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Abstract

Let X be a smooth projective surface with q(X) = 0 defined over IR and M(X; r; C\,C2\ H) the moduli
space of H-stable rank r vector bundles on X with Chern classes ci and C2. Assume either r = 3 and
X(R) connected or r = 3 and X(R) = 0 or r = 2 and X(K) = 0. We prove that quite often M is
connected.

1991 Mathematics subject classification (Amer. Math. Soc): primary 14P99, 14J60.

0. Introduction

In this paper we continue a topic considered in [B2]: the description of the real part
of a moduli scheme of vector bundles on a smooth complete algebraic surface defined
over Spec(R).

Let X be a smooth complete connected algebraic surface defined over Spec(R).
Let a be the anti-holomorphic involution of X inducing its real structure. Fix integers
r and c2 with r > 2 and two real line bundles H and c{ on X with H ample.
Let M(X; r; cu c2; H) be the scheme (defined over Spec(K)) of all //-stable rank r
vector bundles on X with Chern classes ci and c2. The Galois action induces an
anti-holomorphic involution a on M(X\ r; c1; c2; H)(€). Let M(X; r; c{, c2; H)(a)
be its fixed locus (with the induced Euclidean topology, unless otherwise stated), that
is the real part of the scheme M(X; r; c\, c2; H). M(X; r; c\, c2; H){a) parametrizes
the bundles which are isomorphic to their complex conjugate.
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42 Edoardo Ballico [2]

In this paper we study the connectedness of M(X; r; C\, c2; H)(o). A more inter-
esting subset of M(X; r; clt c2; H) (at least from the point of view of moduli functors)
is the subset M(X; r; C\, c2; //)(real) parametrizing the real vector bundles, that is
the vector bundles defined over Spec(R). Notice that M(X;r;c\, c2;//)(real) £
M(X; r; c,, c2; H)(a). We believe that quite often M{X; r; cu c2; #)(real) / M(X;
r;ci,c2;H)(a), but we do not have any example with X(U) ^ 0 concerning this
moduli problem. As explained in step (b) of the proof of Theorem 1.6, Theorem 1.7
and Theorem 1.8, it is technically much easier to work with M(X; r\C\, c2; H)(p) than
with M(X\ r; c\, c2; //)(real). We believe that in many cases in which M (X; r; C\, c2;
H)(a) is connected M(X;r;ci,c2; //)(real) is not connected. We consider M{X;r;
cl,c2;H)(a) as a very natural partial compactification of M(X; r; cu c2; H)(real).
Very often it is quite easy to prove the existence of natural partial compactifications
of M(X; r; cu c2; //)(real) which are connected (see [B2, Proposition 5.3]). For a
philosophical justification of this occurrence, see the discussion after the statement
of Theorem 1.8. We stress that we consider only surfaces with q{X) = 0. We be-
lieve that for 'most' surfaces with q(X) > 0 for fixed r, H and ct for all large c2

M(X;r;ci,c2; //)(real) and M(X; r ;c u c2; H)(a) are disconnected, but we do not
know how to prove results in this direction. For the computation of one example see
Section 2.

In this paper we give an abstract set-up for this problem. We will list four conditions
(see Conditions (A), (B), (C), (D) listed in Section 1) on the data X, r, c;, H.
When these conditions are satisfied by a a -invariant connected component Y of
M(X;r;c\, c2;//)(C) we will prove (see Theorem 1.6 and Theorem 1.7) that the
fixed locus Y(a) is connected and not empty if either X(R) is empty or X(R) is
connected, r > 3 and a parity condition is satisfied. When X(R) has * > 2 connected
components, r > 3 and these conditions are satisfied, we will show (see Theorem 1.8)
that Y(a) has at most 3(2*"') connected components. Furthermore, these conditions
imply the existence of a a-invariant component. If r = 2 or r = 3 we translate part
of these conditions into numerical conditions (see Conditions (ABl), (AB2), (CO),
(DO), (Dl) and (D2)) which may be checked in special cases. In [B2, Theorem 5.1],
the technically very easy case X — P2 and r = 3 was done.

In Section 2 we give a key example of surface X with very good M{X\ 2; c\, c2; H)
(that is everywhere smooth and satisfying Conditions (A), (B), (C) and (D)) with
M(X; 2; C\, c2\ H)(a) not connected. In this example X = C x P1 with C an elliptic
curve with two circles as real part C(K). In Section 3 we show how to check the
axioms in the case of Segre-Hirzebruch surfaces Fe, e > 0. Essentially, we believe
that the axioms (A), (B), (C) and (D) are true if X is a rational surface, r = 2 or r = 3
and (for fixed c\ and H) c2 is very large. However, as shown by the examples given
in Section 3 the axioms (at least for r — 2 and r = 3) may be translated only in very
messy numerical conditions. We believe that this is not due to our approach, but to
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[3] Real moduli of bundles 43

the nature of the problem considered here.

