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Abstract

In this paper, we study a class of bisexual Galton–Watson branching processes in which
the law of offspring distribution is dependent on the population size. Under a suitable
condition on the offspring distribution, we prove that the limit of mean growth-rate per
mating unit exists. Based on this limit, we give a criterion to identify whether the process
admits ultimate extinction with probability one.
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1. Introduction of bisexual Galton–Watson branching processes

The bisexual Galton–Watson process was first introduced by Daley (1968a) as a two-type
branching model {(Fn,Mn), n = 1, 2, . . .}, which can be described in the following way.

Let Fn and Mn respectively denote the number of females and males in the nth generation,
and letL(·, ·) be a mating function that describes their mating rule. We denote byZn the number
of mating units in the nth generation. Moreover, ξn,j and ηn,j are the numbers of females and
males produced by the j th mating unit in the nth generation, respectively. To formulate the
model, we begin with Z0 ∈ N

+ (the set of all nonnegative integers) and inductively define

(Fn+1,Mn+1) :=
Zn∑
j=1

(ξn,j , ηn,j ), n = 0, 1, 2, . . . ,

Zn+1 := L(Fn+1,Mn+1), n = 0, 1, 2, . . . .

(Here we use the convention that empty sums equal (0, 0)).
We make the usual assumptions on the model, as follows. The (ξn,j , ηn,j ), where n =

0, 1, . . . and j = 1, 2, . . . , are independent, identically distributed, bivariate random variables
taking values in N

+ × N
+, and the mating function L : R

+ × R
+ → R

+ is nondecreasing in
each variable and satisfies the inequalities

L(x, y) ≤ xy,

L

( n∑
i=1

xi,

n∑
i=1

yi

)
≥

n∑
i=1

L(xi, yi) (1.1)
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176 Y. XING AND Y. WANG

for any n ≥ 2 and any (x, y), (xi, yi) ∈ R
+ × R

+. (The second inequality is known as the
superadditive property.)

Bisexual branching processes have received much attention in the literature. The extinction
problem has been studied by Daley (1968a), Hull (1982), (1984), Bruss (1984), Daley et al.
(1986), and Alsmeyer and Rösler (1996). The main result, proved by Daley et al. (1986), is
based on the concept of mean growth-rate per mating unit, i.e.

rk := k−1 E[Zn+1 | Zn = k], k = 1, 2 . . . ,

which was introduced by Bruss (1984). Daley et al. (1986) proved that, for a superadditive
branching process, the asymptotic growth-rate r := limk→∞ rk exists, and that

P(Zn → 0, n → ∞ | Z0 = j) = 1, j = 1, 2, . . . ,

if and only if, excluding trivial cases,
r ≤ 1.

Molina et al. (2002) suggested a bisexual Galton–Watson model with population-size-
dependent mating. They obtained a necessary and sufficient condition for the process to become
extinct with probability 1.

In this paper, we are interested in the so-called population-size-dependent bisexual Galton–
Watson processes (PSDBPs), i.e. the class of bisexual Galton–Watson processes whose offspring
reproduction laws depend on the size of the population. The biological motivation for this model
is that population size governs reproduction laws.

In section 2, the probabilistic model is described and basic concepts and necessary results
are introduced. Then, in section 3, we give a criterion (see Theorem 3.1) to identify whether
the process admits ultimate extinction with probability one.

2. The probabilistic model

We define a population-size-dependent bisexual Galton–Watson process via a two-type
sequence (F �n ,M

�
n)n, as follows:

Z�0 := N,

(F �n+1,M
�
n+1) :=

Z�n∑
j=1

(ξ
(Z�n)

n,j , η
(Z�n)

n,j ), n = 0, 1, . . . ,

Z�n+1 := L(F�n+1,M
�
n+1), n = 0, 1, . . . .

