mass distribution due to the outflow of water with the leak.

6.2.5. Priors on the sphere
For the wet soil sphere, we place conditional priors xS,1∣xP,1,rP �N xP,1,r2P=4

� �
and

xP,3� xS,3ð Þ=xP,3 �Beta 2,5ð Þ, indicating that the leak is most likely concentrated somewhere around
the pipe’s border. However, the leak’s xS,2 coordinate, which goes along the pipe, is only known to be
within a bounded segment of the pipe, xS,2 �U �20,20ð Þ. As a leak is a rare phenomenon, we place priors
with high probability around zero for the leak’s radius and density. In particular, we set a 1-degree-of-
freedom chi-square distribution for rS � χ2 1ð Þ, and the density as a gamma randomvariable ρS �Γðαρ,βρÞ
with αρ = 2 and βρ = 1=250, so that ρS ∈ 100,1000½ � kg with approximately 90% probability.

6.2.6. SMC settings
A HMC kernel within SMC was configured with 100 leapfrog steps and per-parameter tuned step sizes,
according to their prior distribution.7 The number of particles is set to n≔ 1000.

6.2.7. Optimization settings
GP-UCB and SMC-UCB were run with similar settings. GP hyperparameters were learnt offline via
maximum a posteriori estimation. The GP covariance function was a Matérn function with smoothness
parameter ν≔ 2:5 (see Rasmussen and Williams, 2006, Ch. 4) SMC-UCB was configured with δ≔ 0:1.
As we do not have enough information about the objective function to derive theory-recommended UCB
parameters, GP-UCB was set with an equivalent UCB parameter based on the inverse CDF of a normal
distribution. For both methods, the acquisition function optimization is performed over a discretized fine
grid covering the search space.

6.2.8. Results
Figure 5 presents results for the leak detection experiment. As the plot in Figure 5a shows, the proposed
SMC-UCB algorithm is able to overcome GP-UCB in this setting with a clearly lower regret from the
beginning. The SMCmethod also presents final predictions better approximating the provided CFD data
with low uncertainty on the sphere position parameters, as seen in Figure 5b. Due to exploration–
exploitation trade-off of BO algorithms (Brochu et al., 2010; Shahriari et al., 2016), it is natural that the
uncertainty regarding the pipe’s parameters is slightly higher, as its gravity does not directly contribute to
the maximum of the gravity objective function. Yet we can see that SMC’s estimate on the pipe’s gravity
signature is still evident when compared to the GP’s estimated gravity predictions (see Figure 5c). In
addition, SMC is able to directly estimate the leak’s location online based on its empirical posterior
parameters distribution.WithGPs the samewould require running a second inference scheme using all the
observations.

6.3. Contaminant source localization

As a final experiment to demonstrate the potential of SMC for BO, we present the problem of localizing a
source of contamination within an aquifer with strong property contrasts (Pirot et al., 2019).We transform
the source localization problem into that of finding the maximum contaminant concentration over a set of
25 possible well locations. We have access to hydraulic simulations8 (Cornaton, 2007) made available by
Pirot et al. (2019) predicting the contaminant concentration at S = xif gLi= 1, where L≔ 25 possible well

7 Parameters with wider priors are set with larger step sizes.
8 Data available at: https://github.com/gpirot/BGICLP
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locations over a window of 300 days with candidate contaminant source locations θ≔ xC spread over a
51-by-51, 3-meter cell grid, totalling 2,601 possible locations.

6.3.1. Data
The contaminant concentration data is composed of two datasets, one with the simulated concentration
values for all 25 wells and all 301 measurement times over the 51-by-51 source locations grid, while the
other dataset consists of reference “real” concentration values over the 25 wells and the 301 time steps.
The “real” concentration values are in fact simulated concentration values at locations not revealed to the
BO algorithms. To simulate different scenarios, each experiment trial was run on a random day, sampled
uniformly among the 300 days. To provide observations for each algorithm, we also add Gaussian noise
with σε ≔ 1�10�3, corresponding to roughly a 10% measurement error level.

6.3.2. SMC model
We use the hydraulic simulations to form a model for SMC-UCB using n≔ 400 particles. A separate
dataset of simulated concentrations is used as the objective function. SMC is configured with a
Metropolis-Hastings move kernel using a proposal over the discrete source locations space. At each
move, we compute the current posterior probabilities at each point in the location space and form an
empirical distribution with it, which is our proposal distribution.

6.3.3. Optimization settings
For this experiment, we set SMC-UCB with δ≔ 0:3. GP-UCB is set with a fixed value for the UCB
parameter βt ≔ 3, whichwas the best performing for this experiment after tuningwith preliminary runs. To
provide a tuned GP model, we compute an empirical covariance matrix for the well measurements data
from a random subset of the 2,601 possible source locations. With this empirical covariance matrix, we
form a zero-mean GP over the discrete search space. This procedure is similar to common practice in the
GP-UCB literature when real datasets are provided (Srinivas et al., 2010; Chowdhury and Gopalan,
2017).

6.3.4. Results
Figure 6 presents our experimental results for the contaminant source localization problem. As Figure 6a
shows, SMC-UCB is able to achieve a better performance than GP-UCB by using the informative prior
coming from hydraulic simulations. In addition, SMC final parameter estimates (Figure 6b) present high
probability mass around the true source location.

(a) Regret (b) SMC estimate

Figure 6.Contaminant source localization problem: (a) The optimization performance of each algorithm
in terms of regret. Results were averaged over 10 runs. (b) A final SMC estimate for the source location,

while the true location is marked as a red star.
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7. Conclusion

This article presented SMC as an alternative to GP based approaches for Bayesian optimization when
domain knowledge is available in the form of informative computationalmodels.We presented a quantile-
based acquisition function for BO which is adjusted for the effects of the approximation bias in the SMC
estimates and allows for inference based on non-Gaussian posterior distributions. The resulting SMC
algorithm is shown to outperform the corresponding GP-based baseline in different problem scenarios.

The work in this article can be seen as a starting point toward a wider adoption of SMC algorithms in
BO applications. Further studies with theoretical assessments of the SMC approximation should
strengthen the approach and allow for the derivation of new algorithms which can make an impact on
the practical use of BO in data-driven science and engineering applications. Another interesting direction
of future research is the incorporation of likelihood-free SMC (Sisson et al., 2007) methods into the BO
loop in cases where forward models do not allow for a closed-form expression of the observation model.
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