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When a freely suspended liquid film ruptures, it retracts spontaneously under the action
of surface tension. If the film is surrounded by air, the retraction velocity is known to
approach the constant Taylor–Culick velocity. However, when surrounded by an external
viscous medium, the dissipation within that medium dictates the magnitude of the
retraction velocity. In the present work, we study the retraction of a liquid (water) film
in a viscous oil ambient (two-phase Taylor–Culick retractions), and that sandwiched
between air and a viscous oil (three-phase Taylor–Culick retractions). In the latter case,
the experimentally measured retraction velocity is observed to have a weaker dependence
on the viscosity of the oil phase as compared with the configuration where the water
film is surrounded completely by oil. Numerical simulations indicate that this weaker
dependence arises from the localization of viscous dissipation near the three-phase contact
line. The speed of retraction only depends on the viscosity of the surrounding medium
and not on that of the film. From the experiments and the numerical simulations, we
reveal unprecedented regimes for the scaling of the Weber number Wef of the film
(based on its retraction velocity) or the capillary number Cas of the surroundings versus
the Ohnesorge number Ohs of the surroundings in the regime of large viscosity of
the surroundings (Ohs � 1), namely Wef ∼ Oh−2

s and Cas ∼ Oh0
s for the two-phase

Taylor–Culick configuration, and Wef ∼ Oh−1
s and Cas ∼ Oh1/2

s for the three-phase
Taylor–Culick configuration.
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1. Introduction

Liquid films, sheets and shells have piqued the interest of fluid dynamicists for nearly
two centuries (Savart 1833a,b,c; Taylor 1959a,b; Clanet 2007; Villermaux 2020). A
freely suspended liquid film warrants further attention among these configurations as it
is inherently metastable owing to its high surface area. Indeed, if a large enough (Taylor &
Michael 1973; Villermaux 2020) hole nucleates on the film, the sheet will spontaneously
retract to reduce its surface area. Such interfacial destabilization leading to film rupture and
bursting can also result in waterborne disease transmission (Bourouiba 2021). The bursting
of liquid films at an oil–air interface is important for various industrial applications in the
chemical and petrochemical engineering sectors as well. One area of particular interest
is underwater oil spills in oceans, such as the Deepwater Horizon spill in 2010 in the
Gulf of Mexico (Summerhayes 2011). For these spills, droplets (or slugs) of oil may rise
to the free surface of water via buoyancy, and then rupture the free surface of water
directly above it. The water film will retract upon rupture, and the oil will spread on
the water surface, thus perpetuating an environmental hazard. Perhaps the most widely
studied example of sheet destabilization and retraction is during the bursting of liquid
(e.g. soap) films in air – an area of active research since the pioneering works (Dupré
1867, 1869; Rayleigh 1891; Taylor 1959b; Culick 1960; McEntee & Mysels 1969) in the
late nineteenth and mid-twentieth century, to the more recent investigations (Bremond
& Villermaux 2005; Müller, Kornek & Stannarius 2007; Lhuissier & Villermaux 2012;
Munro et al. 2015; Deka & Pierson 2020). In these studies, the outer medium is assumed
passive (inviscid and zero-inertia). The origin of the nucleation of the initial hole in the
film can be manifold (Lohse & Villermaux 2020). After film rupture, the internal viscous
stresses in the film do not contribute to the momentum balance, but dictate the distribution
of momentum within the film (Savva & Bush 2009), as long as the Ohnesorge number of
the film (ratio of its viscocapillary to inertiocapillary time scales, see § 4) is less than its
aspect ratio (see Deka & Pierson 2020). Nonetheless, half of the surface energy released
goes into internal viscous dissipation (see Appendix A and Culick 1960; de Gennes 1996;
Sünderhauf, Raszillier & Durst 2002; Villermaux 2020).

A representative schematic of the situation mentioned above is shown in figure 1(a)
(henceforth referred to as the classical Taylor–Culick configuration), where the water
film ( f ) of thickness h0 is retracting in air (a) under the action of surface tension. The
retraction velocity, vf , in such a scenario is constant (after a period of initial transience)
and approaches the Taylor–Culick velocity given by

vTC =
√

2γaf

ρf h0
, (1.1)

where 2γaf is the net surface tension driving the retraction (γaf being the interfacial tension
coefficient between the film and air) and ρf is the density of the liquid film (figure 1a).
Furthermore, it was observed that during the retraction, the liquid collects in a thicker rim
at the retracting edge of the film, particularly for low viscosity liquids (Rayleigh (1891),
Ranz (1959), Pandit & Davidson (1990); not depicted in figure 1b). The seminal work of
Keller (1983) further explores the retraction of these films of non-uniform thickness.

The effect of viscosity of the film (ηf ) during its retraction process has also been studied
(Debrégeas, Martin & Brochard-Wyart 1995; Debrégeas, de Gennes & Brochard-Wyart
1998). Brenner & Gueyffier (1999) showed that although viscosity does not have any
effect on the constant retraction velocity, it can have a significant effect on the shape of
the retracting edge of a planar film. They report that if the radial extent of the film is
greater than its Stokes length (= ηf /(ρf vTC)), a growing rim is formed, whereas the rim
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Taylor–Culick retractions
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Figure 1. Schematics depicting the configurations studied in the present work: (a) retraction of a water film
( f ) of thickness h0 in an air (a) environment (classical configuration); (b) retraction of water film ( f ) in an
oil (s) environment (two-phase configuration); (c) retraction of a water film sandwiched between air and oil
(three-phase configuration). The dot–dashed line represents the axis of rotational symmetry, and R(t) is the
radius of the growing hole centred at this axis. In all the schematics, the water film is retracting from left to
right with velocity vf , as indicated by the arrow, and γij denotes the surface tension coefficient between fluids i
and j.

is absent for the converse situation. Savva & Bush (2009) extended the work by Brenner
& Gueyffier (1999) for highly viscous films, and also developed a lubrication model for
the retraction dynamics of a circular hole. They concluded that although viscosity does
not determine the magnitude of the constant retraction velocity, it does dictate the time
required (post rupture) to attain that constant velocity, which increases with increasing
viscosity. Recently, Pierson et al. (2020) and Deka & Pierson (2020) revisited the viscous
retraction dynamics by exploring self-similar solutions for slender filaments and sheets of
finite length.

The rheological properties of the film also influence the retraction dynamics
(Dalnoki-Veress et al. 1999; Tammaro et al. 2018; Villone, Hulsen & Maffettone 2019;
Kamat, Anthony & Basaran 2020). For instance, Sen et al. (2021) showed that viscoelastic
filaments can retract at velocities higher than the Newtonian Taylor–Culick limit due to
elastic tension. Moreover, the retraction dynamics of liquids have also been studied in the
context of dewetting for a wide range of scenarios (Redon, Brochard-Wyart & Rondelez
1991; Brochard-Wyart, Martin & Redon 1993; Shull & Karis 1994; Andrieu, Sykes &
Brochard 1996; Lambooy et al. 1996; Haidara, Vonna & Schultz 1998; Buguin, Vovelle
& Brochard-Wyart 1999; Péron, Brochard-Wyart & Duval 2012; Peschka et al. 2018; Kim
et al. 2020). Lastly, there has also been a recent surge in the study of liquid retraction in
other configurations, such as liquid strips (Lv, Clanet & Quéré 2015), smectic films (Trittel
et al. 2013), foam films (Petit, Le Merrer & Biance 2015) and emulsion films (Vernay,
Ramos & Ligoure 2015).