1. The main results

First, we list several notations and conventions. We fix X, r, c\, c2, H, a as in the
introduction; if F is a sheaf on X, set H'(F) := H\X, F) and h'\F) := h'(X, F); set
K := Kx, O := Ox, X := x(O), q := q{X) := h\O), pg := pg(X) := h°(K) =
h2(O). If A is a closed subscheme of a scheme B, IA B will denote the ideal sheaf
of A in B; set IA := IAX • We do not distinguish between a Cartier divisor on X and
the associated line bundle; for both objects we will use freely both the additive and
the multiplicative notation. When the action of a on X induces an anti-holomorphic
involution on another scheme Y, Y(a) will denote its fixed locus. We use (at least
for the numerical computations) the convention that 'stability' means 'stability in the
sense of Mumford and Takemoto'. We use often in several different situations the
following objects:

IZ(L) -* 0

+ (r(r - 1)/2)M2 e Z
(1)

(2) L :=MQ 3 r G

0 ^
and

(r-
D2

\)OE
:=c 2 -

with L and M line bundles and Z a O-dimensional subscheme of X. Notice that for
every rank r bundle B with c,(B) = cKwe have cx(B <g> M) = L and c2(B ® M) = d2.
If L and Z are defined over Spec(K), then the set of extensions (1) over Spec(C) is the
complex vector space associated to a real vector space. The exact sequence (1) will
be an exact sequence both if we view the schemes and sheaves over Spec(K) or over
Spec(C). If L and Z are defined over Spec(R) the open subset U (respectively U')
of the complex vector space of all the extensions (1) with E locally free (respectively
locally free and stable) is defined over Spec(K). We stress that a bundle defined
over Spec(R) is semistable over Spec(K) if and only if it is semistable over Spec(C)
([L, Proposition 3, p. 97]). We will always consider the condition of stability over
Spec(C). For real bundles this is a stronger condition than stability over Spec(DS).
However, it is easy to check as in [L, Proposition 3, p. 97, proof of case 1], that the
only rank 2 real bundles which are stable over Spec(IR) but not stable over Spec(C)
are the bundles A 0 o*{A) with A € (Pic(X)(C)\Pic(X)(R)). If L and Z are only
assumed to be a-invariant, then the complex vector space of all the extensions has a
real structure and the open subset U (respectively U') parametrizing the locally free
(respectively the locally free and stable) sheaves E is a-invariant.

1.1 We fix an integer r > 2 (the rank), a real line bundle ci € Pic(X)(R), an integer
c2 and a Zariski open subset Y of M{X; r; cu c2; H)(C), Y ^ 0 with Y^ irreducible.
Unless otherwise stated, Y will be defined over Spec(K). We consider the following
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conditions (A), (B), (C) and (D) which these data may have. These conditions will be
assumed to be true in our connectedness Theorem 1.6, Theorem 1.7 and Theorem 1.8.

Condition (A): Y is smooth.
Condition (B) (for the line bundle M): Fix a real line bundle M on X and take

L, d2 given by (2). Notice that for any B e M(X; r; cu c2; H), we have B <g> M e
M(X;r;L,d2;H). We will say that Condition (B) is satisfied for M if h°(X, K®L) <
d2-2.

Assume that Condition (B) is satisfied for the line bundle M; fix a general subset
Z c X with card(Z) = d2 and any subset A of Z with card(A) = d2 - 2. By the
Cayley-Bacharach condition (see [C, Section 1], if r = 2, [T] for the general case,
and, exactly in the setting of our paper, [BB, Section 1] for r = 2, [BB, Section 3] for
arbitrary rank) the general extension (1) has as middle term E a vector bundle. Since
X is integral, moving Z we obtain as middle terms in the extensions an irreducible
family (not uniquely parametrized) of bundles with rank r and Chern classes L
and d2; this is a consequence of the theory of the Relative Ext-Functors proved in
[BPS]: the total space of all the extensions is a vector bundle with as base the space
parametrizing all admissible Z's. Since stability is an open condition, we obtain a
family of stable bundles (perhaps empty). We call its image in M(Z; r, c1; c2; H)
(after the identification of this moduli space-with M(X;r;L,d2;H) obtained by
tensoring with M) a good stratum for the line bundle M. Since the symmetric
products of an integral quasi-projective variety are integral, every good stratum is
integral, that is its closure in the Zariski topology is an integral scheme. Now we can
state Condition (C).

Condition (C): There is a real line bundle M such that Y is contained in a good
stratum for the line bundle M.

Since the complement of a codimension 1 submanifold in a connected differentiable
manifold may be disconnected, the following axiom seems to be very important.

Condition (D) (for the real line bundle M): For a reduced finite set Z c X,
let n(Z) be the set of all vector bundles fitting in (1) with the fixed Z. Let S(Z)
be the open subset of n(Z) formed by the stable bundles. A priori S(Z) may be
empty. Condition (D) is satisfied if for a dense set of all Z c X, with Z reduced and
card(Z) = d2, F1(Z)\5(Z) has codimension at least two in FI(Z).

Now we discuss these conditions and introduce several technical conditions (Condi-
tions (AB1), (AB2), (CO), (DO), (Dl), (D2)) which may help to check in the examples
conditions (A), (B), (C) and (D).

