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Fitting and evaluating univariate and multivariate models of
within-lineage evolution

Kjetil Lysne Voje

Abstract.—The nature of phenotypic evolution within lineages is central to many unresolved questions in
paleontology and evolutionary biology. Analyses of evolutionary time series of ancestor–descendant
populations in the fossil record are likely to make important contributions to many of these debates. How-
ever, the limited number of models that have been applied to these types of data may restrict our ability to
interpret phenotypic evolution in the fossil record. Using uni- and multivariate models of trait evolution
that make different assumptions regarding the dynamics of the adaptive landscape, I evaluate contrasting
hypotheses to explain evolution of size in the radiolarian Eucyrtidium calvertense and armor in the stickle-
back Gasterosteus doryssus. Body-size evolution in E. calvertense is best explained by a model in which the
lineage evolves as a consequence of a shift in the adaptive landscape that coincides with the initiation of
neosympatry with its sister lineage. Multivariate evolution of armor traits in a stickleback lineage (G. dor-
yssus) shows evidence of adaptation toward independent optima on the adaptive landscape at the same
time as traits change in a correlated fashion. The fittedmodels are available in the R package evoTS, which
builds on the paleoTS framework.
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Introduction

Evolutionary time series of populations in the
fossil record provide information on phenotypic
change on time intervals in between gener-
ational and macroevolutionary timescales. Ana-
lyses of these types of data are thus poised to
make important contributions to our current
understanding of evolution across the timescale
continuum. For more than 15 years, Hunt’s
paleoTS framework (Hunt 2006, 2008a, b; Hunt
et al. 2008, 2015; Hunt and Carrano 2010) has
been instrumental in generating newknowledge
of evolutionary trait dynamics at the intersection
between paleontology and evolutionary biology
analyzing such time series. For example, trait
evolution within lineages in the fossil record
has been shown to be much more diverse than
stasis alone (Hunt 2007; Hopkins and Lidgard
2012; Hunt et al. 2015); microevolutionary para-
meters have been successfully estimated from
fossil data (Hunt et al. 2008); and rates of

evolution can be estimated using similar mod-
els, as in phylogenetic comparative methods
(Hunt 2012). The new insights into phenotypic
evolution provided by the paleoTS framework
have thus contributed to a closer integration
of paleontology and evolutionary biology.
Despite its success and impact, an extension

of the paleoTS framework may be useful. First,
a common use of the paleoTS R package is to
investigate the relative fit of the three canon-
ical models—stasis, unbiased random walk,
and trend (modeled as an biased random
walk)—to fossil time series. These models
have a long history within paleontology (e.g.,
Raup 1977; Roopnarine 2001; Sheets and
Mitchell 2001) but are not always able to
adequately capture trait dynamics within
lineages in the fossil record (Voje 2018; Voje
et al. 2018). Fitting and comparing a larger
range of evolutionary models may enable a
richer interpretation of evolutionary change
within lineages (Fig. 1).
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Second, the adaptive landscape has been sug-
gested as a conceptual bridge between our
understanding of microevolutionary processes
and evolution observed across longer timescales
(Simpson 1944; Arnold et al. 2001; Hansen 2012).
However, knowledge of the dynamics of the
adaptive landscape across time is poor. Macro-
evolution is likely associated with movements

of peaks on the adaptive landscape, but a fixed
adaptive landscape is commonly assumed in
microevolutionary studies, which is also the
case for the models implemented in paleoTS.
Inferring the dynamics of the adaptive landscape
from evolutionary time series may contribute to
a better understanding of the dynamic nature of
peak movements at different time intervals.

FIGURE 1. Univariate evolution models that can be fit and compared in evoTS. The models stasis, strict stasis, biased and
unbiased randomwalk, and Ornstein-Uhlenbeck (OU) with fixed optimum are implemented in paleoTS (Hunt 2006; Hunt
et al. 2008, 2015). The other models are implemented in evoTS. All models can be fit and compared in evoTS. In the OU
model with a moving optimum, the population is either displaced from the optimum at the start of the sequence or is res-
iding on or very close to the optimum (latter model indicated by *). The dotted horizontal line shows the position of the
optimum in the OUmodel with a fixed optimum and the starting value of the optimum for the model where the optimum
is allowed to change.
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Third, evolution is inherently a multivariate
phenomenon. Pleiotropy is omnipresent (e.g.,
Walsh and Blows 2009) and selection on one
trait may cause genetically linked traits to
evolve (Lande 1979; Lande and Arnold 1983).
Traits may also commonly experience corre-
lated selection. Multivariate models are useful
for investigating whether traits change in a cor-
related or uncorrelated manner, whether one
trait/variable affects the optimum of a second
trait, or whether adaptation in traits happens
independently. The univariate models in
paleoTS are of limited use for assessing the con-
sequences of the multivariate nature of selec-
tion and evolution within lineages.
Here, I explore these three avenues of

research by fitting uni- and multivariate mod-
els to examine evolution of size in a radiolarian
lineage and multivariate evolution of armor
traits in a stickleback lineage. Analyses employ
the new R package, evoTS. As the univariate
models in evoTS are natural extensions and
modifications of the models in paleoTS, I start
by introducing the univariate models available
in paleoTS before I explain the expanded uni-
variate models implemented in evoTS. I then
apply these models to a well-known and previ-
ously published dataset, the evolution of size in
the radiolarian lineage Eucyrtidium calvertense
during allopatry and in a subsequent phase of
neosympatry with its sister lineage Eucyrtidium
matuyamai (Kellogg 1975). I continue by introdu-
cing the multivariate models implemented in
evoTS before I apply them in a reanalysis of a
publisheddataset of two armor traits in a stickle-
back lineage (Bell et al. 2006; Hunt et al. 2008).

evoTS Is Compatible with paleoTS

I have developed evoTS to mirror the user
experience from paleoTS as much as possible.
The two frameworks use the same data format
and the model-fitting procedures are built on
the same assumptions. For example, all models
assume the population (sample) means in the
sequence of ancestor–descendants have a joint
distribution that is multivariate normal with
an expectedmean vector and covariancematrix
that are functions of the parameters of each
model, the time intervals separating the popu-
lations (samples) in the sequence, and the

sampling variances of the trait means calculated
for each population (sample). The expected dis-
tribution of sample means is thus defined by
their means, variances, and covariances given
the assumption of multivariate normality. All
models in evoTS have been implemented
using the joint parameterization routine from
paleoTS (Hunt 2008a), with the autocorrelation
among samples being accounted for in the
log-likelihood function. As in the paleoTS pack-
age, evoTS uses a quasi-Newton optimization
routine for estimating maximum likelihood par-
ameter estimates for univariate models, while
the Nelder-Mead hill climbing algorithm is the
default option for some of themultivariatemod-
els. Relative model fit is evaluated based on the
small sample-corrected version of the Akaike
information criterion (AICc) (Akaike 1974; Burn-
ham and Anderson 2002).