In all the aforementioned studies, the surrounding medium is assumed to play no
role in the rupture dynamics. A question naturally arises: What happens when the outer
medium also interacts with the retracting film? In particular, how do the viscosity and
the inertia of the outer medium influence the rupture dynamics (Mysels & Vijayendran
1973; Joanny & de Gennes 1987; Reyssat & Quéré 2006; Jian, Deng & Thoraval 2020b)?
A representative schematic for such a scenario is shown in figure 1(b), where a water
film is retracting in a viscous oil ambient. This geometry will henceforth be referred
to as the two-phase configuration where the net surface tension force responsible for
retraction is 2γsf (γsf being the interfacial tension coefficient between the film and the
surrounding medium, see figure 1b). In such a situation, viscous dissipation is not limited
only to the retracting film, but is also present in the ambient. If the ambient happens to
be significantly more viscous than the film, then the dissipation in the ambient dominates.
In such a situation, the retraction velocity is still a constant. However, unlike the classical
case, the velocity depends on the viscosity ηs of the ambient medium (Martin, Buguin &
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Brochard-Wyart 1994; Reyssat & Quéré 2006). Common realizations of this configuration
include relaxation of filaments and droplets in a viscous medium (Stone & Leal 1989),
or that of air-films during drop impact (Jian et al. 2020a,b). Additionally, in this context,
Anthony, Harris & Basaran (2020) showed that the so-called ‘inertially limited viscous
regime’ in the early-times of drop coalescence (Paulsen et al. 2012; Paulsen 2013) stems
from a Taylor–Culick-type retraction of the air film between the deformable drops.

In the present work, we study the influence of the surrounding medium on the retraction
velocity of a ruptured liquid film using both force balance and energy conservation
arguments. To accomplish this goal, along with the two canonical configurations shown in
figures 1(a) and 1(b), we also study the retraction dynamics of a liquid film sandwiched
between air and a viscous oil bath. A representative schematic is shown in figure 1(c).
This geometry will henceforth be referred to as the three-phase configuration. This
paper elucidates this case experimentally by inflating an oil droplet at the water–air
interface and letting the water film rupture. Such a configuration can also be found
in the early stages of water film retraction when an air bubble approaches a water–oil
interface if the oil layer is thick enough (Feng et al. 2014, 2016). Furthermore, we
also use direct numerical simulations to demystify the retraction dynamics by using a
precursor film-based three-fluid volume of fluid (VoF) method. We show that the film
in this three-phase configuration still retracts with a constant velocity, and similar to the
two-phase case, the retraction velocity depends on the viscosity ηs of the oil bath. However,
this dependence is weaker in the three-phase configuration. Furthermore, we reveal an
unprecedented scaling relationship for the retraction velocity of the film, which arises
from the localization of the viscous dissipation near the three-phase contact line.

The paper is organized as follows. Section 2 describes the problem statement for the
three-phase Taylor–Culick retractions along with the experimental method employed to
probe this configuration. The results from these experiments are discussed in § 3. Section
4 presents the numerical framework, and § 5 describes the simulation results for both the
two-phase and three-phase configurations. Section 6 demonstrates the balance of forces
in Taylor–Culick retractions, followed by the corresponding scaling relationships in § 7.
Further, § 8 analyses the overall energy balance, highlighting the differences in the viscous
dissipation mechanisms between the two-phase and three-phase configurations. The work
culminates with conclusions in § 9. Throughout the manuscript, we refer to Appendix A for
discussions on the classical Taylor–Culick retractions, and use the experimental datapoints
from Reyssat & Quéré (2006) for the two-phase configuration.

2. Film bursting at an air–liquid interface: experimental method

We study the three-phase configuration experimentally by inflating an oil drop (‘s’ for
‘surroundings’ in figure 1c) at a water–air free interface and capturing the retraction of
the water film ( f in figure 1c). The schematic of the experimental set-up is shown in
figure 2(a). A plastic box (from the Dutch store ‘Bodemschat’) of dimensions 25 mm ×
25 mm × 15 mm (length × width × height) filled with purified water (Milli-Q) was
used as the liquid bath for most of the experiments. To study the effect of the viscosity
of the retracting film, the water in the bath was replaced by glycerol–water (glycerol
from Sigma-Aldrich) mixtures (concentrations in the range 50 %–70 % by weight) for
some experiments. A dispensing needle (inner diameter = 0.41 mm, HSW Fine-Ject) was
submerged within the bath such that its dispensing end was at a depth of 2.4 mm from
the free surface (depth kept constant during all experiments). A silicone oil (Wacker)
droplet was created at the tip of the needle by connecting it to an oil-filled plastic syringe
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Taylor–Culick retractions

Water

Oil

Syringe infusion

pump

45° Mirror

High-speed camera

Light source

Water film

t = t0 t = t0 + 0.16 ms t = t0 + 0.32 ms

t = t0 + 0.48 ms t = t0 + 0.64 ms t = t0 + 0.80 ms

1 mm

Rupture

(b)

(a)

Figure 2. (a) Schematic of the experimental set-up. (b) Typical time-lapsed experimental snapshots of the film
rupture and the subsequent retraction process (νs = 10 cSt). The time instant t = t0 denotes the first frame where
rupture (indicated by the white arrow) is discernible.

(5 ml, Braun Injekt) via a flexible plastic polyetheretherketone (PEEK) tubing (Upchurch
Scientific). The oil flow rate was maintained at 0.05 ml min−1 with the help of a syringe
infusion pump (Harvard Apparatus). In the present experiments, silicone oils of different
viscosities were used, and their densities (ρs), kinematic (νs) and dynamic viscosities (ηs)
are listed in table 1. It is to be noted that for only the AK 0.65 oil (ηs = 4.94 × 10−4 Pa s),
the drop is less viscous than the water film (ηf = 8.9 × 10−4 Pa s), while for all the other
oils, the film is less viscous. The oil–water interfacial tension (γsf ) was considered to be
0.040 N m−1 (Peters & Arabali 2013).

The drop volume was increased by a slow infusion using the syringe pump. The needle
depth below the free surface was chosen such that the drop remained anchored to the
needle during inflation. As a result, the water film right above the oil droplet progressively
thins with increasing volume of the drop. Below a certain thickness, the film ruptures
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Silicone oil ρs (kg m−3) νs (cSt) ηs (Pa s)

AK 0.65 760 0.65 4.94 × 10−4

AK 5 920 5 4.60 × 10−3

AK 10 930 10 9.30 × 10−3

AK 20 950 20 1.90 × 10−2

AK 35 960 35 3.36 × 10−2

AK 50 960 50 4.80 × 10−2

AK 100 960 100 9.60 × 10−2

AK 200 970 200 1.94 × 10−1

AK 350 970 350 3.40 × 10−1

AK 1000 970 1000 9.70 × 10−1

Table 1. Salient properties of the silicone oils used in the present work.

due to van der Waals forces (Vaynblat, Lister & Witelski 2001), and subsequently retracts
into the bath. This situation is analogous to the rupture and retraction of a water film
sandwiched between air and a viscous oil droplet. This is also a configuration that is flipped
vertically as compared with the early-time scenario studied by Feng et al. (2016). Another
key difference is that we ensure negligible vertical velocity at the point of rupture of the
water film, making this scenario ideal for studying three-phase Taylor–Culick retractions.