Condition (AB1) (for the line bundle M): Fix a real line bundle M on X and take
L, d2 given by (2). Assume d2 - 2 > max{h°(X, K <g> L), h°(X, K - L), pg).

Condition (AB2) (for the line bundle M): Fix a real line bundle M on X and
take L, d2 given by (2). Assume L ample, h°(L) > 0 and Condition (B) for the line
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bundle M.

Notice that by Kodaira vanishing Condition (AB2) implies Condition (ABl). We
will see in Remark 1.2 that if either r = 2 or pg = 0 the weaker forms of Conditions
(B), (ABl) and (AB2) with d2 instead of d2 - 2 imply that our Y will be smooth; the
technical assumption with d2 — 2 instead of d2 will be used in an essential way in step
(e) of the proof of Theorem 1.6, Theorem 1.7 and Theorem 1.8. Fix a good stratum Y
for the line bundle M and F e Y. Set E := F <g> M. By the definition of good stratum
E fits in an exact sequence (1) and hence we have h°(E) > r — 1. By Riemann-Roch
wehavex(E) = rx + (L(L-K))/2-d2;bySerredualityh2(E) = h°(K®E*). We
dualize (1) and twist the corresponding exact sequence by K. We obtain the following
exact sequence:

(3) 0 -> K <g> L* -*• K ® E* -*• (r - l)K -+ K ® Oz -+ 0

To compute the cohomology groups of E and the dimension of certain related
families of bundles, one would like to know the rank of the linear map

H°(X, (r - l)K) -+ H°(Z, K <g> Oz)

induced by the last map in (3). For general Z one expects that this linear map is
injective if d2 < (r — l)pg and surjective if d2 > (r — l)pg. This is obvious if either
r = 2 or pg = 0. Hence we state the following numerical condition which implies
Condition (C).

Condition (CO): There is a real line bundle M such that, with the notation of (2),
we have d2 > (r-l)pg,d2 > rx + 2 + (L(£ + L))/2,andsuchthat/i°(*'<g>L*) = 0.

Condition (C) is very restrictive; for instance by [Li, Theorem 0.1], it cannot be
satisfied for large c2 when X is a surface of general type.

REMARK 1.2. Fix an integer d2 > max{/i°(X, K ® L), h°(X, K - L),pg} and a
general Z C X with card(Z) = d2. Assume either r = 2 or pg = 0. Fix the line
bundle M and use the notation of (1) and (2). Assume E locally free (for instance
assume Condition (B) and that E is the general sheaf give, by an extension (1)). Here
we will check the smoothness of the formal deformation space of [E] and hence, if
E is tf-stable, that £ is a smooth point of M(X;r;L, d2; H). Let End°(£) be the
sheaf of traceless endomorphisms of E. We have End(£) = End°(E) © O. By
formal deformation theory it is sufficient to check that /t2(End°(E)) = 0, that is that
h2(End(E)) = pg. We tensor (1) with E* and use that Z has codimension 2 in X. We
obtain:

Pg < h2(End(E)) < (r - l)h2(E*) + h2(E* <g> 7Z(L))

= (r - 1)/I2(£*) + h2(E* ®L) = (r- l)h°(E <g) K) + h°(E <g) (K - L))

https://doi.org/10.1017/S1446788700001567 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700001567


46 Edoardo Ballico [6]

< (r - \)2
Pg + (r - \)h\lz(K + L)) + (r - 1)A°(A: - L) + h°(Iz(K))

= (r - \)2pg.

Since either r = 2 or pg = 0 by assumption, we conclude.

To check the very strong Condition (D) in the examples, we will give the following
criteria for r = 2 (see Condition (DO) and Lemma 1.3) and r = 3 (see Conditions (Dl)
and (D2) and 1.5). For simplicity we will assume q(X) = 0, since in the examples
considered in the third section we have q(X) = 0. Our feeling is that if q(X) > 0 and
X has Kodaira dimension > 0 the real locus of 'most' moduli spaces is disconnected
and the number of its connected components should not be bounded just in terms of
the number of connected components of X(R). However, we do not know how to
construct large numbers of examples.

Condition (DO): Assume q(X) = 0, r = 2 and the existence of a real line bundle
M such that, with the notations of (2), we have d2 > 2 + h°(L — R) for every
R e Pic(X) with 2(HR) > HL.

Condition (Dl): Assume q(X) = 0, r = 3 and the existence of a real line bundle
M such that, with the notations of (2), we have d2 > 2 + h°(L — R) for every
R e Pic(X) with 3(HR) > HL.

Condition (D2): Assume q(X) =0,r — 3 and the existence of a real line bundle
M such that, with the notations of (2), we have d2 > 2 4- 2h°(L — A) for every
A e Pic(Z) with 3(HA) > 2(HL).

LEMMA 1.3. Assume r = 2, h°(K - L) = 0 and Condition (DO) for Y. Then Y
satisfies Condition (D).