Univariate Models in paleoTS

Unbiased randomwalk, biased randomwalk
(trend model), and stasis were the first models
implemented in the paleoTS framework
(Hunt 2006). An unbiased random walk mod-
els evolution of a trait mean as independent
draws from a normal distribution with mean
zero (μ = 0) and a variance (s2

step) commonly
referred to as the step variance (Hunt 2006).
Each draw represents a discrete evolutionary
“step,” and the expected amount of evolution
in the trait mean z per time step i is 0.

E[zi] = z0 (1)

The trait mean is therefore not expected to be
different from the ancestral state z0, but the
variance around this expectation increases lin-
early with elapsed time,

Var[zi] = s2
stepti + 1i (2)

where ti is the elapsed time from the start of the
time series to sample i (time at the start of the
time series is always 0). The variance in each
sample is influenced by the sampling error
(1i) in estimating the trait mean, which is equal
to the sample variance divided by the sample
size (i.e., number of measured specimens) for
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that sample. The covariance among sample
means is given by:

Cov[zi, zj] = s2
steptmin (3)

where tmin represents the time interval between
the start of the sequence and the earliest of the
samples zi and zj.
The biased random walk (sometimes

referred to as a trend model; e.g., see Hansen
[1997]) is identical to an unbiased random
walk except for a nonzero mean (μ ≠ 0) of the
normal distribution from which evolutionary
steps are drawn (Hunt 2006). A larger deviation
from 0 of the mean translates into a stronger
tendency to change unidirectionally in trait
space. The expressions for the variance and
covariance are identical for the biased and
unbiased random walk (eqs. 2 and 3), while
the expected mean trait value is given by:

E[zi] = zo + mti (4)

Various definitions of stasis have been
employed in research that aims to quantify
change in evolutionary time series (e.g., Book-
stein 1987; Gingerich 1993; Roopnarine 2001;
Sheets and Mitchell 2001). The stasis model in
paleoTS is similar to a white noise process
where trait evolution consists of uncorrelated
fluctuations around a fixed trait value (θ)
(Hunt 2006). The fluctuations around the
fixed mean are described by a variance param-
eter (ω), which is assumed to stay constant over
time. Time is accordingly not a relevant param-
eter in the stasis model. The strict stasis model
(Hunt et al. 2015) is identical to the previously
described stasis model, except that ω = 0,
which can be the case when the variance
among trait means is smaller than the sampling
error in the trait means, that is, the observed dif-
ferences among trait means can be explained by
sampling error alone (see also Hannisdal 2006).
Hunt et al. (2008) extended the paleoTS

framework with the implementation of an
Ornstein-Uhlenbeck (OU) model describing
evolution of a trait toward a fixed peak in the
adaptive landscape (Hansen 1997). The OU
process is the simplest stochastic model that
allows evolution toward a specific state and is

given by the following differential equation:

dy = a(u− y)dt+ sydWy (5)

where dy is the change in the trait (y) over a
time step dt, α describes the rate of evolution
toward the optimum θ, dWy represents inde-
pendent and normally distributed changes
with mean 0 and unit variance, with σy being
the standard deviation of this white noise pro-
cess. The first part of the OU process is deter-
ministic and describes how the trait is pulled
toward the optimum at a rate given by α. The
second part is a stochastic process adding ran-
dom noise scaled by the σy parameter to the
trait dynamics. The expected change in a trait
mean z per time step i and its variance and
covariance are given by:

E[zi] = e(−ati)z0 + [1− e(−ati)]u (6)

Var[zi] = (s2
step/2a)[1− e(−2ati)]+ 1i (7)

Cov[zi, zj] = (s2
step/2a)e

(−atij)[1− e(−2atmin)] (8)

where θ is the optimal trait value and tij is the
time separating samples i and j (Hansen 1997;
Hunt et al. 2008).

Univariate Models in evoTS

Simple models often sacrifice precision and
nuance to distill general properties from data
(Levins 1966). An evolutionary time series show-
ing a relative better fit to an unbiased random
walk compared with a stasis model does not
mean trait evolution was random in each gener-
ation in the analyzed lineage. Rather, it suggests
that the observed trait dynamics are more con-
sistentwith a pattern of “meandering” evolution,
in which random changes in the trait mean accu-
mulate over time, rather than with random fluc-
tuations around a constantmean (akin to awhite
noise process). Adding or changing a few para-
meters in the models implemented in paleoTS
can aid in extracting additional information not
captured by the original models.
In the following sections, I describe the uni-

variate models implemented in evoTS and
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briefly discuss how they can be interpreted
when fit to evolutionary sequences. evoTS is
available for download from the Comprehen-
sive R Archive Network (CRAN) (http://cran.
r-project.org). The online vignette contains a
detailed walk-through that explains from a
user perspective how to fit all the different uni-
variate models in evoTS (and paleoTS) and
how to evaluate their relative fit to data
(klvoje.github.io/evoTS/index.html).

Time-Varying Unbiased Random Walks
The rate of evolution is constant in an

unbiased random walk, which means the trait
variance is expected to increase linearly with
time. A natural extension of this model is to
allow the rate of evolution to change with time.
The decelerated model of evolution implemen-
ted in evoTS is an unbiased random walk
where the net rate of change declines exponen-
tially through time. This model is basically iden-
tical to the early burst model developed for
phylogenetic comparative data to test for a decel-
erated rate of evolution at the clade level (e.g.,
Cooper and Purvis 2010; Harmon et al. 2010).
The expected evolutionary divergence between
ancestor and descendant populations is zero in
the decelerated evolution model (eq. 1) and its
variance and covariance are given by:

Var[zi] = s2
step.0

(erti − 1)
r

+ 1i (9)

Cov[zi, zj] = s2
step.0

(ertmin − 1)
r

(10)

where σ2step.0 is the initial value for the step dis-
tribution, and r describes the exponential decay
in the rate change through time and is thus con-
strained to be < 0 (Harmon et al. 2010). An
accelerating model of evolution is identical to
the decelerated model, except that the r param-
eter is constrained to be > 0. The time it takes to
halve (for the decelerated evolution model) or
double (for the accelerated evolution model)
the rate of evolution is given by ln(2)/|r|.
The estimating algorithm in evoTS generally
produces precise estimates of the r parameter
in the decelerated and accelerated models
(more details are given in Supplementary Fig. 1).