High-speed imaging of this rupture and retraction phenomena was performed at
50 000 f.p.s. (frames per second) for the lower viscosity oils and at 10 000 f.p.s. for the
higher viscosity ones, with a 2.5 μs−1 exposure time, by a high-speed camera (Fastcam
Nova S12, Photron) connected to a macro lens (DG Macro 105 mm, Sigma) with 64 mm
of lens extender (Kenko). The camera was pointed at a plane mirror (Thorlabs) inclined at
45◦ to the horizontal to capture the top view of the retraction phenomenon (figure 2a),
while the experiments were illuminated from the top by a light-emitting diode light
source (KL 2500 LED, Schott). A typical bursting event is shown in figure 2(b), where
time t = t0 indicates the instant when rupture is optically discernible. With increasing
time, the size of the hole formed due to rupture increases as the film retracts. The
phenomenological observations shown in figure 2(b) will be discussed in detail in § 3.
The captured images were then further analysed using the open-source software FIJI
(Schindelin, Aganda-Carreras & Frise 2012) and an in-house OpenCV-based Python script
to obtain quantitative information presented in the following sections.

3. Film bursting at an air–liquid interface: experimental results

The rupture and retraction of a water film on the surface of an oil drop of ηs =
4.94 × 10−4 Pa s is shown in figure 3(a) (and supplementary movie 1 available at https://
doi.org/10.1017/jfm.2022.671). The timestamps indicate (t − t0), where t0 is the time
instant when rupture is optically discernible, and t is the current time. As mentioned
earlier, in this particular case, the water film is more viscous than the oil. It is to be noted
that in the present experiments, we could not precisely control the location of rupture
as it was sensitive to experimental noise (see § 4.2 of Villermaux (2020)). Hence, the
rupture in the present experiments did not always occur at the apex of the thinning film.
Such behaviour was also observed in other similar experiments of film rupture (Oldenziel,
Delfos & Westerweel 2012; de Maleprade, Clanet & Quéré 2016). The rupture location
may also be determined by a ‘prehole’ formation, also observed by Vernay et al. (2015)

948 A14-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

67
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.671
https://doi.org/10.1017/jfm.2022.671
https://doi.org/10.1017/jfm.2022.671


Taylor–Culick retractions

Rupture

0.5 mm

0 ms 0.04 ms 0.08 ms 0.12 ms 0.16 ms 0.20 ms

Rupture

0.5 mm

0 ms 0.08 ms 0.16 ms 0.24 ms 0.32 ms 0.40 ms

Rupture

0.5 mm

0 ms 0.20 ms 0.40 ms 0.60 ms 0.80 ms 1.00 ms

(a)

(b)

(c)

Figure 3. Time-lapsed snapshots of the postrupture retraction of water films for different oil viscosities: (a) νs
= 0.65 cSt; (b) νs = 10 cSt; and (c) νs = 100 cSt. The rupture location is denoted by the white arrows, while the
time stamps indicate the time since rupture is first observed (i.e. t − t0). Also see supplementary movie 1.

for the bursting of emulsion-based liquid sheets. In their work, Vernay et al. (2015) show
that the presence of emulsion oil droplets at the air–water interface results in lowering
of the local interfacial tension, leading to Marangoni flows away from that location. This
flow leads to a local thinning of the film, which ultimately ruptures at that location. They
also report that the prehole formation always precedes rupture in their experiments. In
the present experiments, the water surface is never pristine and always contains small
impurities (which are practically unavoidable). It is possible that these impurities might
have reduced the local surface tension, resulting in a similar Marangoni flow leading to
a prehole. For the discussion on the origin of the hole nucleation, we also refer to Lohse
& Villermaux (2020). In any case, upon rupture, a circular hole is formed in the film,
which grows radially in time. Therefore, the oil bounded by the periphery of the hole gets
into contact with air and not with the water film. It is also noticeable that the edge of the
retracting film forms a thick rim – an observation also made for the retraction of liquid
films in air (Pandit & Davidson 1990; Brenner & Gueyffier 1999; Sünderhauf et al. 2002).
The presence of the rim can be qualitatively surmised from the experimental snapshots
(figures 2b and 3a,b), where the change in the curvature of the film downstream of the rim
introduces a difference in the colour intensity. As the hole increases in size (or as the film
retracts further), this rim also becomes thicker. Finally, since silicone oil prefers to spread
on water (Li et al. 2020), the retraction process ceases when the oil droplet has completely
spread on water, thus creating a macroscopic film whose thickness is controlled by volume
conservation and thermodynamics (de Gennes, Brochard-Wyart & Quéré 2004).
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When the viscosity of the oil phase is increased to ηs = 9.30 × 10−3 Pa s, the hole
opening (or film retraction) dynamics (as seen in figure 3b and supplementary movie 1)
are qualitatively similar to that for the lower viscosity described before (figure 3a). Here
also, the film forms a thick rim at its retracting edge. Nonetheless, an increase in the oil’s
viscosity decreases the retraction speed, as indicated by the timestamps (corresponding to
t − t0). This behaviour is expected since the physical situation is analogous to a retracting
water film shearing the free surface of viscous oil: increasing ηs increases the resistance
to shearing, which in turn makes the retraction process slower.

Furthermore, the experimental snapshots show that the oil–air–water contact line
exhibits corrugations during the retraction process, and fine streams of droplets are
released from these corrugations. Similar observations were also made for film retraction
in the two-phase configuration (Reyssat & Quéré 2006; Oldenziel et al. 2012) and during
the rupture of the intermediate film when a drop coalesces with a pool of the same
liquid in the presence of an external medium (Aryafar & Kavehpour 2008; Kavehpour
2015). The nature of the corrugations is reminiscent of the sharp tips observed during
selective withdrawal (Cohen & Nagel 2002; Courrech du Pont & Eggers 2006, 2020) or tip
streaming (Montanero & Gañán Calvo 2020). In a frame of reference comoving with the
rim, the film sees highly viscous oil being aspirated away from it, resulting in the formation
of the sharp tips. Indeed, such a mechanism was also hinted at by Reyssat & Quéré (2006)
for the instabilities observed in their experiments for film retraction in the two-phase
configuration. Tseng & Prosperetti (2015) showed that such instabilities are formed due
to the local convergence of streamlines in the neighbourhood of a zero-vorticity point or
line on the interface. However, a detailed and quantitative investigation of the formation
and subsequent breakup of these liquid tips is beyond the scope of the present work.