PROOF. If r = 2 a vector bundle E fitting in (1) is //-stable if and only if we have
h°(E ® R*) = 0 for every R € Pic(X) with 2(RH) > LH. Fix R e Pic(Z) with
2(RH) > LH and tensor (1) by R*. We obtain that h°(E ® R*) = 0 if the restriction
map r : H°(L - / ? ) - * H°(Z, (L - R) \ Z) is injective. By the generality of Z this
is true (for the fixed R) if d2 > h°(L - R). We claim that if d2 > 2 + h°(L - R)
in the set of all extensions with locally free E the set F of non //-stable ones has
codimension at least 2. Fix a general Z' c X with card(Z') = card(Z) — 2. Since
card(Z') > h°(L - R), the restriction map t : H°(L - R) - • H°(Z', (L - R) | Z')
is injective. Hence for every finite scheme Z containing the reduced scheme Z' the
restriction map H°(L - / ? ) ->• //°(Z, (L - R) \ Z) is injective. The subset of the
symmetric product Sd2(X) formed by all Z with card(Z) = d2, Z not containing
any such Z' has dimension at most 2d2 — 2. Notice that for all A, B c X with
card(A) = card(fl) = d2 and h°(K <g> L <g> IA) = h°(K <g> L <g> /„) = 0 we have
dim(Ext'(L ®/yi, 0) = dim(Ext'(L<8>/B. O). Hence we obtain the claim. The claim
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holds for the same reason for finitely many R's. Since q(X) = 0 by condition (DO),
the lemma follows. •

1.4 Here we consider conditions (Dl) and (D2). Hence we assume r = 3 and
q(X) = 0. Applying the functor Horn to (2) (with r = 3) we obtain the following
exact sequence:

(4) 0 -> V -* E* -» 2OX -+ Oz - • 0

Recall that to check the stability (in the sense of Mumford and Takemoto) of a rank
3 vector bundle E it is sufficient to check the corresponding numerical condition for
line bundles included in E and for line bundles, A, with a non zero map E -*• A,
that is with A* subsheaf of E*. Now we use (1) and the tensor power of (4) with L.
Exactly as in the proof of Lemma 1.3 we see that Condition (D) is satisfied (with no
unstable real bundle) if the Conditions (Dl) and (D2) are satisfied.

REMARK 1.5. In the rank 2 case on P2 and for all surfaces with — K sufficiently
positive (see for the case of Fe the discussion of Condition (A) in the last part of 2.2) a
bundle is //-stable if and only if it is simple. When this is the case, the computations
made in Remark 1.2 allow one to bypass Condition (DO).

The main results are the following theorems: Theorem 1.6, Theorem 1.7 and
Theorem 1.8.

THEOREM 1.6. Fix X, clt c2, H satisfying Conditions (A), (B), (C) and (D) with
respect to a a-invariant connected Zariski open subset Y ofM(X; 2; C\, c2; H)Kg and
the line bundle M. Assume X(W) = 0. Then Y{a) is connected.

THEOREM 1.7. Fix X, cu c2, H satisfying Conditions (A), (B), (C) and (D) with
respect to a a-invariant connected Zariski open subset Y ofht{X; 2; C\,c2; H)Kg and
the line bundle M. Assume r > 3. Assume either X (R) = 0 or X (R) connected. Then
Y(a) has at most 2 connected components and each of these components intersects
M(X; r; cu c2; //)(real). If either X(K) = 0 or d2 := c2 + Mcx + M2 is even and at
least A, then Y(o) is connected.

THEOREM 1.8. Fix X, cu c2, H satisfying Conditions (A), (B), (C) and (D) with
respect to a a-invariant connected Zariski open subset YofM(X;2;ci, c2;H)n% and
the line bundle M. Assume r > 3. Assume that X (R) has s > 2 connected components
and that d2 := c2 + Mc\ + M2 > 25 + 2. Then there is a a-invariant connected
Zariski open component Y ofM(X; r; c\, c2; / /) r e g such that Y(a) has at most 3(2*~')
connected components, each of them intersecting M(X; r; C\, c2; //)reg(real).
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As a philosophical justification of the axioms, fix an integer d > 2 and let R<i[t]
be the set of degree d real polynomials. Consider the set T c RdU] of polynomials
without multiple roots and the set 7} C Rj[t] of polynomials with at most one double
root (hence real, if any) and no root with multiplicity at least 3. T is not connected
but T\ is connected because Rd\t\\T\ has codimension at least 2 in Rd\i\. Notice that
a real double root can be both a limit of a family of two distinct real roots and of a
family of pairs of complex conjugate roots. Axiom (B) (see steps (c) and (e) of the
proof of Theorem 1.6, Theorem 1.7 and Theorem 1.8) allows us to use Tx instead of
T as our building blocks (using the extension (1)) of vector bundles.