Here, the law of offspring distribution depends only on the size of the parental generation. We
assume that, for every k = 1, 2, . . . , the random variables (ξ (k)n,j , η

(k)
n,j ), where n = 0, 1 . . . ,

j = 1, 2, . . . , are independent and have the same distribution as (ξ (k)0,1, η
(k)
0,1). As usual, the

mating function L(·, ·) is assumed to be superadditive (see (1.1)).

Remark 2.1. It is not hard to check that {Z�n, n ≥ 0} is a homogeneous Markov chain and that
0 is an absorbing state. However, {Z�n, n ≥ 0} is not a stochastically monotone Markov chain
in the sense of Daley (1968b).

Throughout this paper, we suppose that the sequence of offspring random variables
(ξ
(k)
0,1, η

(k)
0,1)k satisfies the following condition.
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Condition 2.1. The sequence (ξ (k)0,1, η
(k)
0,1)k satisfies

E g(ξ (k+1)
0,1 , η

(k+1)
0,1 ) ≤ E g(ξ (k)0,1, η

(k)
0,1) (2.1)

for every bounded, componentwise-increasing function g(·, ·).
Remark 2.2. It follows from Kamae et al. (1977) that, simultaneously for all k ≥ 1, there exist
random variables (ξ (k), η(k))� and (ξ (k+1), η(k+1))�, defined on the same probability space and
having the same (respective) distributions as (ξ (k)0,1, η

(k)
0,1) and (ξ (k+1)

0,1 , η
(k+1)
0,1 ), such that

(ξ (k), η(k))� = (ξ (k+1), η(k+1))� + (ξ (k,k+1), η(k,k+1)), k = 0, 1, . . . ,

for nonnegative, integer-valued random variables (ξ (k,k+1), η(k,k+1)).

In the following, we will consider the random variables (ξ (k), η(k))� given in this remark, in-
stead of (ξ (k)0,1, η

(k)
0,1). However, in an abuse of notation, we will write (ξ (k), η(k)) for (ξ (k), η(k))�.

With this, we can immediately make the following proposition.

Proposition 2.1. Under Condition 2.1,

1. the sequence (ξ (k), η(k))k converges almost surely to a pair of nonnegative, integer-valued
random variables (ξ, η); and

2. the sequence (E g(ξ (k), η(k)))k is monotonic, nonincreasing, and converges to E g(ξ, η),
where g(·, ·) is defined as in Condition 2.1.

So, letting g(x, y) = x and g(x, y) = y in turn, we have, respectively,

lim
k→∞ E ξ (k) = E ξ and lim

k→∞ E η(k) = E η. (2.2)

In order to obtain a sufficient condition for the process to become extinct, i.e. to haveZ�n = 0
with probability 1 for some positive integer n, we must define some characteristic quantities.

Definition 2.1. We define ultimate extinction to be the event Q := {Z�n → 0, n → ∞}, and
let

q(j) := P(Q | Z�0 = j), j = 1, 2, . . . .

(Actually, Q = ⋃∞
n=1{Z�n = 0}.)

The following assertion originally comes from Molina et al. (2002), but the proof needs
some modifications in our case.

Proposition 2.2. Let {Z�n, n ≥ 0} be a PSDBP satisfying Condition 2.1, and suppose that the
mating function satisfies L(1, 1) = 1. If

P(Z�n+1 = j | Z�n = j) < 1 holds for all j = 1, 2, . . . , (2.3)

then
P(Z�n → 0)+ P(Z�n → ∞) = 1.

Proof. It suffices to prove that, if k �= 0, then k is transient in the Markov chain {Z�n, n ≥ 0}.
Step 1. Suppose that, for any k = 1, 2, . . . and j = 0, 1, . . . , the offspring distribution

satisfies
P(ξ (k) = 0, η(k) = j) = P(ξ (k) = j, η(k) = 0) = 0.
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This means that every mating unit has among its offspring at least one female and one male.
Since L(1, 1) = 1, we have

Z�1 ≤ Z�2 ≤ Z�3 ≤ · · · .
It follows that if

f �kk := P(Z�n+m = k for some m ≥ 1 | Z�n = k),

then
f �kk = P(Z�n+1 = k | Z�n = k) < 1.