For an even higher viscosity of the oil phase (ηs = 9.60 × 10−2 Pa s; see figure 3c and
supplementary movie 1), the retraction of the ruptured water film is further slowed down
(as evident from the timestamps in figure 3c). Furthermore, the retracting edge also does
not possess a thick rim. This observation is similar to the case of Brenner & Gueyffier
(1999) for the retraction of viscous films in air, where films of higher viscosity do not
form a rim. Moreover, although the expanding holes for the lower ηs cases (as shown in
figure 3a,b) are almost circular, the one for the high viscosity case shown in figure 3(c)
is highly asymmetric. This asymmetry can be attributed to the location of the rupture not
being at the film’s apex. Since the rupture is happening at an off-apex location, the film
thickness at the location of rupture is not spatially uniform due to the curvature of the oil
droplet. Hence, the retraction velocity is faster on the part of the film which has a lower
thickness. Presumably, this effect is more pronounced when the overall film retraction
dynamics are slower, as is the case for the experiments shown in figure 3(c). To confirm this
hypothesis, one requires high-resolution measurements of the spatial variation of the film
thickness, which is challenging in the present experiments (further discussed in § 7). The
corrugations at the oil–air–water contact line are also observed in this case. However, since
the retraction velocity itself is considerably smaller than for the case shown in figure 3(b)
(see figure 4b for specific values), the tips are not as sharp, and no droplet streams are
observed. To quantify the retraction dynamics, we measure the hole opening radius from
each snapshot captured using the high-speed camera. For each experimental snapshot, the
area of the hole A(t) is measured, and subsequently an equivalent hole opening radius
R(t) is calculated as A(t) = π(R(t))2. A typical measurement from the optical images is
depicted in the inset of figure 4(a). The temporal variation of the measured hole radius, R,
is shown in figure 4(a). The time instant corresponding to the first frame in which rupture
is optically discernible is denoted by t0. Each datapoint in figure 4(a) denotes the mean of
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Figure 4. (a) Temporal evolution of the retraction radius (R) for oils of different kinematic viscosity (νs); a
typical measurement is shown in the snapshot in the inset. (b) At early times, red rectangle in panel (a), R
varies linearly with time; the discrete datapoints are experimental measurements and the lines are linear fits.
(c) Variation of dewetting velocity (vf ) with the dynamic viscosity of the oil phase (ηs); the discrete datapoints
are experimental measurements and the line represents vf ∼ η

−1/2
s .

measurements from five independent experiments, and the error bars correspond to ± one
standard deviation. In the present work, we focus on the early moments following rupture,
as indicated by the red rectangle in figure 4(a). Zooming into this early-time regime, as
shown in figure 4(b), it is observed that R(t) varies linearly with time (as evident from the
lines denoting linear fits in figure 4b). This variation indicates that the retraction velocity
vf (= dR/dt), given by the slopes of the linear fits, is constant for each viscosity. This is
reminiscent of the constant rupture velocity also observed for the classical (figure 1a) and
two-phase (figure 1b) Taylor–Culick configurations. Furthermore, it is also observed that
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with increasing ηs (or νs), the slope of the linear fits (hence vf ) decreases, as expected
from the qualitative observations reported in figure 3.

The variation of vf with ηs is shown in figure 4(c). The typical retraction velocities
are O(1 m s−1). A decreasing vf with increasing ηs is observed. Furthermore, for the cases
where the oil is more viscous than water (ηf = 8.9 × 10−4 Pa s), the retraction velocity
varies as

vf ∼ 1

η
1/2
s

, (3.1)

as evident from the line in figure 4(c). This is a weaker dependence as compared with
the expected 1/ηs variation observed for retraction in the two-phase configuration (Martin
et al. 1994; Eri & Okumura 2010). We will attempt to explain the scalings for the two-phase
and three-phase configurations in § 7. Furthermore, the reason for not fitting the datapoint
for the case where the oil is less viscous than the water film in figure 4(c) will also be
addressed therein.

4. Numerical framework

4.1. Governing equations
In this section, we discuss the governing equations that describe the retraction of a
ruptured liquid film in the three configurations we study in this paper, namely, the
classical, two-phase and three-phase Taylor–Culick retractions. We perform axisymmetric
direct numerical simulations using the free-software VoF program, Basilisk C (Popinet
& Collaborators 2013–2022; Sanjay 2021b), which uses the one-fluid approximation
(Tryggvason, Scardovelli & Zaleski 2011) to solve the continuity and Navier–Stokes
equations,

∇ · v = 0, (4.1)

ρ

(
∂v

∂t
+ ∇ · (vv)

)
= −∇p + ∇ · (2ηD) + f γ , (4.2)

where, v and p are the velocity vector and pressure fields, respectively, η the viscosity of
the fluid and t denotes time. Furthermore, D is the symmetric part of the velocity gradient
tensor (D = (∇v + (∇v)T)/2), and f γ the singular surface tension force needed in the
one-fluid approximation to comply with the dynamic boundary condition at the interfaces
(Brackbill, Kothe & Zemach 1992).

4.2. Non-dimensionalization of the governing equations
We non-dimensionalize the governing equations by using the inertiocapillary velocity
scale vγ , the thickness of the film h0 and the capillary pressure pγ . These scales also
define the characteristic inertiocapillary time, τγ , as

τγ = h0

vγ

=
√

ρf h3
0

2γsf
, vγ =

√
2γsf

ρf h0
, pγ = 2γsf

h0
. (4.3a–c)

Here, γsf is the surface tension coefficient between the film ( f ) and the surrounding
(s) medium, ρf the film density and h0 its thickness. The dimensionless form of the
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Navier–Stokes equation (4.2) is

ρ̃

(
∂ ṽ

∂ t̃
+ ∇̃ · (ṽṽ)

)
= −∇̃p + ∇̃ ·

(
2OhD̃

)
+ f̃ γ , (4.4)

where the expressions for the Ohnesorge number (Oh; the ratio of viscocapillary to
inertiocapillary time scales), the dimensionless density (ρ̃) and the singular surface tension
force ( f̃ ) depend on the specific configurations that we discuss below.

4.2.1. Two-phase Taylor–Culick configuration
In this configuration, a liquid film ( f ) retracts in a viscous surrounding (s)
medium (figure 5a). We use the VoF tracer Ψ to differentiate between the film (Ψ = 1)
and the surroundings (Ψ = 0), which follows the VoF scalar advection equation,(

∂

∂ t̃
+ ṽ · ∇̃

)
Ψ = 0. (4.5)

Furthermore, the singular surface tension force is given by (Brackbill et al. 1992)

f̃ γ ≈ (κ̃/2) ∇̃Ψ, (4.6)

where the curvature κ is calculated using the height-function approach (Popinet 2009).
We follow the same sign convention as Tryggvason et al. (2011, page 33): the curvature is
positive if the interface folds towards its normal n̂, i.e. κ = −∇ · n. Note that the surface
tension scheme in Basilisk C is explicit in time. So, we restrict the maximum time step as
the characteristic inertiocapillary time based on the wavelength of the smallest capillary
wave. Additionally, the density of the film is the same as that of the surroundings, giving
ρ̃ = 1. Lastly, the Ohnesorge number (Oh) is given by

Oh = Ψ Ohf + (1 − Ψ ) Ohs, (4.7)

where

Ohf = ηf√
ρf
(
2γsf

)
h0

and Ohs = ηs√
ρf
(
2γsf

)
h0

(4.8a,b)

are the Ohnesorge numbers based on the film and surroundings viscosities, respectively.
For this configuration, we keep Ohf constant at 0.05 (based on the experiments of Reyssat
& Quéré (2006)), and vary the control parameter Ohs in § 5.