PROOF (of Theorem 1.6, Theorem 1.7 and Theorem 1.8).
(a) For every a -invariant subset W of M(X; r; cu c2; H)(C), set W(real) := Wn

M(X; r; cu c2; #)(real). Notice that if X(R) = 0, then in Condition (C) and in all
other axioms which use (2) we have d2 even because in the exact sequence (1) Z is
a -invariant and Z is reduced by Bertini theorem (see for instance [K]). Hence, taking
as Z pairs of conjugate points if X{W) ^ 0, the definition of good stratum implies
y(real) ^ 0. For the same reason card(Z(R)) — d2 is always even if Z is reduced.

(b) Since F(real) / 0we have Y(p) ^ 0. Since Y is smooth and irreducible,
the set Y(a) is a differentiable manifold of reatdimension dimc(Y) which intersects
every Zariski open subset Y' of Y (see for instance [Si, Chapter I, Section 1]). Hence
it is sufficient to take Y' instead of Y and prove the same assertions for Y'(a). For
the same reason if Y' is open and dense in a smooth real scheme Y" and Y'(a) is
connected, then Y"(o) is connected. If Y"\Y' has complex codimension at least 2 in
Y", then Y'(a) is connected if and only if Y"(a) is connected. It is for these properties
of smooth differentiable manifolds that we consider Y(a) instead of 7 (real) in the
statements of Theorem 1.6, Theorem 1.7 and Theorem 1.8. To work with cr-invariant
bundles, read again the discussion on stability and cr-invariants sets, Z, made before
Section 1.1.

(c) Let T be the set of all reduced subsets, Z, of X (C) with card(Z) = d2 and such
that for every Z" C Z with card(Z") = d2 - 2, we have h°(X, Kx <8> L <8> /z») = 0.
Let T2 be the set of all 0-dimensional subschemes Z of X with length (Z) = d2, Z
disjoint union of a reduced set of d2 — 2 points and a length 2 subscheme, and such
that for every Z" C Ztt& with card(Z") =d2-2, we have h°(X, KX®L® I?>) = 0.
Set 7] := T U T2. T, 71 and T2 are non-empty by assumption (B) (and of course T
and Ti are irreducible of dimension 2d2).

(d) Fix Z e T with Z a-invariant. By the definition of T and an easy part of the
proof of the Cayley-Bacharach theorem (see [T]) the set of all the extensions (1) has
dimension not depending on Z. Let FI (Z) be the projectivization (over C) of this
complex vector space; FI (Z) parametrizes (perhaps not uniquely up to isomorphism)
the set of sheaves fitting in a non trivial extension like (1). By Cayley-Bacharach
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(see [C, Section 1], if r = 2, [T] for the general case, and, exactly in the setting of
our paper, [BB, Section 1] for r = 2, [BB, Section 3] for arbitrary rank) the open
subset U(Z) of n(Z) parametrizing vector bundles has as complement the union of
d2 hyperplanes if r = 2, while if r > 2 it has lower dimensional complement and it
is connected (as claimed in [B2, 5.1.(b) and step (1) of the proof of 5.2]). If r = 2
each of the d2 hyperplanes of U(Z)\ U(Z) corresponds to a point of Z and each of
the hyperplanes of n(Z)(R)\£/(Z)(IR) corresponds to a point of Z n X(K). Hence
if r = 2 and X(R) = 0, i/(Z)(IR) is connected. It is crucial for our proof for r = 2
to have the condition X(R) = 0. Varying Z among the cr-invariant 'good' subset
we obtain a certain parameter space, G. By the theory of the relative Ext-functors
([BPS]) the set of all extensions (1) is parametrized by a vector bundle p over G;
here we use that dim(n(Z)) is constant for Z e G. Hence p and G have the same
number of connected components. The real part of the fiber n~l(Z) of the fibration
n : p -*• G is just U(Z)(R) and the part of the fiber giving locally free sheaves is
f/(Z)(R). Hence we obtain Theorem 1.6 and the case X(R) = 0 of Theorem 1.7.

(e) Assume r > 3 and that X(R) has s connected components, say A\,... , As,
with 5 > 0. Set b(Z) :- card(Zred fl X(R)) and a, (Z) := card(Zred n Ay). Assume
a,(Z) > 2 for some integer i. Fix the (d2 — b(Z))/2 pairs of complex conjugate
points of Z; fix all the points in Z n (X(IR)\i4,); fix a,(Z) - 2 points of Z n At

and move the other two, say P' and P", in the components At of X(R) until they
coincide, obtaining a double point, z, with support on A,. Notice that by its definition
A, is a connected 2-dimensional differentiable manifold. Set Z' := Z\{P', P"},
Z" := Z'Uz- Call {Z,} the family of deformations of Z which converges to Zo := Z"
and call {P,'} and {P,"} the corresponding deformations of P' and P". By Conditions
(B) and (C) we may apply the Cayley-Bacharach condition to Z", that is Z" e Tu

and to each Z,. We may see z as a limit of a pairs of complex conjugate points, say
{£>;, <2'/}. Set W, := Z' U {£>;, (?;}. By Condition (C) each W, satisfies the Cayley-
Bacharach condition. Since each £/(Z,)(R), U(Wt)(R) and f/(Z")(IR) is connected
(/• > 3) we obtain that every connected component of M(X; r; Ci, c2; H)(p) contains
a bundle fitting in an exact sequence (1) with some Z with 0 < a, (Z) < 1 for every j .
Furthermore, if we fix 5 integers tu ... , t, withO < f,- < 1 for every i and<i2—5Zi<,<i '<
even, there is at most one connected component of M(X; r; c{, c2; H)(a) containing a
bundle corresponding to a set Z with a,(Z) = r, for every i. Since d2 — X]i</<* a<(^)
is even for every a-invariant Z, we obtain Theorem 1.8. For Theorem 1.7 notice that
if either X(R) = 0 or s = 1 and d2 is even, then we reduce to the case U = 0 for
every i. •