Model Interpretation.—A linearly increasing
trait divergence with time will rapidly produce
magnitudes of evolutionary change rarely
observed in nature (e.g., Lynch 1990; Gingerich
2001; Estes and Arnold 2007; Uyeda et al. 2011).
A decelerating rate of evolution mitigates this
problem. Although many evolutionary scen-
arios and processes can be compatible with
unbiased random walk models, a decrease in
the rate of evolution over time might occur,
for example, when a lineage experiences less
selection after a period of higher initial rates
of evolution due to changes in the environmen-
tal conditions (e.g., Voje 2020). A reduced rate
may also occur if the effect of drift is reduced
over time (i.e., due to increasing population
size). An accelerated rate of evolution is not sus-
tainable across long timescales but might fit
lineages that experience an increased effect of
drift or increasing environmental perturba-
tions. Note that interpreting the trait dynamics
as the results of neutral drift only may not be a
plausible interpretation for ecologically rele-
vant traits across long timescales (e.g., Hansen
2012). An alternative—and perhaps more
likely—interpretation of unbiased random
walk models is that they provide information
on peak movements of the adaptive landscape.
This is indeed a common interpretation of the
related Brownian motion model in phylogen-
etic comparative approaches (Felsenstein
1988). As long as populations are sufficiently
evolvable to immediately track changes in the
locations of peaks in the adaptive landscape,
the step variance (s2

step) provides insight on
the rate of change of the adaptive peak itself
according to this interpretation of the model.
The decelerated and accelerated models may
therefore represent scenarios where the rate of
peak movements changes with time.

OU Models with Moving Optimum
A natural extension of the fixed-peak OU

model implemented in paleoTS is to allow the
peak to change. A model where the optimum
is changing according to Brownian motion
was proposed by Hansen et al. (2008) for
analysis of phylogenetic comparative data.
Adjusted to describe evolution of a single lin-
eage, the expected trait mean is given by equa-
tion (6), while the variance and covariance are
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given by the following expressions:

Var[zi] =
s2
step + s2

u

2a

[ ]
[1− e(−2ati)]

+ s2
uti[1− 2(1− e−ati )/ati]

+ 1min (11)

Cov[zi, zj] =
s2
step + s2

u

2a

[ ]
[1− e(−2atmin)]e−atij

+ s2
utmin[1− (1+ e−atij )(1− e−atmin )/atmin]

(12)

where θ0 is the initial (ancestral) optimum, σ2θ is
the (step) variance of the stochastic perturba-
tions of the optimum. The half-life, ln(2)/α, is
a reparameterization of the speed of adaptation
in this process that is easy to interpret, as it is
the time it takes for the trait to move halfway
from the ancestral state to the optimum. The
estimation algorithm is able to identify model
parameters well, but outliers occur. Precision
increases with longer time series (see Supple-
mentary Fig. 2 for more details).

Model Interpretations.—The stability of the
adaptive landscape is debated and is likely
affected by many factors (e.g., Slater and Friscia
2019). A lineage in a hyper-stable niche may res-
ide on a fixed peak, while a lineage inhabiting a
more unstable environment may experience a
more dynamic adaptive landscape. For example,
traits with specialized ecological roles insensi-
tive to changes in overall size (i.e., allometry)
may reside on stable peaks, while the peak of a
size-associated trait easily affected by changing
ecological conditions may be in constant flux.
Being able to explicitly test whether a fixed or
a dynamic optimum model best fit a given evo-
lutionary sequence may provide a valuable per-
spective on the dynamic nature of the adaptive
landscape.

Mode-Shift Models
There is no a priori reason why a lineage

should be described by a single evolutionary
process (Hunt 2008b; Hunt et al. 2015). Mode-
shift models allow two or more separate seg-
ments of a time series to evolve according to dif-
ferent models. evoTS includes a function that

enables the testing of all possible pairwise com-
binations of fourmodels: unbiased randomwalk,
biased random walk, stasis, and OU. This func-
tion also allows for the independent parameter-
ization of the same model for two separate
segments. In addition to assessing all possible
switch points in mode of evolution, it is also pos-
sible to define where in the sequence a shift in
mode occurs, a helpful feature if we have an a
priori hypothesis for when a shift happened.

Applying the Univariate Models

Changes in the adaptive landscape may
affect how lineages evolve. I reinvestigate an
evolutionary sequence of a radiolarian lineage
to assess the dynamics of the adaptive land-
scape across a few million years and whether
it affects size change in the lineage.

Background
Kellogg (1975) investigated whether size evo-

lution in the radiolarian lineage Eucyrtidium cal-
vertense showed trait dynamics consistent with a
scenario of character displacement (Fig. 2).
Eucyrtidium matuyamai evolved from E. calver-
tense in subarctic waters, and the two lineages
differentiated during a period of allopatry. The
two species came into secondary contact when
a population of E. matuyamai migrated to sub-
tropical waters. During this neosympatric
phase, the two lineages differentiated in size,
with E. matuyamai evolving to become about
25% larger and E. calvertense to become about
10% smaller. Kellogg (1975) concluded that the
evolutionary sequence of E. calvertense in sub-
tropical waters showed little net change during
the allopatric phase, but a trend toward smaller
size in the neosympatric phase, a type of trait
dynamics Kellogg (1975) interpreted to be con-
sistent with the process of character displace-
ment. The evolutionary sequence spans
3.67 Myrand consists of 49 sampleswithmedian
and mean numbers of measured specimens per
sample of 25 and 25.4, respectively (Fig. 2). The
allopatric and neosympatric phases last for
about 1.70 and 1.97 Myr, respectively.

Fitted Models
A mode-shift model consisting of two OU

models (i.e., an OU–OU model) can assess
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whether the initiation of the neosympatric
phase led to a sudden change in the position
of the adaptive peak for size in E. calvertense. I
also fit OU processes with a constantly chan-
ging optimum to investigate how well models
assuming continuous change of the adaptive
landscape explained the data. To investigate
whether models assuming a fixed adaptive
landscape outcompeted the models assuming
a dynamic landscape, I fit the stasis model,
the trend model (i.e., a biased random walk),
and unbiased random walk model with fixed,
decelerating, and accelerating rates of evolu-
tion, and mode-shift models where the allopat-
ric and neosympatric parts were either
modeled as two unbiased random walks or
where the second model was a biased random
walk. Data and R scripts for replicating the ana-
lyses are available in the Supplementary
Material.