Note that the computational domain in figure 5(a) along with (4.5)–(4.8a,b) can be used
to simulate classical Taylor–Culick retractions as well by replacing the surroundings (s)
with air (a). We discuss the details of the classical configuration in Appendix A.

4.2.2. Three-phase Taylor–Culick configuration
In this configuration, we model the bursting of a water film at an oil drop-air interface by
simulating the retraction of a fluid film ( f ) on an initially flat oil bath (s), while ignoring
the effects of the oil drop’s curvature (as the retraction length in the early-time regime of
figure 4b is much smaller than the oil drop radius, see figure 5b). We extend the traditional
VoF method described in § 4.2.1 to tackle three fluids by using two VoF tracers: Ψ1, which
is tagged as 1 for the liquids (water film, f, and oil surroundings, s) and 0 for air (a); and
Ψ2 which is 1 for the water film ( f ) and 0 everywhere else (figure 5b). Note that this
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air (a)
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(0,0) (0,0)
film ( f )
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R(t) R(t)

ψ = 0.0

ψ1 = 0ψ2 = 0

ψ2 = 1.0

ψ1 = 1.0

ψ = 1.0

κ
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(b)(a)

r

z

r

z

Figure 5. Computational domain for (a) two-phase and (b) three-phase Taylor–Culick retractions. For the
classical case, panel (a) is used by replacing the surroundings (s) with air (a). The size of the domain is much
larger than the hole radius (Lmax � R(t)). Furthermore, Lmax/h0 � max(Ohf , Ohs).

implementation requires an implicit declaration of the surrounding phase (s), given by
Ψ2(1 − Ψ1) (Sanjay et al. 2019; Sanjay 2021a,b; Mou et al. 2021). Additionally, both Ψ1
and Ψ2 follow the VoF tracer advection equation,(

∂

∂ t̃
+ ṽ · ∇̃

)
{Ψ1, Ψ2} = 0, (4.9)

and the dimensionless density ratio is (with ρf = ρs)

ρ̃ = Ψ1 + (1 − Ψ1)
(
ρa/ρf

)
. (4.10)

The Ohnesorge number (Oh) is now given by

Oh = Ψ1Ψ2Ohf + (1 − Ψ2) Ψ1Ohs + (1 − Ψ1) Oha, (4.11)

where Ohf and Ohs follow (4.8a,b), and Oha = ηa/
√

ρf (2γsf )h0 is the Ohnesorge number
based on the viscosity of air. Both Ohf and Oha are fixed at 10−1 and 10−3, respectively,
for all the three-phase simulation data presented in this paper (see § 7), and we vary the
control parameter Ohs in § 5. Lastly, the surface tension body force takes the form

f̃ γ ≈ (
γsa/γsf

)
(κ̃1/2) ∇̃Ψ1 + (κ̃2/2) ∇̃Ψ2, (4.12)

with γsa and γsf being the surface tension coefficients for the surroundings–air and
surroundings–film interfaces, respectively.

Physically, such a configuration (figure 5b and (4.9)–(4.11)) ideally implies the presence
of a zero thickness precursor film of the surrounding liquid (s, represented by (1 −
Ψ2)Ψ1 = 1, (4.11)) over the liquid film ( f, Ψ1Ψ2 = 1, (4.11)). Note that this numerical
assumption is applicable only when it is thermodynamically favourable for one of the fluids
(here s) to spread over all the other fluids, i.e. it has a positive spreading coefficient (de
Gennes et al. 2004; Berthier & Brakke 2012), S ≡ γaf − γsf − γsa > 0, and the Neumann
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triangle collapses at the three-phase contact line. In reality, this precursor film will have a
finite thickness controlled by microscopic forces (such as van der Waals forces; Vaynblat
et al. (2001)), and is much smaller than the length scales that we can resolve numerically
in the continuum framework. Indeed, for our numerical simulations, this precursor film
has an effective thickness of Δ/2, where Δ is the size of the finest grid employed in this
work. We further assume that, on the time scale of film retraction, the effective spreading
coefficient of the surrounding liquid (s) is 0 (Bonn et al. 2009). Consequently, the effective
surface tension coefficient between the film and air is γaf = γsf + γsa. This precursor film
(Thoraval & Thoroddsen 2013) is analogous to the mathematical model for spreading of
a perfectly wetting liquid on a solid substrate (de Gennes et al. 2004; Bonn et al. 2009),
which regularizes the contact line singularity due to the numerical slip (with an effective
slip length of �/2; Afkhami et al. (2018)) due to the discretization of the interface.

4.3. Note on non-dimensionalization in the viscous regime
For highly viscous surroundings (Ohs > 1), it is convenient to scale the velocities with
the viscocapillary velocity scale vη, owing to the dominant interplay between viscous and
capillary stresses (Stone & Leal 1989). Further, we can use the viscocapillary time τη,
film thickness h0, and capillary pressure pγ to normalize the time, length and pressure
dimensions, respectively,

τη = h0

vη

= ηsh0

2γsf
, vη = 2γsf

ηs
, pγ = 2γsf

h0
, (4.13a–c)

where γsf is the surface tension coefficient between the film ( f ) and the surroundings (s),
h0 the film thickness, and ηs the viscosity of the surrounding medium. These viscocapillary
scales modify the momentum equation as

ρ̃

Oh2
s

(
∂ ṽ

∂ t̃
+ ∇̃ · (ṽṽ)

)
= −∇̃p + ∇̃ ·

(
2η̃D̃

)
+ f̃ γ . (4.14)

Here, Ohs is the surroundings Ohnesorge number (4.8a,b), ρ̃ follows ρ̃ = 1 and (4.10)
for the two-phase and the three-phase configurations, respectively, and f̃ γ equals the
corresponding expressions for the two configurations. Additionally, the dimensionless
viscosities are given by

η̃ =
{

Ψ
(
ηf /ηs

)+ (1 − Ψ ) , two-phase case,
Ψ1Ψ2

(
ηf /ηs

)+ (1 − Ψ2) Ψ1 + (1 − Ψ1) (ηa/ηs) , three-phase case.
(4.15)

4.4. Domain size and boundary conditions
Figure 5 depicts the computational domains. The left-hand boundary represents the axis
of symmetry with origin marked at (0, 0). We set no-penetration and free-slip boundary
conditions to all other domain boundaries along with zero gradient conditions for pressure.
These boundaries are far away from the expanding hole and do not affect its growth.
Furthermore, the size of the domain is chosen such that Lmax � max(Ohf , Ohs), with
a minimum Lmax of 200 for Ohs � 1. We have varied this domain size to ensure that
the simulations are independent of its value. Note that, if this condition is not met,
the assumption of infinite film, which is essential for the theoretical scaling relations
developed in this work, will fail (Deka & Pierson 2020).
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We employ adaptive mesh refinement to correctly resolve the different interfaces as
well as regions of high velocity gradients (and hence, high viscous dissipation, see
Appendix B). To ensure that the velocity field is captured accurately, these refinement
criteria (see Sanjay 2021b) effectively maintain a minimum of 40 cells across the thickness
of the film (i.e. h0/� ≥ 40). As the apparent three-phase contact line and the viscous
boundary layer are critical in the present work, the refinement criteria maintain a minimum
of 40 cells in the wedge region near the apparent three-phase contact line. Furthermore,
the viscous boundary layer is almost 10 times larger than the film thickness (see § 8.2).
Consequently, a minimum of 400 cells in the viscous boundary layer in the surrounding
medium is needed to properly resolve the velocity gradients. We have conducted extensive
grid independence studies so that the final results (energy transfers and the retraction
velocity) are independent of the number of grid cells.