We end the section with an easy application to our problem of the deep results
proved in [GL] and [Li].

PROPOSITION 1.9. Fix a smooth complete algebraic surface X defined over K and
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two real line bundles c\ and H on X with H ample. Let M{X;2;c\, c2;H)+ be
the compactification of M(X;2;ci, c2,H) parametrizing equivalence classes of H-
semistable rank 2 torsion free sheaves on X with Chern classes c,. Then for every
integer k > 0 there is an integer d(k) such that ifc2 > d(k), M(X\2;cx, c2;//)+(real)
is locally k-connected around each of its points parametrizing a stable sheaf.

PROOF. Fix an integer d (depending only on X, H and c{) for which [Li, Theo-
rem 0.1], holds, that is the following property holds for every c2 > d. Fix a stable
sheaf E € M(X;2;cu c2;//)+(R). By [Li, Theorem 0.1], and the choice of d,
M(X;2; cu c2; H)+ is a locally complete intersection at E with the expected dimen-
sion x(Endo(E)) = 4c2 - c\ + 3(1 - x(Ox)). Furthermore, by [Li, Lemma 1.3], at
the point parametrizing E the scheme M(X;2; c\, c2; H)+ has Zariski tangent space
with dimension at most x(End°(£)) + a(X, H, c{), where a(X, H, c\) is a constant
depending only from X, H and Ci, but independent from c2 and the choice of E. Hence
for large d(k) > d the thesis follows from [H, Korollar 1.3] (or later generalizations)
and the Smith exact sequence (see for instance [BR, Appendix C]). •

2. An example

In this section we will give an example of a surface X with very good moduli
schemes (that is A/(X;2; c\, c2; / /) integral, everywhere smooth and with a Zariski
open CT-invariant subscheme Y satisfying Conditions (A), (B), (C) and (D)), but with
M(X; 2; c\, c2; H)(o) not connected. We fix an elliptic curve C defined over IR and
with C(K) disconnected (for instance C given by an equation v2 = x3 + ax + b
with x3 + ax + b with 3 real roots). Set X := C x Pl with P1 with its usual
structure, that is P\\&.) a circle. Thus s = 2, X(K) = AX\J A2 with each At

real torus. Let it\ : X -» C and n2 : X -* P1 be the projections. We have
Pic(X) = 7T1*(Pic(C)) 0 7T2*(Pic(P1)) = 7r,*(Pic(C)) 0 Z and we will write every
R € Pic(X) as R = (U, a) with U € Pic(C) and a e Z. The cohomology groups
of (U, a) are computed by Kunneth's formula. In particular h°((U, a)) ^ 0 only
if a > 0. If a > 0 and deg({/) > 0 we have h°((U, a)) = (a + l)deg(iT) and
*'•((!/, a)) = 0 for i > 0. We have K = (Oc, -2) and h°(-K) = 3. We take as
polarization H a line bundle (R, 1) with deg(R) = 1; however, there is no essential
modification for different polarizations, that is if we take// = (R,x) withdeg(/?) > 0
and x > 0. Fix L — (U,a) € Pic(X) with u := deg(£/) > 3 and a > 0. Hence
h°(K+L) = (a-l)u = h°(L)-2u. First we will check that every M(X\2\cx, c2\H)
is everywhere smooth. Fix F G M(X;2; cx, c2; H). Since F is stable, it is simple,
that is every homomorphism F -> F is a homothety. Thus, since —K is effective,
A°(Hom(F, F <g> K)) = 0. By Serre duality we have /i2(End(F)) = 0. Hence by
deformation theory (see for instance [Bru]) F is a smooth point of M(X; 2; ct, c2; / / ) .
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Fix an integer d2 with (a — 1)K + 2 < d2 < (a + l)u. Hence we have Condition
(AB1). Consider a locally free rank 2 bundle fitting in the extension (1) with Chern
classes given by (2) for r = 2. Since d2 < h°(L), if Z is general we have x(E) > 1>
hl(E) = h2(E) = 0 and £ is in a good stratum. Thus we see that there is a good
stratum and that Condition (C) is satisfied. Now we will check Condition (D). Fix
a bundle E fitting in the extension (1) and assume that E is not stable. Hence there
is W € Pic(X), W = (V, b) with a non zero homomorphism t : W —*• E and
2deg(V) + 2b > u + a. Hence there is no non trivial map W —*• O. Thus the
homomorphism t induces a non trivial map / ' : W —> lz{V), that is h°(Iz(L — W)) ^
0. Since d2 > (a - l)u + 2 and 2deg( V) + 2b> u + a, this is false for sufficiently
general Z. Thus Condition (D) is satisfied. Notice that the complex dimension of the
vector space of all the extensions of Iz (L)by O does not depend on Z and is the same
even for unreduced Z. Thus we check easily using [BPS] the well-known fact that
M(X;2;L,d2;H) is integral; the same argument was used in the definition of good
stratum and in step (d) of the proof of Theorem 1.6, Theorem 1.7 and Theorem 1.8. Let
M(0) (respectively M(l)) be the Zariski open subset of M(X\ 2; L, d2; H) formed by
the stable bundles fitting in (1) with Z reduced (respectively card(Zred) > d2 — 1). We
see easily that M(X;2;L,d2; H)\M(l) has codimension at least 2. Hence, as in Step
(b) of the proof of Theorem 1.6, Theorem 1.7 and Theorem 1.8, by the smoothness of
M (X; 2; L, d2; H) it is sufficient to show thatM(l)(K)is not connected, that is we may
ignore bundles corresponding to a a-invariant 0-cycle, Z", with card(Z^j) < d2 — 1.
Fix E' and E" in M (0)(K), say given byteduced subschemes Z' and Z" and extensions
(1), with card(Z' fl A,) - card(Z" n A{) odd. We claim that E' and E" are in
different connected components of M(1)(K). The bundles £" and E" are in different
components of M(0)(K) by the constancy of the dimension of the Ext'-group and the
fact that card(A ] fl Z,) is preserved for a continuous family of bundles E, in M(0)(R)
with E, given by Zt. Fix F e (M(l)(R)\M(0)(R)) with F limit of a continuous
family {£,} as above and F given by Z* Uz with length(z) = 2 and card(Z*) = d2 — 2.
Since card(Z, fl Ai) — card(Z* D Ax) is even, we see that E' and E" are in different
components of M(1)(R), as wanted.