Results
The OU–OU mode-shift model showed the

best relative fit to the data (Table 1), with an
optimal trait value during the sympatric
phase (4.38 log micrometer) that was 13%

smaller compared with the optimum during
the sympatric phase (4.52 log micrometer).
The adaptive process is faster in the allopatric
phase (ln(2)/α = 0.007, which translates into a
half-life of about 27,000 years) compared with
the sympatric phase (ln(2)/α = 0.037, i.e., a half-
life of about 135,000 years; Table 2). The
log-likelihood surfaces of the half-life values
show some overlap in the two phases (Fig. 3),
but while a half-life of 4.05% (about 150,000
years) of the sequence length is within 2
log-likelihood units in the allopatric phase,
the equivalent value of the second phase is
31.51% (about 1,160,000 years). The stochastic
part of the trait dynamics is also elevated
during the allopatric phase (s2

step.1 = 0.183)
compared with the sympatric phase (s2

step.2 =
0.046). To investigate whether the difference
in temporal resolution between the two seg-
ments could explain the difference in trait
dynamics, I subsampled the first segment
1000 times to match the length of the second
segment (14 samples) and re-estimated the
half-life and s2

step parameters. The median esti-
mates of the half-life and s2

step from the sub-
sampled data were 0.010 and 0.111, which

FIGURE 2. Size evolution in Eucyrtidium calvertense (Kellogg 1975). The vertical gray bar indicates the shift from allopatry to
sympatry with Eucyrtidium matuyamai. Blue dots belong to the allopatric phase, and orange points belong to the sympatric
phase. The best model is a mode-shift model consisting of two Ornstein-Uhlenbeck (OU) processes with fixed optima. The
maximum likelihoodparameter estimates (±SE) of thismodel are: z0 = 4.543 (±0.019), θ1 = 4.524 (±0.009), θ2 = 4.377 (±0.021),
s2
step.1 = 0.183 (±0.130), s2

step.2 = 0.046 (±0.027), α1 = 94.282 (±64.671), α2 = 18.833 (±10.231). The broken horizontal lines
represent the fixed optimal trait values from the OU–OU model.
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suggests that differences in temporal resolution
alone cannot explain the difference in the esti-
mated trait dynamics between the two seg-
ments. The allopatric phase therefore appears
to be characterized by faster evolution toward
the fixed optimum and larger stochastic devia-
tions from the optimum compared with the
sympatric phase.
Models that differ in their relative model fit

by a few AICc units may be worth considering
as plausible or suitable alternative explanations
of an empirical dataset (Burnham et al. 2011).
The OU model with a constantly changing
optimum has a very similar fit compared with
the best model (ΔAICc = 0.412). The alpha par-
ameter describing the rate of evolution toward
themoving optimum is large (205.57), translating
into a point estimate of the half-life of about
10,000 years. The point estimate of the rate of
change in the optimum (s2

step.opt = 0.02)

indicates a non-fixed optimum through time.
The stochastic part of the trait dynamics is
rather large (s2

step= 0.22), suggesting size evolu-
tion in E. calvertense has contributions from
both the deterministic and stochastic part of
the OU model. A reasonable interpretation of
the trait dynamics in E. calvertense according
to the parameter values of this OU model is
as awhite noise process around a stochastically
moving peak. Note that both the unbiased ran-
dom walk and the decelerating unbiased ran-
dom walk show a similar, albeit somewhat
poorer, fit to the data compared with the OU
process with a moving optimum. This is not
surprising, as the optimum in the OU process
changes according to an unbiased random
walk. The better fit of the OU model is due to
the size of the fluctuations around the opti-
mum, which is sufficiently large not to be
accounted for by measurement error in the

TABLE 1. Model fit to the Eucyrtidium calvertense sequence. The log-likelihood (log-lik.) and the relative model fit for the
candidate models fit to the evolutionary sequence of E. calvertense. OU, Ornstein-Uhlenbeck; K, number of parameters in
model; AICc, Akaike information criterion corrected for small sample size; *, the population at the start of the sequence is
residing on or very close to the optimum.

Model type Model K log-lik. AICc ΔAIC AICc weight

No mode shift Stasis 2 59.579 −114.896 55.562 0.000
Biased random walk (trend) 3 87.422 −168.312 2.147 0.087
Unbiased random walk 2 86.952 −169.644 0.815 0.169
Decelerated evolution 3 88.032 −169.531 0.927 0.160
Accelerated evolution 3 86.952 −167.371 3.087 0.054
OU with fixed optimum 4 88.078 −167.247 3.211 0.051
OU with moving optimum 4 89.478 −170.046 0.412 0.207
OU with moving optimum* 5 88.078 −164.761 5.697 0.015

Mode shift Two unbiased random walks 4 84.942 −160.974 9.484 0.002
Unbiased and biased random walk 5 85.562 −159.729 10.729 0.001
Two OU models 8 95.029 −170.458 0.000 0.254

TABLE 2. Maximum likelihood parameter estimates for the candidate models fit to the Eucyrtidium calvertense sequence.
See equations and main text for definitions of the different model parameters. The numbers in parentheses are standard
errors calculated from the square root of the inverse of the diagonal of the Hessian matrix. OU, Ornstein-Uhlenbeck; *, the
population at the start of the sequence is residing on or very close to the optimum.

Model Parameter estimates (SE)

Stasis θ = 4.49 (0.01), ω = 0.01 (0.00)
Biased random walk z0 = 4.54 (0.02), μ = -0.19 (0.19), s2

step = 0.04 (0.05)
Unbiased random walk z0 = 4.54 (0.02), s2

step = 0.04 (0.00)
Decelerated evolution z0 = 4.54 (0.02), s2

step 0.10 (—), r =−2.08 (0.01)
Accelerated evolution z0 = 4.54 (0.23), s2

step = 0.04 (—), r = 0.00 (0.61)
OU with fixed optimum z0 = 4.55 (0.02), s2

step = 0.04 (0.02), θ = 4.40 (0.09), α = 3.21 (3.09)
OU with moving optimum z0 = 4.54 (0.02), s2

step 0.22 (0.29), s2
step.opt = 0.02 (0.01), α = 205.57 (325.00)

OU with moving optimum* z0 = 4.55 (0.02), θ0 = 4.40 (0.09), s2
step = 0.04 (0.02), s2

step.opt = 0.00 (—), α = 3.21 (2.70)
Two unbiased random walks z0 = 4.52 (0.02), s2

step.1 = 0.06 (0.03), s2
step.2 = 0.04 (0.02)

Unbiased and biased random walk z0 = 4.52 (0.01), s2
step.1 = 0.06 (0.03), μ =−0.21 (0.28), s2

step.2 = 0.04 (0.02)
Two OU models z0 = 4.54 (0.02), s2

step.1 = 0.18 (0.13), θ1 = 4.52 (0.01), α1 = 94.28 (64.67)
s2
step.2 = 0.05 (0.03), θ2 = 4.38 (0.02), α2 = 18.83 (10.23)
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samples. Not controlling for error in the sam-
ples would therefore unduly favor the
unbiased random walk instead of the OU
process.
In summary, the best model among the can-

didates suggests the position of the optimum
changed toward a smaller optimal size when
E. calvertense comes into secondary contact
withE. matuyamai. Evolution toward a randomly

changing optimum in both the allopatric and
sympatric phases of the evolutionary sequence,
or “meandering” evolution described by
unbiased random walk models, are also likely
models of the trait dynamics in E. calvertense.