5. Taylor–Culick retractions: numerics

Figures 6 and 7 elucidate the two-phase and three-phase Taylor–Culick retractions. For
low viscous surroundings (Ohs ≤ 1), figures 6(a) and 7(a) show the growth of the
dimensionless hole radius (R̃(t) = R(t)/h0) in time (normalized with the inertiocapillary

time scale, τγ ), and the insets contain the growth rate of this hole: ˙̃Rγ (t) = τγ dR̃(t)/dt.
After the initial transients, the hole grows (i.e. the film retracts) linearly in time with a
constant velocity (vf ). We can use this retraction velocity to calculate the film Weber
number,

Wef ≡
ρf v

2
f h0

2γsf
= lim

R̃→∞
˙̃R2
γ , (5.1)

which is represented by the black dashed lines in figures 6(a) and 7(a). Here Wef is
an output parameter of the retraction process. Note that, for very low Ohs, as the rim
grows with time, the inertial drag on the moving rim due to the surrounding medium
overcomes the driving capillary forces, resulting in a decrease of the tip velocity (see
insets of figure 6a and Jian et al. (2020b)). However, we can still calculate a velocity scale
(and hence Wef ) associated with the Taylor–Culick-like retraction immediately after the
initial transients (as marked by the black dashed lines in the insets of figure 6a for the
lowest Ohs).

Furthermore, when the surroundings is highly viscous (Ohs ≥ 1), we plot the growing
hole radius R̃(t) as a function of time, which is normalized by the viscocapillary time scale
τη, see figures 6(b), 7(b) and § 4.3. The insets of these panels contain the growth rate of

the hole, calculated as ˙̃Rη = τη dR̃/dt. Once again, we observe that the growth of the hole
(and the film retraction) depends linearly on time with a constant velocity, which can be
used to calculate the surroundings capillary number,

Cas ≡ ηsvs

2γsf
= lim

R̃→∞
˙̃Rη, (5.2)

marked with the black dashed lines in figures 6(b), 7(b) and the corresponding insets.
Here Cas is another output parameter of the retraction process. Note that the velocity of
the retracting film (vf ) is the same as the velocity scale in the surrounding medium (vs),
following the kinematic boundary condition at the circumference of the growing hole.
Consequently, the two output parameters, Wef (5.1) and Cas (5.2), are related as Cas =
Ohs

√
Wef (see § 7).
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Figure 6. Two-phase Taylor–Culick retractions: temporal evolution of the dimensionless hole radius (R̃(t))

for (a) Ohs ≤ 1 and (b) Ohs ≥ 1. Time is normalized using the inertiocapillary time scale, τγ =
√

ρf h3
0/γsf

in panel (a) and the viscocapillary time scale, τη = ηsh0/γsf in panel (b). Insets of these panels show the
variation of the dimensionless growth rate of the hole radius at different Ohs, and mark the definitions of Wef

and Cas. Lastly, panel (c) illustrates the morphology of the flow at different Ohs at R̃ = 30. In each snapshot,
the left-hand side contour shows the velocity magnitude normalized with the (terminal) film velocity vf and
the right-hand side shows the dimensionless rate of viscous dissipation per unit volume normalized using the
inertiocapillary scales, represented on a log10 scale to differentiate the regions of maximum dissipation. Here,
the film Ohnesorge number is Ohf = 0.05. Also see supplementary movie 2.
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Figure 7. Three-phase Taylor–Culick retractions: temporal evolution of the dimensionless hole radius (R̃(t))

for (a) Ohs ≤ 1 and (b) Ohs ≥ 1. Time is normalized using the inertiocapillary time scale, τγ =
√

ρf h3
0/γsf

in panel (a) and the viscocapillary time scale, τη = ηsh0/γsf in panel (b). Insets of these panels show the
variation of the dimensionless growth rate of the hole radius at different Ohs, and mark the definitions of Wef

and Cas. Lastly, panel (c) illustrates the morphology of the flow at different Ohs at R̃ = 30. In each snapshot,
the left-hand side contour shows the velocity magnitude normalized with the (terminal) film velocity vf and
the right-hand side shows the dimensionless rate of viscous dissipation per unit volume normalized using the
inertiocapillary scales, represented on a log10 scale to differentiate the regions of maximum dissipation. Here,
the film Ohnesorge number is Ohf = 0.10 and that of air is Oha = 10−3. Also see supplementary movie 3.
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Lastly, figures 6(c) and 7(c) illustrate the flow morphologies for the two-phase and
three-phase configurations, respectively, when the hole has grown to R̃ = 30. Readers can
refer to supplementary movies 2 and 3 for the temporal dynamics of the two-phase and
three-phase configurations, respectively. Similar to the classical Taylor–Culick retraction
case (Appendix A and supplementary movie 4), both the film and the surroundings move.
However, unlike the classical case, even for low Ohs, the surrounding medium takes away
momentum from the film owing to inertia (added mass-like effect), thus reducing the
retraction velocity (see insets of figures 6a and 7a). Furthermore, contrary to the classical
case where the dissipation is highest at the neck connecting the rim to the rest of the film
(see Appendix A), the dissipation in the other two configurations is spread out, and also
occurs in the surrounding medium.

As the hole grows, the retracting film collects fluid parcels from upstream of the moving
front and forms a rim (Culick 1960; de Gennes 1996; Villermaux 2020). Essentially,
the moving fluid parcels of the retracting tip collide with the fluid parcels upstream
of the tip, which were initially at rest. The collisions are inelastic as a fraction of the
available energy is dissipated by internal viscous fluid friction. For the classical and
two-phase configurations, this rim entails a top–bottom symmetry, which is lost in the
three-phase configuration. This is due to the air medium having significantly less inertia
(added mass-like effect from the properties of the film) than the oil bath, causing the
film to dig into the bath, and forming a hook-shaped rim (see figures 6ci–iii and 7ci–iii).
Furthermore, the surrounding bath (s) engulfs the retracting film in order to feed the
precursor film. This is a result of the high capillary pressure (high curvature) in the wedge
region near the apparent three-phase contact line (Sanjay et al. 2019; Cuttle et al. 2021),
which also aids in the formation of the hook-shaped rim (Peschka et al. 2018). Moreover,
for the cases where there is a density contrast between the film and the surroundings,
the top–bottom symmetry can break down even for the two-phase configuration due to a
flapping instability at very low Ohs, as discussed by Lhuissier & Villermaux (2009) and
Jian et al. (2020b). Furthermore, as Ohs increases, the bulbous rim disappears, leading to
slender, elongated retracting films. In the two-phase case, the retraction film maintains
(top–bottom) symmetry (see figure 6ciii–v), and dissipation is highest in the viscous
boundary layer in the surrounding medium (see figure 6c; further elaborated upon in
§ 8.2). However, the three-phase case features (top–bottom) asymmetric films owing to
the accumulation of fluid towards the low-resistance air medium (see figure 7ciii–v),
and dissipation is highest near the apparent three-phase contact line (see figure 7c;
further elaborated upon in § 8.2). The disappearance of bulbous rim matches with the
experimental observations (see § 3 and Reyssat & Quéré 2006).