3. Segre-Hirzebruch surfaces

In this section we show how to check the axioms in the case of the Segre-Hirzebruch
surfaces, Fe, e > 0.

3.1. Here we consider the case of the Segre-Hirzebruch surfaces, Fe, e > 0,
with the usual real structure, that is with the unique real structure with Fe(K) ^ 0;
if e is even Fe(R) is a torus; if e is odd Fe(K) is a Klein bottle ([Si, Chapter VI,
Proposition 1.2]). For the other real structures, see Section 3.2. Set n := Pl and
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let n : X -> Pl be the ruling (unique, except for the quadric surface Fo). For the
results used here on Pic(Fe), see [Ha, Chapter V, Section 2], and [GH, pp. 523-525].
Since Pic(FJ = Z2, the numerology for all possible r, e, H, c\ is so complicated
that not even the existence of rank 2 stable bundles for a given arbitrary quadruple (e,
H, cu c2) is completely known (see [Q] and the references in [Bl] for many cases).
Hence we will restrict (except for Conditions (B), (Dl) and (D2)) to the case of rank
2 bundles, we will make strong numerical assumptions which will simplify the life
and we will give only a partial picture of the existence of stable bundles and the
irreducibility of M(Fe; 2; c{, c2; / / ) . The general picture should be very similar. We
take as base defined over K of Pic(Fe) a section h of the ruling with minimal self-
intersection and a fiber/ of the ruling. Hence h2 = —e, hf = 1 and / 2 = 0. We
have K = —2/i — (e + 2 ) / . The bundle xh + yf is ample if and only if x > 0 and
y > xe. Since nf(O(uh + vf)) = 0o</-<l((On(u — je)) for every u > 0, by the
Leray spectral sequence of n we have H1 (O(uh + vf)) = 0if u > 0 and v > ex — 1.
Set L :— ah + bf, H := ch + df, H ample. Assume L ample, that is a > 0, b > ef;
hence we have hl(L) = 0. We have:

(5) h\K + L) = 1 + (I2)/2 = 1 + a(2b - ea)/2,

h°(L) = h°(K + L)- (KL) = h^K + L) + 2(b - ae) + a(e + 2)

Hence we see exactly when condition (B) is satisfied. If M = ah + fif we have

d2 = c2 + (r - l)(or/8 + ab - eaa) + r{r - l)(2or/3 - «*2)/2.

Thus condition (B) is satisfied for M if and only if c2 > 3 + a(2b — ea)/2 — (r —
l)(a/8 + ab- eaa) - r(r - l)(2a/S - «*2)/2. Here c, := L - rM. The condition
that the corresponding bundle E has h}(E) = 0 is d2 < h°(L), or equivalently, by
condition (B)

h°(K + L) + 2<d2< h°(K + L) + 2(b - ae) + a(e + 2).

For conditions (DO) and (Dl) we fix R :=xh +yf; hence RH = —exc + yc + xd.
Hence r(RH) > (LH) if and only if

—rxc + rdx — reyc > cb + da — ebc.