This implies that k is transient.
Step 2. Suppose that there exists a k ≥ 1 and a j ≥ 0 such that either

P(ξ (k) = 0, η(k) = j) > 0 or P(ξ (k) = j, η(k) = 0) > 0.

Then either
P(ξ (k) = 0) > 0 or P(η(k) = 0) > 0.

Let
N := inf{k ≥ 1 : P(ξ (k) = 0) > 0 or P(η(k) = 0) > 0}.

It follows, from Remark 2.1, that either

P(ξ (N+m) = 0) > 0 or P(η(N+m) = 0) > 0

for all m = 0, 1, 2, . . . .
Since L(x, y) ≤ xy, we have L(0, ·) = L(·, 0) = 0 and, therefore, for k ≥ N ,

P(Z�n+1 = 0 | Z�n = k) = P

(
L

( k∑
j=1

(ξ
(k)
n,j , η

(k)
n,j )

)
= 0

)

≥ P

( k∑
j=1

ξ
(k)
n,j = 0 or

k∑
j=1

η
(k)
n,j = 0

)

≥ max

{
P

( k∑
j=1

ξ
(k)
n,j = 0

)
,P

( k∑
j=1

η
(k)
n,j = 0

)}

= max{P(ξ (k) = 0)k,P(η(k) = 0)k}
> 0.

Since 0 is an absorbing state, we deduce that

f �kk ≤ 1 − P(Z�n+1 = 0 | Z�n = k) < 1.

This implies that k is transient.
For k < N , by the definition of N , we have

P(ξ (k) = 0) = P(η(k) = 0) = 0.

So, P(ξ (k) = 0, η(k) = j) = P(ξ (k) = j, η(k) = 0) = 0 for all j = 0, 1, . . . .
We claim that

P(Z�n ≥ N for some n ≥ 1 | Z�0 = k) > 0.
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Otherwise
P(Z�n ≥ N | Z�0 = k) = 0 for every n ≥ 1,

which implies that
Z�0 ≤ Z�1 ≤ Z�2 ≤ · · · < N,

contradicting (2.3). Hence, the states no smaller thanN are accessible from k, and k is transient.
In summary, k �= 0 is transient for the Markov chain {Z�n, n ≥ 0}, and the assertion of the

proposition follows.

3. Extinction probability under Condition 2.1

In this section, we will study the extinction problem of a PSDBP under Condition 2.1. By
developing some techniques similar to those of Daley et al. (1986) and Molina et al. (2002),
we obtain a criterion analogous to theirs for superadditive branching processes.

For our purposes, we introduce the ‘mean growth-rates per mating unit’ for a PSDBP.

Definition 3.1. Let {Z�n, n ≥ 0} be a PSDBP. For every positive integer k, we define the mean
growth-rate per mating unit as

r�k := 1

k
E[Z�n+1 | Z�n = k] = 1

k
EL

( k∑
j=1

(ξ
(k)
n,j , η

(k)
n,j )

)
.

Proposition 3.1. Assume that the PSDBP {Z�n, n ≥ 0} satisfies Condition 2.1. Then the limit
r� := limk→∞ r�k exists.

Remark 3.1. Proposition 3.1 plays a key role in the derivation of the extinction probability.
However, for the PSDBP, the function ψ defined by ψ(j) := jr�j is not superadditive, so the
well-known method described in Daley et al. (1986) does not work in our case.

Proof of Proposition 3.1. The proof is done in two steps.
Step 1. For every m ≥ 1, we define a bisexual Galton–Watson process {Z(m)n , n ≥ 0} as

follows:

Z
(m)
0 := N,

(F
(m)
n+1,M

(m)
n+1) :=

Z
(m)
n∑
j=1

(ξ
(m)
n,j , η

(m)
n,j ), n = 0, 1, 2, . . . ,

Z
(m)
n+1 := L(F

(m)
n+1,M

(m)
n+1), n = 0, 1, 2, . . . ,

where mating units of each generation produce offspring independently, but with the same
offspring probability distribution as (ξ (m), η(m)), i.e.