Note that the numerical results presented in this section are complementary to the
experiments on a film retracting in a submerged oil bath (two-phase case, Reyssat &
Quéré (2006)) and a film bursting at an air–liquid interface (three-phase case, § 3). The
numerical simulations give us access to the cross-sectional view to elucidate the shape
of the retracting films (figures 6 and 7), which is difficult to resolve experimentally. On
the other hand, our axisymmetric (by definition) simulations do not show the azimuthal
instabilities resulting in the corrugations at the oil–air–water contact line. Furthermore, as
we focus only on the early-time dynamics, we also neglect the curvature of the oil drop in
the case of the three-phase retractions. Nonetheless, we can still sufficiently compare the
dependences of the retraction velocity on the Ohnesorge number Ohs of the surroundings
(see § 7), along with the scaling relations that we develop in the next section for both the
experimental and numerical datapoints.
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6. Taylor–Culick retractions: a force perspective

The capillary and viscous forces, along with the inertia of the film and the surrounding
media, govern the retraction dynamics. For the classical configuration (figure 1a), the
viscosity and inertia of the outer medium are negligible. Furthermore, the film viscosity ηf
plays no role in determining the magnitude of the retraction velocity owing to the internal
nature of the associated viscous stresses (Savva & Bush 2009), as long as Ohf is less
than the aspect ratio of the film (see Deka & Pierson 2020). Using these features,
Taylor (1959b) calculated vf = vTC (1.1), resulting solely from momentum equilibrium,
while disregarding the fate of the liquid accumulated in the rim (Villermaux 2020).
In terms of the dimensionless numbers introduced earlier (see § 5), (1.1) implies that
Wef = ρf v

2
f h0/(2γaf ) is constant and equal to 1 (see Appendix A for details of the

retraction dynamics in the classical configuration). In this section, we delve into the
different realizations of the dominating forces, and their implications, in the two-phase
and three-phase configurations.

6.1. Two-phase Taylor–Culick retractions
For the two-phase configuration (figure 1b), if the viscosity of the oil phase is small (i.e.
Ohs = ηs/

√
ρf γsf h0 � 1), the Weber number based on the film velocity vf and the driving

surface tension coefficient (2γsf ), Wef = ρf v
2
f h0/(2γsf ) (5.1) has a value smaller than 1

(see inset of figure 6a). Nonetheless, the driving surface tension force Fγ (t) ∼ γsf (2πR(t))
(see figure 1b) still balances the inertial force Fρ(t) ∼ ρf v

2
f (2πR(t))h0. Note that since the

oil (surrounding) and water (film) densities are very similar (ρf ≈ ρs), we can still use ρf
for the density scale despite the added mass-like effect. Consequently, in this regime, the
Weber number is still a constant during retraction (Wef ∼ O(1), inset of figure 6a).

On the other hand, if the viscosity of the oil phase (ηs) is significantly higher (i.e. Ohs �
1), the resistive viscous force Fη(t) dominates over the inertial effects, as the surroundings
Reynolds number Res ≡ ρsvsh0/ηs ∼ O(10−2). In such a scenario, the retraction dynamics
will be governed by the balance between the capillary (Fγ (t)) and viscous (Fη(t)) forces
(Fraaije & Cazabat 1989; Reddy et al. 2020), given by

Fγ (t) ∼ Fη(t), (6.1)

where (from figure 1b)
Fγ (t) = 2γsf (2πR(t)) . (6.2)

For Fη(t) in (6.1), one can consider the retracting rim to be a cylinder translating in a
viscous flow (Reyssat & Quéré 2006; Eri & Okumura 2010). Thus, the viscous drag can be
described by the Oseen approximation to the Stokes flow (Lamb 1975; Happel & Brenner
1983), which to the leading order is expressed as

Fη(t) ∼ ηsvf (2πR(t)) , (6.3)

where the factor 2πR(t) is due to the axisymmetric geometry. On equating (6.2) and (6.3),
we get

vf ∼ γsf

ηs
. (6.4)

Moreover, vf = vs (where vs is the velocity scale in the surrounding medium, see § 5).
As a result, (6.4) implies that the capillary number Cas (5.2) is constant, i.e.

Cas = ηsvs

2γsf
∼ O (1) . (6.5)
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Taylor–Culick retractions

Further, upon dividing both sides of (6.4) by the inertiocapillary velocity scale vγ =√
2γsf /(ρf h0) and squaring, we obtain

Wef ∼ Oh−2
s . (6.6)

The aforementioned equations (6.5)–(6.6) denote the scaling laws for viscous two-phase
Taylor–Culick retractions.

6.2. Three-phase Taylor–Culick retractions
For the three-phase configuration (figure 1c), in the viscous limit (Ohs � 1), the force
balance is still given by (6.1), especially for the oils that are significantly more viscous
than water. Here, the driving surface tension force can be expressed as (from figures 1c
and 5b)

Fγ (t) = (γsf + γsa + γsf − γsa) (2πR(t)) = 2γsf (2πR(t)) , (6.7)

assuming the presence of a precursor film of oil on top of the water film (see § 4.2.2, de
Gennes et al. (2004), Bonn et al. (2009) and Thoraval & Thoroddsen (2013)). However,
writing an expression for Fη(t) is not as straightforward as the two-phase configuration.
As can be observed from figure 7(c), during the retraction of the film, the oil climbs
on top of the water, resulting in a strong flow in the wedge-like region close to the
oil–air–water contact line. The rate of local viscous dissipation in this region is also
very high (right-hand subpanels of figure 7c). Similar wedge flows have also been
observed for moving contact lines on solid substrates (de Gennes 1985; Marchand et al.
2012; Snoeijer & Andreotti 2013). It has been reported that the wedge flow results in
a viscosity-dependence of velocity that is weaker than 1/ηs (Marchand et al. 2012), but
the exact nature of the dependence has hitherto not been quantified. The presence of a
deformable liquid substrate on which the wedge flow occurs (the retracting water film in
this case) complicates the situation even further – making it extremely difficult to arrive at
the experimentally observed vf (ηs) ∼ η

−1/2
s dependence (3.1) from a simple force balance.