Multivariate Models in evoTS

Much can be learned from studies of single
traits, but a trait-by-trait approach has some
important shortcomings. The omnipresence of
pleiotropy suggests only a very small number
of truly genetically independent traits exist
(Barton 1990; Johnson and Barton 2005; Walsh
and Blows 2009). Evolutionary change in a
trait is only rarely due to selection operating
on that trait alone, as selection on genetically
linked traits may also affect the focal trait
(Lande 1979; Lande and Arnold 1983; Hansen
and Houle 2008). Traits that are genetically
independent may still be functionally depend-
ent, which means they may experience
coordinated selection and therefore have a ten-
dency to evolve in concert. Trait evolution is
thus inherently a multivariate process that
requires multivariate models to be more fully
understood.
The following sections provide a description

of the multivariate models available in evoTS
and how they can be interpreted. The online
vignette details from a user perspective how
to fit the different multivariate models imple-
mented in evoTS, including walk-throughs
and examples of how to test different hypoth-
eses of evolution and adaptation (klvoje.
github.io/evoTS/index.html).

Multivariate Unbiased Random Walks
The multivariate unbiased random walk

model can assess whether a set of traits evolve
in a coordinated fashion or not. This is done by
estimating an evolutionary rate matrix R (Fel-
senstein 2004; Revell and Harmon 2008; Revell
and Collar 2009). The R matrix describes the
rate of evolution in the investigated traits on
the diagonal (i.e., the diagonal contains the
step variances) and the covariance of the
changes in the traits in the off-diagonal ele-
ments. The multivariate variance–covariance
matrix for the unbiased random walk model
(V) is computed using the Kronecker product

FIGURE 3. Log-likelihood surfaces for theOrnstein-Uhlenbeck
(OU–OU) model. The panels show the support surface for
the OU model describing the evolutionary sequence before
and after the mode shift, respectively. The elevated area
represents parameter estimates that are within two
log-likelihood units of the best estimate. A, The first part
of the sequence; the two-unit support surface includes
immediate adaptation (i.e., half-life = 0) and extends up to
0.040. B, The second part of the sequence where a half-life
of zero is not part of the support surface (0.019–0.315).
The ranges of support for the two stationary variances are
0.000–0.002 and 0.001–0.008.Note that these results are con-
ditional on the best estimate of the other parameters in the
model (i.e., the ancestral state and the optimum).
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of the R matrix and a “distance matrix” C,
describing how the different samples/popula-
tions are separated in time.

V =
∑m
i=1

Ri ⊗ Ci (13)

where m represents the number of non-
overlapping segments of a time series that
have their own R matrix. Sampling error of
the trait mean (calculated as the sample vari-
ance divided by the sample size) is added to
the diagonal ofV. To ensure symmetric positive
definiteness of the V matrix during
log-likelihood optimization, R is parameter-
ized by its Cholesky decomposition as the
cross-product of upper triangular matrices:

R = LLT (14)

where L is a square matrix with positive diag-
onal entries. L is upper triangular if there are
off-diagonal elements in R. As for the univari-
ate unbiased random walk, it is possible to
test for a decrease or increase in the rate of
change over time in the multivariate unbiased
random walk model in evoTS. The r parameter
adjusting the rate is assumed common for all
the traits. Simulations show that the estimating
procedure produces unbiased parameters even
at sequence lengths of about 10 samples (see
Supplementary Fig. 3 for more info).

Model Interpretation.—Potential causes of
correlated trait evolution are many. Traits
may, for example, independently follow
optima governed by the same environmental
drivers, show concerted evolution due to
shared direct or indirect selection, or be affected
similarly by genetic drift.
Note that the R matrix is not the same as the

genetic (G) or phenotypic (P) covariance
matrices commonly estimated in quantitative
genetics. However, the R matrix is connected
to these matrices under certain assumptions.
For example, the R matrix is expected to be
proportional to the additive genetic variance–
covariance matrix (G) if the traits evolve due
to genetic drift only (Lande 1979; Felsenstein
1988). Estimating R can thus aid in assessing

to what extent evolution within lineages
matches predictions from quantitative genetics.

Multivariate OU Models
Multivariate evolution is more than corre-

lated change. Multivariate versions of the OU
process allow for sophisticated investigations
of a range of hypotheses regarding evolution
and adaptation and are described by the fol-
lowing differential equation (Bartoszek et al.
2012; Reitan et al. 2012; Clavel et al. 2015):

dZ(t) = A[u(t)− Z(t)]dt+ RdW(t) (15)

where A is a square matrix (with dimensions
equal to the number of traits) describing the
rate of evolution toward the optimal trait
values, θ is a vector containing the optimum
for each trait, R is a square matrix (with dimen-
sions equal to the number of investigated traits)
describing the stochastic changes in the traits,
and W is the diffusion parameter. Under the
assumption that we only have one selective
regime (optimum) per trait, the expected trait
means of the OU process are the weighted
sum of the optimum and the ancestral trait
value (Hansen 1997):

E[Zi] = e(−Ati)z0 + [1− e(−Ati)]u (16)

where Zi is a vector containing the expected
trait values for sample i, z0 is a vector contain-
ing the ancestral trait means, and ti is the time
interval from the ancestral population mean
(the start of the time series, which has a time
of 0) to the ith population mean.
The variance and covariance of sample/

population means are given by the following
expression (Bartoszek et al. 2012; Reitan et al.
2012; Clavel et al. 2015):

Cov(zi, zj)= Q
1

lk +ll
[1− e−(lk+ll)tmin ]

{ }
1≤k,l≤m

([

⊙Q−1LLT (Q−1)
T

)
QT

]
e−ATtij

(17)

where Q is the orthogonal matrix of eigenvec-
tors of A, LLT is the Cholesky decomposition
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of the R matrix (R = LLT ), λi is the ith eigen-
value of A, tmin is the time interval between
the start of the sequence and the earliest of
the samples zi and zj, tij is the time separating
two samples zi and zj, and ⊙ represents the
Hadamard (element-wise) matrix product.
Under the assumption that the A matrix has a
number of linear independent eigenvectors
equal to the number of traits investigated, A
can be expressed by its eigendecomposition:

A=QLQ−1 (18)

where Λ is a matrix with the eigenvalues (λ) of
A on the diagonal. The matrix exponential in
equation (17) can then be solved using the
eigendecomposition of A (Bartoszek et al.
2012; Reitan et al. 2012; Clavel et al. 2015):

e−At =Qdiag(e−l1t, . . . , e−lmt )Q−1 (19)

Precise estimation of parameters is a challenge
that tends to increase with model complexity.
Parameter estimation under univariate and
multivariate phylogenetic OUmodels can be dif-
ficult (Hansen et al. 2008; Bartoszek et al. 2012,
2023; Ho and Ané 2014; Cressler et al. 2015),
but simulations show that multivariate OU
model parameters in evoTS are overall identifi-
able. Precision is high for diagonal elements
in R and A and the optima even for short
time series. The median parameter estimate of
the off-diagonal element in A is in the proxim-
ity of the true value for short sequence lengths
and approaches the true value with increasing
sequence lengths (see Supplementary Fig. 4
for more info).