E ξ (m) = E ξ (m)n,j and E η(m) = E η(m)n,j ,

for all n = 0, 1, . . . , j = 1, 2, . . . . By (2.2), we have

lim
m→∞ E ξ (m) = E ξ and lim

m→∞ E η(m) = E η. (3.1)
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Let

r
(m)
k := 1

k
E[Z(m)n+1 | Z(m)n = k] = 1

k
EL

( k∑
j=1

(ξ
(m)
n,j , η

(m)
n,j )

)
.

Then, by Theorem 1 of Daley et al. (1986), the limit r(m) := limk→∞ r
(m)
k exists, with r(m) =

supk>0 r
(m)
k . Furthermore, by Theorem 3.2 of Molina et al. (2002),

r(m) = r(E ξ (m),E η(m)),

where the function r(x, y) is continuous for every nonnegative-valued (x, y) – see Proposition
3.2 of Molina et al. (2002). So, by (3.1), the limit r := limm→∞ r(m) exists, and

r = r(E ξ,E η). (3.2)

Next, we consider a bisexual Galton–Watson process {Z̃n, n ≥ 0} with the same offspring
probability distribution as that of (ξ, η), i.e.

Z̃0 := N,

(F̃n+1, M̃n+1) :=
Z̃n∑
j=1

(ξn,j , ηn,j ),

Z̃n+1 := L(F̃n+1, M̃n+1).

(It is worth mentioning that {Z̃n, n ≥ 0} is a stochastically monotone Markov chain.)
By Theorem 1 of Daley et al. (1986) and Theorem 3.2 of Molina et al. (2002), r̃ :=

limk→∞ k−1 E[Z̃n+1 | Z̃n = k] exists, with

r̃ = sup
k≥1

1

k
EL

( k∑
j=1

(ξn,j , ηn,j )

)
= r(E ξ,E η). (3.3)

It follows, from (3.2) and (3.3), that

r = r̃ = r(E ξ,E η). (3.4)

Step 2. By Proposition 2.1(2), we have

1

k
EL

( k∑
j=1

(ξ
(k)
n,j , η

(k)
n,j )

)
≥ 1

k
EL

( k∑
j=1

(ξn,j , ηn,j )

)
, k ≥ 1,

and so

lim inf
k→∞

1

k
EL

( k∑
j=1

(ξ
(k)
n,j , η

(k)
n,j )

)
≥ r̃ . (3.5)

For every m ≥ 1, by applying Proposition 2.1(2), we find that

lim sup
k→∞

1

k
EL

( k∑
j=1

(ξ
(k)
n,j , η

(k)
n,j )

)
≤ lim
k→∞

1

k
EL

( k∑
j=1

(ξ
(m)
n,j , η

(m)
n,j )

)
.
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This implies that

lim sup
k→∞

1

k
EL

( k∑
j=1

(ξ
(k)
n,j , η

(k)
n,j )

)
≤ r(m),

and so

lim sup
k→∞

1

k
EL

( k∑
j=1

(ξ
(k)
n,j , η

(k)
n,j )

)
≤ r. (3.6)

Combining (3.4), (3.5), and (3.6), we deduce that r� = limk→∞ k−1 EL(
∑k
j=1(ξ

(k)
n,j , η

(k)
n,j ))

exists, with
r� = r = r̃ . (3.7)

Theorem 3.1. For the PSDBP {Z�n, n ≥ 0} satisfying Condition 2.1, the following assertions
hold.

