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Abstract

It is known that 4 < x(IR2) < 7, where x(IR2) is the number of colours necessary to colour each point of
Euclidean 2-space so that no two points lying distance 1 apart have the same colour. Any lattice-sublattice
colouring scheme for K2 must use at least 7 colours to have an excluded distance. This article shows
that at least 6 colours are necessary for an excluded distance when convex polygonal tiles (all with area
greater than some positive constant) are used as the colouring base.

2000 Mathematics subject classification: primary 05B45, 52C20; secondary 05B40, 52C15.

1. Introduction to the colouring problem

The chromatic number x(R") of R" is defined to be the minimum number of colours
(sets 5,) necessary to colour R" (such that (J?=i $ = K") s o t h a t t h e u n i t distance
is excluded between points of the same colour (||JC — y\\ ^ 1 for all x, y e 5, for
all i). Clearly any colouring with an excluded distance can be rescaled so that 1 is the
excluded distance.

It is known that in the euclidean plane IR2

4 < x(K2) < 7.

The lower bound established by Raiskii [2] or the Moser spindle (see Figure 1) which
needs at least 4 colours to colour it with an excluded distance.

The upper bound of 7 is established by a colouring based on congruent plane-
filling regular hexagonal cells (see Figure 2). This is an example of a lattice-sublattice
colouring scheme where points in common Voronoi regions (also known as Delaunney
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regions) are coloured the same according to what coset of the lattice/sublattice the
central vertex is in (see Figure 2). It is known that we need at least 7 colours
for a distance excluded colouring using lattice-sublattice colouring schemes (more
generally in n-space 2n+1 — 1 colours are needed) see Coulson [1].

Ideally we would demonstrate a colouring of R2 using less than 7 colours or show
that no such colouring is possible.

This article outlines some progress in this direction, namely that if convex polygons
are used as a colouring base at least 6 colours are necessary for an excluded distance.

2. The colouring scheme

Let us consider a colouring of Euclidean 2-space using polygonal tiles that are
convex, (vertices having interior angles strictly less than n), locally finite and all with
area greater than some lower bound I. Two tiles meet along an entire common edge
and three or more tiles meet at vertices. The interior of a single tile is uniformly
coloured (we call this the colour of the tile) and points on the boundary of tiles are
coloured arbitrarily with the colours of any incident tile. This colouring scheme is
exactly the same as with previous lattice-sublattice schemes except that convex tiles
are used as a base rather than Voronoi regions.

3. A lower bound on the chromatic number
of the tile based colouring scheme

LEMMA 3.1. If a colouring is distance excluding then there is a vertex where 3
differently coloured tiles meet.

PROOF. For brevity's sake let us call a vertex where 3 differently coloured tiles
meet a tri-coloured vertex.

FIGURE 1. The Moser spindle
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FIGURE 2. The hexagonal lattice 7 colouring

Suppose to the contrary we have an excluded distance D and there is no tri-coloured
vertex.

Choose a tile and group together the maximal connected group of like coloured
tiles (that includes the one chosen) to form G.

If two interior points in this group are distance D apart we have a contradiction,
else we continue as follows.

Choose a tile not in G incident with the group G (so necessarily of a different colour)
and then expand this to a maximally connected like coloured group to form M. This
new group M contacts the group G along an entire connected component of the
boundary of G (else we would have a tri-coloured vertex). This boundary component
is either

• Unbounded, as shown in Figure 3 (a), (which would contradict the existence
of the excluded distance D) and so is not possible,

• Interior to the group, as shown in Figure 3 (b), (there are only finitely many of
these groups possible) or

• Exterior to the group, as shown in Figure 3 (c).
• Both interior and exterior to the group G.

Now let G become GUM and iterate this process (of forming M and then combining
to get a new G).

By finiteness considerations one of the boundary groups M must eventually be
exterior (and so be a loop) and have two points distance D apart in which case D
cannot be an excluded distance, contradiction.
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Thus an excluded distance D and the lack of a tri-coloured vertex are not possible
and the lemma follows. •

LEMMA 3.2. A tile based colouring needs at least 5 colours to be distance excluding.

PROOF. We show that if a colouring is distance D excluding then almost all points
distance D away from a tri-coloured vertex T (coloured with colours a, b, c) are
coloured with one of at least two different colours (d and e say).

Consider the points on the circumference C of a circle of radius D with centre T (see
Figure 4 (a)). By the finite properties of the tiles all but finitely many of the points on C
will be points interior to tiles and by taking a (uniformly coloured) neighbourhood U
about each of these points (which will be coloured the same as the circumference
point) we see that U cannot be coloured a, b or c if D is to be an excluded distance.
Hence almost all points on C need to be coloured a different colour from a, b or c.

As almost all points of C are interior it is possible to find two interior points of C
that are distance D apart and these must necessarily be coloured differently d and e
say, if we are to have D as an excluded distance. •

LEMMA 3.3. If a 5 coloured tile based colouring is distance D excluding then all
non interior points of C (a circle of radius D with cenre T a tri-coloured vertex)
separating interior points of C of different colours are not distance Dfrom an interior
point of C.

PROOF. Suppose to the contrary that only 5 colours have been employed and we
have a non-interior point of C separating two regions of C of different colours that
is distance D away from an interior point. The situation depicted in Figure 4 (b). A
small perturbation of the line segment of length D (if the interior point is coloured d
or e) gives a contradiction (to the existence of an excluded distance D). •

COROLLARY 3.4. If a 5 coloured tile based colouring is distance D excluding then
there must be 6 non interior points of C separating interior points of C of different
colours arranged as depicted in Figure 4 (c).

PROOF. The arrangement of 6 non interior points as shown above is forced by
Lemma 3.3. (Note that there may be other non interior points separating these 6
non interior points.) The existence of one of these non interior points separating an
arc coloured d from an arc coloured e is given by Lemmas 3.2 and 3.3. Now the
fact that D is an excluded distance forces this to be repeated (in reverse order as we
alternate around) for the other 5 points. •
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FIGURE 5.
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THEOREM 3.5. A tile based colouring with excluded distance D must employ at
least 6 colours.

PROOF. Let us suppose to the contrary that we have a colouring using less than 6
colours that is distance D excluding then the arrangement of tile boundaries around two
non interior points distance D apart on C (in the arrangement outlined in Corollary 3.4)
is as shown in Figure 5 (a). That is like coloured, consecutive tile boundaries outside C,
distance D apart, must make strictly acute angles with the line segment of length D
(else D is not an excluded distance).

Consider a boundary B separating the two colours a and b at the tri-coloured point
at the centre of C. There are two non interior points P{ and P2 distance D apart
satisfying; both lines joining Px and T, P2 and T make acute angles with B. The
situation is depicted in Figure 5 (b).

Now consider the ray like neighbourhoods outside C at Pi and P2 these cannot be
coloured with d or e (else D is not an excluded distance in the vicinity of C) and they
cannot be coloured with a orb (else D is not an excluded distance in the vicinity of T)
so they must both be coloured with c but then these two ray like neighbourhoods fail
to give an excluded distance D between them, meaning a sixth colour must be utilized
if D is to be an excluded distance. •
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