Model Interpretation.—The A and R matrices
are key to defining the trait dynamics in a
multivariate OUmodel. The elements in R con-
trol the stochastic parts of the trait dynamics in
the OUprocess and can be interpreted similarly
asR in themultivariate unbiased randomwalk:
the diagonal elements in R represent the step
distributions (step variances) of the changes
in each individual trait, while any nonzero off-
diagonal elements represent the covariance of
the stochastic changes in the traits. The ele-
ments in the A matrix affect the deterministic
part of the OU process, that is, the adaptive

process of traits evolving toward optima. The
diagonal elements in A are the individual
alpha parameters for each trait, while a nonzero
off-diagonal element reflects how changes in
the trait affect the optimum of another trait.
Four broad categories of hypotheses can be
investigated based on how the A and R matri-
ces are parameterized.

Independent Trait Evolution.—Both the deter-
ministic and stochastic parts of the evolution-
ary trait dynamic are independent for each
trait. This model is the equivalent of fitting uni-
variate OU models to each trait separately and
is parameterized in the multivariate version by
allowing only diagonal elements in theA andR
matrices to be nonzero.

Independent Adaptation.—Each trait adapts
independently to its optimum, but the stochas-
tic part of the trait dynamics is correlated. This
model is obtained if the A matrix is diagonal
while the R matrix has nonzero off-diagonal
elements.

Non-independent Adaptation.—Changes in
trait X affect the optimum of trait Y, but
changes in Y do not affect the optimum of
trait X. A can be a nonsymmetric matrix (con-
trary to the R matrix), which means one trait
is allowed to affect the optimum of another
trait, but not vice versa. A negative number in
an off-diagonal element in A means the trait
is evolving toward the optimum, while a posi-
tive number means the trait is evolving away
from the optimum. The stochastic changes in
the trait (controlled by the parameterization
of the R matrix) can be either correlated or
uncorrelated.

Reciprocal Adaptation.—Traits affect one
another’s optima. This is the case if their
respective off-diagonal elements in A are non-
zero. One trait may assert a larger effect on
the optimum of another trait. The stochastic
changes in the trait can be either correlated or
noncorrelated.
An A matrix with nonzero off-diagonal ele-

ments investigates Granger causality between
the traits/variables (Granger 1969; Schwe-
der 1970; Reitan et al. 2012; Hannisdal and
Liow 2018; Reitan and Liow 2019). Granger
causality is a statistical concept that is used to
determine whether one time series is useful in
predicting another. Simply speaking, we have
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evidence for Granger causality if observations
in one time series are useful for forecasting
future observations in one or several other
time series. The multivariate OU process there-
fore allows us to move beyond interpreting cor-
relations among variables in time series. A
correlation is symmetric (the correlation
between X and Y is the same as the correlation
between Y and X), but that is not needed for
Granger causality. X can (Granger) cause Y,
without Y Granger-causing X. Forecasting
using Granger causality is only possible if
there is some lag in the tracking of the opti-
mum, that is, if a trait is unable to immediately
respond to changes in the optimum. The rate of
adaptation in the multivariate OU model is
determined by the entries in the A matrix and
can be conveniently calculated by the half-life.
As in the univariate OU model, the half-life
(ln(2)/αii) describes the time it takes for the
trait to move halfway from the ancestral state
to the new optimal state.
The multivariate OU model is reduced to an

unbiased randomwalk if the diagonal elements
in A are zero. Within the multivariate OU
process, it is therefore possible to allow traits/
variables that change according to an unbiased
random walk to affect the optimum of traits
evolving according to an OU process. Models
with a mix of traits evolving as either OU or
as an unbiased randomwalk have been termed
“OUBM models” in the phylogenetic com-
parative literature (e.g., Bartoszek et al. 2012,
2023). An OUBM model may, for example, be
a sensible choice if we want to investigate
whether an environmental variable (e.g., a
paleoclimatic proxy) that we assume changes
as an unbiased random walk affects the opti-
mum of a trait we assume evolves according
to an OU process.

Applying the Multivariate Models

Analyzing several traits or variables jointly
using multivariate models enables a more
sophisticated assessment of alternative hypoth-
eses of the observed trait dynamics in the data
relative to analyzing each trait separately. I
apply multivariate models on a dataset on
armor trait evolution in a threespine stickleback
lineage (Gasterosteus doryssus) that has

previously been analyzed using univariate
models (Bell et al. 2006; Hunt et al. 2008).
Strong genetic covariances among armor traits
(Leinonen et al. 2011) and evidence that differ-
ent armor traits are affected by the same loci
(Cresko et al. 2004) in extant threespine stickle-
backs (Gasterosteus aculeatus) suggest armor
traits may not evolve independently. Armor
traits are also likely to serve similar ecological
functions and may therefore often experience
similar selection pressures. A multivariate
approach is therefore warranted when analyz-
ing armor traits in threespine sticklebacks.

Background
Bell et al. (2006) analyzed morphological

evolution in three skeletal traits in a fossil
stickleback lineage (G. doryssus) across more
than 7000 years from well-preserved lake sedi-
ments. The three traits are part of the armor of
the fish: number of dorsal spines, number of
touching pterygiophores, and a pelvic trait
measured based on scores of the completeness
of the pelvic condition. All three traits show a
clear trend of reduction in number (and score)
during the time series, likely as a consequence
of a reduced predation pressure in the lake
(Bell et al. 2006). However, Bell et al. (2006)
did not find strong evidence for natural selec-
tion in these time series, as falsifying a null
model of neutral evolution (drift) proved diffi-
cult. Hunt et al. (2008) reanalyzed the data
using paleoTS and found that an OU model
with a fixed optimum showed a much better
relative fit to each of the three stickleback traits
compared with an unbiased random walk
(drift model), thus supporting adaptive evolu-
tion toward trait-specific optima. The multi-
variate analysis of the data in this paper
assesses the extent to which evidence exists
for correlated and/or adaptive coevolution of
the armor traits.
Respecting the scale type of the investigated

variables in quantitative analyses is important
for producing meaningful results (Houle et al.
2011; Voje et al. 2020). The uni- and multivari-
ate models in evoTS (and paleoTS) can only
be meaningfully applied to data on scale
types where calculations of variances and cov-
ariances are valid. The two count traits in the
stickleback data from Bell et al. (2006) are on a
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ratio scale (Stevens 1946), while the scale type
of the pelvic score is more difficult to define.
The description of how the score was applied
(Bell et al. 2006: p. 567) suggests a nonlinear
relationship between increments of the score,
which disqualifies it as a measurement on a
ratio or interval scale (Stevens 1946), thus mak-
ing calculations of variances and covariances
nonsensical. The pelvic score was accordingly
not included in the analysis. The two remaining
traits were log-transformed before the models
were fit. I removed one and two samples from
the number of spines and number of touching
pterygiophores, respectively, to make samples
overlap in time. The total length of the multi-
variate dataset is 54 samples (Fig. 4).