1. If r� < 1 then q(j) = 1 for j = 1, 2, . . . .

2. If r� > 1 then q(j) < 1 for j = 1, 2, . . . .

Proof. 1. If r� < 1, we have r = r� < 1, by (3.7), recalling that r = limm→∞ r(m). There-
fore, there exist at most finitely manyms such that r(m) ≥ 1, and we can thus suppose that there
exists a positive integer k with r(l+k) < 1 for all l > 0. Let α := max{1, r(1), r(2), . . . , r(k)}.
Since r(m) = supk>0 r

(m)
k , we have

EZ�n+1 =
∞∑
m=0

P(Z�n = m)E[Z�n+1 | Z�n = m]

=
∞∑
m=0

P(Z�n = m)EL

( m∑
j=1

(ξ
(m)
n,j , η

(m)
n,j )

)

=
∞∑
m=1

P(Z�n = m)mr(m)m (by the definition of r(m)k )

=
k∑

m=1

P(Z�n = m)mr(m)m +
∞∑

m=k+1

P(Z�n = m)mr(m)m

≤ α

k∑
m=1

mP(Z�n = m)+
∞∑

m=k+1

mP(Z�n = m)

= EZ�n + (α − 1)
k∑

m=1

mP(Z�n = m).

This implies that

EZ�n+1 ≤ EZ�n + (α − 1)
k∑

m=1

mP(Z�n = m), n ≥ 0.

Iterating this inequality, we find that

EZ�n ≤ EZ�0 + (α − 1)
k∑

m=1

m

n−1∑
j=0

P(Z�j = m),
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recalling that, if m �= 0, m is transient for {Z�n, n ≥ 0}. Furthermore, if we define λm :=∑∞
j=0 P(Z�j = m) < ∞, we have

EZ�n ≤ EZ�0 + (α − 1)
k∑

m=1

mλm < ∞ for all n.

This implies that
P(Z�n → ∞, n → ∞) = 0,

i.e. q(j) = 1.

2. If r� > 1 then r̃ = r� > 1, by (3.7). Recall that {Z�n, n ≥ 0} and {Z̃n, n ≥ 0} have,
respectively, the offspring random variables (ξ (m)n,j , η

(m)
n,j ) and (ξn,j , ηn,j ), where m represents

the present population size of {Z�n, n ≥ 0}.
By Proposition 2.1(2),

E g(ξ (m)n,j , η
(m)
n,j ) ≥ E g(ξn,j , ηn,j ),

where g(·, ·) is as defined in (2.1). So, from our Remark 2.1 and Theorem 1 of Daley (1968b),
we have

P(Z�n → 0 | Z�0 = j) ≤ P(Z̃n → 0 | Z̃0 = j).

Since r̃ > 1, we see that P(Z̃n → 0 | Z̃0 = j) < 1. Therefore P(Z�n → 0 | Z�0 = j) < 1, i.e.
q(j) < 1.

In the following, we give an example to illustrate that the extinction property is not certain
when r� = 1. This example demonstrates (see Proposition 3.2, below) that the extinction
argument depends heavily on the convergence rate of r(m) → 1.

For the PSDBP {Z�n, n ≥ 0} with promiscuous mating, i.e. where the mating function satisfies

L(x, y) = xmin{1, y}, we have, by the definition of {Z(m)n , n ≥ 0},

r(m) = lim
k→∞

1

k
E[Z(m)n+1 | Z(m)n = k]

= lim
k→∞

1

k
EL

( k∑
j=1

(ξ
(m)
n,j , η

(m)
n,j )

)

= lim
k→∞

1

k
E

[( k∑
j=1

ξ
(m)
n,j

)
min

{
1,

k∑
j=1

η
(m)
n,j

}]

= lim
k→∞ E ξ (m)n,j P

( k∑
j=1

η
(m)
n,j > 0

)

= lim
k→∞ E ξ (m)n,j [1 − P(η(m)n,j = 0)k]

= E ξ (m)n,j

= E ξ (m).