We have h°(L - R) ^ 0 if and only if x < a and b - x > e(a - x). The
same computations apply for condition (D2). Notice that by deformation theory
and Serre duality (see for instance [Bl]) the moduli space is smooth at the points
with /i°(Hom(£, E ® K)) = 0. If F- is //-stable for some polarization H we have
A°(Hom(£, E <8> K)) = 0 if —K is effective or ample, that is if 0 < e < 2. For every
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e > 0 and every //-stable bundle E we have h°(Hom(E, E ® K)) = 0 for a good
choice of a polarization H, that is if we have KH < 0, that is

(2h + (e + 2)f)(ch + df) > 0, that is 2cf - ce + 2e > 0.

In a few very particular cases (for instance for the quadric Fo with H = —K) the
arithmetic simplifies drastically and everything was previously known. In summary,
for r = 2 and fixed e, H and C\ everything (that is the existence and the dimension
of a good stratum and cohomological properties of the general members of any good
stratum) may be computed just using straightforward numerical calculations. If we
do not fix e, H, and Ci there is a 'large sector' of triples (e, H, cx) in which these
computations may be done simultaneously in a uniform way. It seems to us that there
is no statement (or at least no statement shorter than 10 pages) covering all cases.

3.2. P2 has a unique real structure ([Si, Chapter VI, Proposition 1.1]). If the integer
e is odd the surface Fe has a unique real structure ([Si, Chapter VI, Proposition 1.2]).
If e is even Fe has a unique real structure with Fe(W) ^ 0 ([Si, Chapter VI, Propo-
sition 1.2]). Here we assume e even and take a real structure with FC(IR) = 0. As
shown in Section 3.1 by the cohomological discussion for the usual real structure, the
real structure may enter in the picture only to say if h or / or both are real (we will
see that 2h and 2 / are always real), and, if real, if they have the usual structure of P1

or no real point. If e > 0, h is unique and hence a -invariant for any real structure.
Thus it is real. Since K is always real, if e > 0 and even, 2 / is real; here everything
works as in Section 3.1 taking H := ch + df with d even. If e — 0 it is sufficient to
assume both c and d even.

Acknowledgements

The author was partially supported by MURST and GNSAGA of CNR (Italy). We
would like to thank the referee for several useful suggestions.

References

[B1 ] E. Ballico, 'On moduli of vector bundles on rational surfaces', Arch. Math. 49 (1987), 267-272.
[B2] , 'Real moduli of complex objects: surfaces and bundles', Monatsh. Math. 115 (1993),

13-26.
[BB] E. Ballico and R. Brussee, 'On the unbalance of vector bundles on a blown-up surface', Technical

Report, 1990.
[BPS] C. Banica, M. Putinar and G. Schumacher, •Variation der globalen Ext in Deformationen kom-

plexer Raume', Math. Ann. 250 (1980), 135-155.

https://doi.org/10.1017/S1446788700001567 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700001567


54 Edoardo Ballico [14]

[BR] R. Benedetti and J.-J. Risler, Real algebraic and semi-algebraic sets (Hermann, Paris, 1990).
[Bru] J. Bran, 'Les fibres de rank deux sur P2 et leurs sections', Bull. Soc. Math. France 107 (1979),

457-473.
[C] F. Catanese, 'Footnotes to a theorem of I. Reider', in: Algebraic geometry, Proceedings, L'Aquila,

1988, Lecture Notes in Math. 1417 (Springer, Berlin, 1990) pp. 67-74.
[GL] D. Gieseker and J. Li, 'Irreducibility of moduli of rank two vector bundles on algebraic surfaces',

J. Diff. Geometry 40 (1994), 23-104.
[GH] P. Griffiths and J. Harris, Principles of algebraic geometry (Wiley, New York, 1978).
[H] H.Hamm, 'LokaletopologischeEigenschaftkomplexerRaume',Atefc.Ami. 191 (1971),235-252.
[Ha] R. Hartshorne, Algebraic geometry (Springer, Berlin, 1977).
[K] S. Kleiman, 'The transversality of a general translate', Compositio Math. 28 (1974), 287-297.
[L] S. Langton, 'Valuative criteria for families of vector bundles on algebraic varieties', Ann. of Math.

101(1975), 88-110.
[Li] J.Li, 'Kodaira dimension of moduli space of vector bundles on surfaces', Invent. Math. 115(1993),

[Q] Z. Qin, 'Moduli spaces of stable rank-2 bundles on ruled surfaces', Invent. Math. 110 (1992),
615-625.

[Si] R. Silhol, Real algebraic surfaces. Lecture Notes in Math. 1137 (Springer, Berlin, 1985).
[T] A. N. Tyurin, 'Cycles, curves and vector bundles on an algebraic surface', Duke Math. J. 54 (1987),

1-26.

Department of Mathematics
University of Trento
38050 Povo (TN)
Italy
e-mail: ballico@science.unitn.it

https://doi.org/10.1017/S1446788700001567 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700001567