Fitted Models
I fit multivariate unbiased random walks

assuming either uncorrelated (only diagonal
elements in R) or correlated stochastic changes
(completely parameterized R) in the two traits.
I also fit different implementations of the multi-
variate OU model to investigate (1) if the two
traits evolved independently (only diagonal
elements in the A and R matrices), (2) if the
traits showed evidence of independent adapta-
tion but correlated stochastic evolution (only
diagonal elements in A, but a fully

parameterized R), (3) if one trait affected the
optimum of the other trait (upper and lower tri-
angular A, respectively, with a diagonal R),
and if (4) both traits affect the optimum of the
other trait (fully parameterizedA and only diag-
onal elements in R). The two last model types (3
and 4) investigate Granger causality between the
two traits, that is, whether we find evidence of
changes in the traits affecting the optimum of
the other trait.
Complex multivariate models may have

multi-peaked log-likelihood surfaces. The
numerical optimization procedure was there-
fore initiated from 100 different starting points
in parameter space for eachmodel to reduce the
risk of converging on a local peak.

Results
A multivariate OU model with independent

adaptation and correlated stochastic changes
showed the best relative model fit, but a
model where the traits evolve independently
has a similar fit according to AICc (Table 3).
Models involving Granger causality (A matri-
ces with nonzero off-diagonal elements) and
the multivariate unbiased random walks are
not supported. The point estimate of the half-
life for the log number of spines is 1338 years
according to the best model (769 generations

FIGURE 4. Multivariate evolution in a stickleback lineage. The vertical lines represent one standard error of the trait mean.
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given a generation time of 2 years, as assumed
in Hunt et al. [2008]; Table 4), while the corre-
sponding estimate for log number of touching
pterygiophores is 1276 years (638 generations).
These rates of adaptation are similar to the rates
reported in Hunt et al. (2008). The strength of
the correlation in the stochastic trait changes
is 0.48, which suggests that there may be a com-
mon, but unknown, underlying driving force
for certain parts of the stochastic trait dynam-
ics. The source of this stochasticity is not
known, but genetic drift may be a contributing
factor, as suggested by the univariate analyses
of Hunt et al. (2008). Moreover, the presence
of correlated changes in the multivariate trait
dynamics aligns with research on living stickle-
backs, which has found evidence of a shared
genetic basis for some armor traits (e.g., Cresko
et al. 2004; Leinonen et al. 2011).

Discussion

Analysis of evolutionary time series in the
rock record represents a unique contribution
from paleontology to further the development

of evolutionary biology. For example, the adap-
tive landscape has for decades been suggested
as a conceptual bridge to bring our understand-
ing of microevolution and macroevolution clo-
ser to one another (e.g., Simpson 1944; Arnold
et al. 2001; Hansen 2012). Shifts in the adaptive
landscape along branches of a phylogeny using
OU processes are commonly explored (e.g.,
Ingram and Mahler 2013; Uyeda and Harmon
2014; Khabbazian et al. 2016), but whether
detected shifts in optima represent sudden
and major changes of the adaptive landscape
or whether they instead reflect cumulative
changes in the position of adaptive peaks
across time is poorly known (e.g., Uyeda and
Harmon 2014). Inferring the dynamics of the
adaptive landscape through analysis of evolu-
tionary time series may shed light on this and
other questions regarding the dynamic nature
of the adaptive landscape at different temporal
scales. This potential is exemplified by the
reanalysis of size evolution in the radiolarian
lineage Eucyrtidium calvertense. The best-fit
model for the E. calvertense data suggests that
size evolution in the lineage was affected by a

TABLE 3. Model fit to themultivariate stickleback sequence data. The log-likelihood (log-lik.) and the relativemodel fit for
the candidate models fit to the evolutionary sequence of stickleback. OU, Ornstein-Uhlenbeck; URW, unbiased random
walk; K, number of parameters in model; AICc, Akaike information criterion corrected for small sample size.

Model type Multivariate model K Log-lik. AICc ΔAICc AICc weight

URW Independent URW 4 147.479 −286.142 27.317 0.000
Correlated evolution 5 155.559 −299.868 13.590 0.001

OU Independent evolution 8 165.731 −312.261 1.197 0.285
Independent adaptation 9 167.780 −313.469 0.000 0.518
Spines affecting touching pterygiophores 9 166.868 −311.646 3.999 0.070
Touching pterygiophores affecting spines 9 166.944 −311.797 3.606 0.085
Reciprocal effects in optima 10 167.106 −309.095 5.612 0.031

TABLE 4. Maximum likelihood parameter estimates for the candidatemodelsfit to themultivariate evolutionary sequence
of stickleback armor trait evolution. URW, unbiased random walk.

Multivariate model Parameter estimates (SE)

Independent URW z0.1 = 1.35 (0.02), z0.2 = 1.39 (0.03), R1.1 = 0.09 (0.04), R2.2 = 0.14 (0.06)
Correlated evolution z0.1 = 1.36 (0.02), z0.2 = 1.39 (0.03), R1.1= 0.09 (0.00), R2.2 = 0.11 (0.00), R1.2 = 0.08 (0.00)
Independent evolution z0.1 = 1.37 (0.02), z0.2 = 1.43 (0.03), R1.1 = 0.05 (0.00), R2.2 = 0.05 (0.01), A1.1 = 6.34 (1.63),

A2.2 = 7.98 (1.87), θ1 = 0.80 (0.04), θ2 = 0.80 (0.04)
Independent adaptation z0.1 = 1.37 (0.02), z0.2 = 1.42 (0.02), R1.1 = 0.04 (0.00), R2.2 = 0.08 (0.00), R1.2 =−0.03 (0.00),