Let {F�n , n ≥ 0} be an asexual Galton–Watson process defined byF�n+1 := ∑F�n
j=1 ξ

(F �n )

n,j . This
is actually a population-size-dependent Galton–Watson process (see Klebaner (1984)). Define
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q ′ := P(F �n → 0, n → ∞) and letµ(m)1 and σ (m)1 be, respectively, the mean and the variance of
the offspring distribution, wherem is the population size. It is easy to see thatµ(m)1 = E ξ (m) =
r(m). By letting g(x, y) = x2 in Proposition 2.1(2), we see that σ1 := limm→∞ σ

(m)
1 exists.

Let us assume that one further condition holds.

Condition 3.1. limm→∞m(r(m) − 1) = c for 0 ≤ c < ∞.

Then the conditions of Theorem 1.4 of Klebaner (1984) are satisfied, and we have the
following proposition.

Proposition 3.2. Suppose that c �= σ1. Then,

(a) if c > σ1 then q ′ < 1; and

(b) if 0 < σ1 and lim supm→∞mα(r(m) − 1) < ∞, α ≥ 2, then q ′ = 1.

The PSDBP {Z�n, n ≥ 0} with promiscuous mating is a ‘killed’Markov chain, which kills the
process {F�n , n ≥ 0} at state j with probability k(j), where k(j) = r(j)j and r(j) = P(η(j) =
0) for j ∈ N . Indeed, if F�0 = j , this process is killed if no males are produced, which happens
with probability k(j). It is thus easy to see that

P(F �n → 0, n → ∞ | F�0 = j) ≤ P(Z�n → 0, n → ∞ | Z�0 = j). (3.8)

Theorem 3.2. For the PSDBP {Z�n, n ≥ 0} with promiscuous mating satisfying Conditions 2.1
and 3.1, we have the following:

(a) c > σ1 implies that q(j) < 1; and

(b) 0 < σ1 and lim supm→∞mα(r(m) − 1) < ∞, α ≥ 2, imply that q(j) = 1.

Proof. (a) By the definition of q(j),

q(j) = 1 − P(Z�n ≥ 1 for all n ≥ 0 | Z�0 = j)

= 1 −
∞∑
i=1

P(Z�1 = i | Z�0 = j)P(Z�n ≥ 1 for all n ≥ 1 | Z�1 = i)

= 1 − Ej [(1 − k(j))P(Z�n ≥ 1 | Z�1 = F�1 )] (where Ej [·] := E[· | Z�0 = j ])
= 1 − Ej

∏
n≥0

(1 − k(F �n )).

Let Q′ := {F�n → ∞, n → ∞}. By applying Proposition 3.2, we find that P(Q′) > 0.
Therefore, we need only show that

∏
n≥0(1 − k(F �n )) > 0 on Q′. Note that

Ej
∑
n≥0

k(F �n ) = Ej
∑
n≥0

r(F �n )
F�n

≤ Ej
∑
n≥0

r(1)F
�
n

=
∑
n≥0

∞∑
k=1

r(1)k Pj (F
�
n = k) (where Pj (·) := P(· | Z�0 = j))

=
∞∑
k=1

r(1)k
∑
n≥0

Pj (F
�
n = k).
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Let Gjk := ∑
n≥0 Pj (F �n = k) be the Green function of the chain {F�n , n ≥ 0}. Then

Gjk < ∞ for all k ∈ N , since k is transient (see Klebaner (1984), p. 32). Thus, we obtain

Ej
∑
n≥0

k(F �n ) ≤
∞∑
k=1

r(1)kGjk.

On the other hand,
∑∞
k=1 k

−2Gjk < ∞ (see Klebaner (1984), p. 35), so we have

Ej
∑
n≥0

k(F �n ) < ∞ on Q′.

This implies that
∏
n≥0(1 − k(F �n )) > 0 on Q′.

(b) By Proposition 3.2, we have

P(F �n → 0, n → ∞ | F�0 = j) = 1.

So, by (3.8), we see that q(j) = P(Z�n → 0, n → ∞ | Z�0 = j) = 1. This completes the
proof of Theorem 3.2.
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