A1.1 = 6.72 (1.70), A2.2 = 8.13 (2.23), θ1 = 0.81 (0.04), θ2 = 0.81 (0.04)
Spines affecting touching
pterygiophores

z0.1 = 1.36 (0.02), z0.2 = 1.43 (0.03),R1.1 = 0.05 (—),R2.2 = 0.05 (—),A1.1 = 17.70 (7.65),A2.2
= 8.84 (2.18), A1.2 =−12.72 (8.42), θ1 = 0.81 (0.03), θ2 = 0.82 (0.04)

Touching pterygiophores
affecting spines

z0.1 = 1.37 (0.02), z0.2 = 1.43 (0.03), R1.1 = 0.05 (0.00), R2.2 = 0.07 (0.01), A1.1 = 5.44 (1.54),
A2.2 = 16.61 (7.67), A2.1 =−9.78 (8.07), θ1 = 0.79 (0.05), θ2 = 0.79 (0.04)

Reciprocal effects in optima z0.1 = 1.37 (0.02), z0.2 = 1.43 (0.02), R1.1 = 0.05 (—), R2.2 = 0.06 (0.01), A1.1 = 5.25 (—),
A2.2 = 15.77 (4.79), A1.2 = 1.22 (—), A2.1 =−9.84 (—), θ1 = 0.81 (0.04), θ2 = 0.80 (0.03)
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major and sudden change in the adaptive land-
scape, while a model where the adaptive land-
scape changed more gradually had a poorer,
but still similar, fit.
Multivariate models allow tests of a range of

different hypotheses that are difficult to assess
by relying on univariate models only. Two
traits that appear to evolve together (i.e.,
show correlated evolution) over time may, for
example, be influenced by the same selective
agent (e.g., temperature). Another possibility
is that only one of the traits is directly affected
by the selective agent and that changes in this
trait lead to changes in the optimal value of
the second trait, resulting in a somewhat lagged
evolutionary response in the second trait rela-
tive to the first trait. Investigating competing
explanations for multivariate trait dynamics
requires a multivariate approach. The reanaly-
sis of the stickleback data (Bell et al. 2006;
Hunt et al. 2008) examined various hypotheses
regarding evolution and adaptation in two
armor traits. The results support independent
evolution of each armor trait toward separate
optima on the adaptive landscape, but a sub-
stantial portion of the stochastic changes in
the two traits were correlated. The field of
quantitative genetics has convincingly demon-
strated how genetic correlations may affect
phenotypic evolution (Lande 1979; Lande and
Arnold 1983; Walsh and Blows 2009), and
some armor traits in extant threespine stickle-
back have been found to covary genetically
(e.g., Cresko et al. 2004; Leinonen et al. 2011),
suggesting these traits are likely to have a
reduced capacity to evolve completely inde-
pendently of each other. One possible interpret-
ation of the detected non-independence in part
of the evolution of the two armor traits is there-
fore due to a shared genetic background. An
alternative and not mutually exclusive explan-
ation is that these two armor traits have experi-
enced correlated selection.
It is important to note that the interpretation

of the various univariate and multivariate trait
models in evoTS (and paleoTS) may vary
depending on the time interval covered by the
data analyzed. For example, the OU process
has been used to describe microevolutionary
changes in a population close to a fixed peak
in the adaptive landscape (Lande 1976; Hansen

andMartins 1996), but it is also commonly used
to model evolution within and between adap-
tive zones on among-species comparative
data (e.g., Mahler et al. 2013; Moen et al. 2016;
Toljagić et al. 2018). Fitting OU models to evo-
lutionary time series of modern lineages where
the data have a generational resolution allows
for the estimation of microevolutionary para-
meters and the development of a process-based
interpretation of the trait dynamics based on
the parameters in the OU model (for an
example, see Lo Cascio Sætre et al. 2017). The
fossil recordmay not always have the necessary
resolution for interpreting the model directly in
terms of microevolutionary processes, in which
case a more phenomenological interpretation
of the fitted models may be more appropriate.
For example, interpreting the stochastic part
of the trait dynamics in an OU model as pri-
marily a result of genetic drift may be more
suitable when fitting the model to modern
data with high time resolution than when fit-
ting it to data with lower time resolution (Han-
sen et al. 2008). However, there is no strict
boundary between when a process-based and
when a more phenomenological interpretation
is most suitable. In their analysis of the same
fossil stickleback lineage analyzed in this
study, Hunt et al. (2008) demonstrated that
microevolutionary parameters can bemeaning-
fully estimated when fitting the OU model to
data from the fossil record. Therefore, the best
way to interpret the model parameters should
be assessed on a case-by-case basis.
The number of models and software avail-

able for conducting phylogenetic comparative
analyses have steadily increased for more
than 30 years, giving ample opportunities for
exploring a large range of hypotheses of trait
dynamics on macroevolutionary timescales
(e.g., see Pennell and Harmon 2013). Analysis
of evolutionary time series has not experienced
a similar momentum, likely due to the smaller
number of available evolutionary time series
relative to phylogenetic comparative data. The
R package paleoTS has for a long time been
the most popular software for fitting models
to evolutionary time series. The implemented
univariate and multivariate models in evoTS
extend the model options available in paleoTS.
However, evoTS is not the only software that
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allows fitting models to evolutionary time ser-
ies. layeranalyzer (Reitan and Liow 2019) is a
tool that can be used to explore correlations
and causal relationships among variables in
time series and can fit most of the models
implemented in evoTS. mvmorph (Clavel
et al. 2015) is mainly targeted toward analysis
of multivariate phylogenetic comparative
data, but several of the implemented models
can also be fit to time series. The main advan-
tage of evoTS is that it works as an extension
of the much-used paleoTS framework and is
therefore specifically tailored toward analysis
of evolutionary time series. The combined
suite of univariate and multivariate models in
paleoTS and evoTS is also not found in any
alternative software.
Connecting known microevolutionary pro-

cesses to macroevolutionary patterns remain a
central challenge in biology (e.g., Jablonski
2000, 2017; Arnold et al. 2001; Hansen 2012).
While data on generational changes and
among-taxa differences are readily available
for many organismal groups, information on
how lineages evolve in between micro- and
macroevolutionary timescales is rare in com-
parison. Furthermore, how to interpret evolu-
tionary change recorded in the rock record
has been debated for decades (e.g., Eldredge
and Gould 1972; Charlesworth et al. 1982; Gin-
gerich 1984, 2019; Stanley 1985; Bookstein 1987;
Hunt 2007; Voje 2016), and the nature of evolu-
tionary change within lineages remains contro-
versial (Lieberman and Eldredge 2014; Pennell
et al. 2014a,b; Venditti and Pagel 2014). Investi-
gating and comparing a larger range of models
and hypotheses when analyzing phenotypic
change within lineages may contribute to
these ongoing discussions.
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