In § 8.2, we attempt to explain this scaling from an energetics point of view. Nevertheless,
from the experiments, we know that the vf (ηs) scaling is given by (3.1), which can be
rewritten as

Cas ∼ Oh1/2
s . (6.8)

Dividing both sides of (6.8) by vγ from (4.3a–c) and squaring, we obtain

Wef ∼ Oh−1
s . (6.9)

Therefore, from (6.4), (6.6), (6.8) and (6.9), we hypothesize that the presence of the
oil–air–water apparent contact line in the three-phase configuration dramatically alters
the scaling relationships as compared with the two-phase configuration for Ohs > 1 (see
figures 6b and 7b). This will be further elaborated upon in § 8.2. Contrary to this scenario,
for low Ohs numbers, the retraction velocities in both these configurations have the same
scaling behaviour. Despite the presence of a hook-shaped rim in the three-phase case
(figure 7ci-ii), we can still treat the moving rim and the surroundings as lumped elements.
As a result, the driving surface tension force γsf (2πR(t)) still balances the inertial force
that scales with ρf v

2
f (2πR(t))h0, thus giving Wef ∼ O(1) (see figure 7a). In the next

section, we demonstrate the validity of the scaling relations developed in this section.
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Figure 8. Regime maps visualized as Wef versus Ohs in (a) and as Cas versus Ohs in (b). The experimental
datapoints (circles) correspond to the three-phase configuration (figure 1c) while the simulations (triangles)
correspond to both the two-phase (figure 1b) and three-phase (figure 1c) configurations. The experimental
datapoints (pentagrams) for the two-phase configuration have been adopted from Reyssat & Quéré (2006) for
their silicone oil–soap water (surroundings–film, s–f ) dataset.

7. Demonstration of the scaling relationships

Figure 8 illustrates the dependence of Wef and Cas on the Ohnesorge number Ohs
of the surroundings for the retraction configurations described in figure 1. Note that
the same datapoints are presented in both figures 8(a) and 8(b), following the relation
Cas = Ohs

√
Wef (as vf = vs, see § 5). In figure 8(a), Wef = 1 marks the classical

Taylor–Culick retraction limit, whereas for the two-phase and three-phase configurations,
we identify two regimes: inertial (Ohs < 1) and viscous (Ohs > 1).

The inertial scaling is identical for both the two-phase and three-phase configurations:
Wef ∼ O(1), which also implies Cas ∼ Ohs (see §§ 6.1 and 6.2). The brown lines in
figure 8 represent these two scaling relations.

The datapoints corresponding to the two-phase numerical simulations (from figure 6)
are shown by the dark blue triangles. As Ohs increases, the retraction transitions from the
inertial scaling (brown lines), to the viscous two-phase Taylor–Culick scaling: Cas ∼ Oh0

s
(6.5) or Wef ∼ Oh−2

s (6.6). We also plot the experimental datapoints from Reyssat &
Quéré (2006) for their silicone oil–soap water (surroundings–film, s–f ) dataset, shown
in figure 8 by the light blue pentagrams. In order to make these datapoints dimensionless,
we use h0 = 100 μm and γsf = 7 mN m−1, denoting the thickness of the soap film and
the surroundings–film interfacial tension coefficient, respectively, in their experiments.
We also neglect any Marangoni flow, or dynamic surface tension effects. Our simulations
and scaling relationships are in reasonable agreement with the experimental datapoints
of Reyssat & Quéré (2006). Note that Reyssat & Quéré (2006) tried to fit a trend line of
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(ln ηs)/ηs (higher-order Oseen correction) through all of their experimental datapoints to
obtain a good fit. When the same datapoints are plotted in figure 8(a,b), it is observed that
some of their datapoints (corresponding to low Ohs) are, in fact, in the transition between
the inertial and the viscous regimes, while the rest of the datapoints show reasonable
agreement with the viscous two-phase retraction dynamics given by (6.5) or (6.6).

We also plot the datapoints corresponding to our experiments (figure 4) and simulations
(figure 7) for the three-phase configuration (figure 1c) in figure 8. We observe that, at low
Ohs, these datapoints follow the inertial dynamics (brown lines), while at higher Ohs,
the datapoints follow the scaling relationships given by (6.8) and (6.9): Cas ∼ Oh1/2

s
and Wef ∼ Oh−1

s , respectively (represented by the black lines in figure 8). Note that
in order to non-dimensionalize the experimental datapoints shown in figure 4(c) (so
that they can be plotted in figure 8), one needs to know the film thickness h0. In the
present experiments, the optical resolution was insufficient for accurate measurement
of the film thickness prior to rupture. Moreover, as mentioned earlier, the breakup
process itself is highly sensitive to experimental noise (see § 4.2 of Villermaux (2020)).
Similar difficulties were also presumably experienced by Eri & Okumura (2010) in their
experiments of two-phase retraction, and they used a fitting parameter in their vf (ηs)
relation, which was a function of h0. We also know from bubble bursting experiments
(Doubliez 1991; Lhuissier & Villermaux 2012) that the film thickness prior to breakup
varies in the range O(100 nm)–O(10 μm). Moreover, in similar studies (Lhuissier &
Villermaux 2012; Thoroddsen et al. 2012), the film thickness is retroactively calculated
from the retraction velocity measurements. We can see from figure 8 that for low Ohs, the
dynamics are independent of the specific nature of the configuration (classical, two-phase
or three-phase). Knowing vf , ηs and γsf , we can calculate the Cas for the datapoint in
figure 4(c) corresponding to ηs = 4.94 × 10−4 Pa s. Fitting that Cas value to the Cas ∼
Ohs trend line (brown line) in figure 8(b), a value of h0 = 1.5 μm can be calculated,
which is within the range observed for previous experiments in a similar system (Lhuissier
& Villermaux 2012). Using h0 = 1.5 μm for the remaining experimental datapoints in
figure 4(c) (for ηs > 4 × 10−3 Pa s) and calculating Cas, Ohs and Wef , we find that those
datapoints (red circles) also collapse on the trend lines (black lines) along with the
numerical simulations (yellow triangles) in figure 8. Note that a water film thickness of
h0 = 1.5 μm sets the Ohf at 0.1 for the three-phase case, which is different from the Ohf
that we use for the two-phase case (Ohf = 0.05 based on the experiments of Reyssat &
Quéré (2006)). Therefore, to justify comparison between the two cases, we varied Ohf in
simulations from 0.01 to 0.1 and found that the dimensionless retraction velocities (Wef
and Cas) are Ohf -independent for both the two-phase and three-phase configurations (for
Ohf < 1). We also verify the Ohf -independence experimentally by replacing the water in
our bath by glycerol–water mixtures, and the measurements thus obtained (green circles)
also follow the Wef ∼ Oh−1

s and Cas ∼ Oh1/2
s trendlines (black lines) in figures 8(a) and

8(b), respectively.
In summary, in §§ 6–7, we discussed the forces involved during the retraction of liquid

films owing to the unbalanced capillary traction, followed by identification of the inertial
(Ohs < 1) and viscous (Ohs > 1) regimes in the Wef versus Ohs and Cas versus Ohs
dependences. We also checked the validity of the corresponding scaling behaviours in
this section. To further understand the retraction dynamics due to the capillary traction,
we focus on the different thermodynamically consistent energy transfer modes in the
next section. Particularly, we try to understand the scaling relationship for the viscous
three-phase Taylor–Culick retraction, that still eludes understanding from a momentum
balance point of view (see § 8.2).
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8. Taylor–Culick retractions: an energetics perspective

A retracting liquid sheet loses surface area and consequently releases energy (Dupré
1867, 1869; Rayleigh 1891; Culick 1960), which further increases the kinetic energy of
the system (i.e. film and surroundings). A part of this energy is lost in the process due to
viscous dissipation. So, the overall energy budget entails

E f
k (R) + Es

k(R) + Ea
k(R) + Eγ (R) + E f

d (R) + Es
d(R) + Ea

d(R) = Eγ (R = 0), (8.1)

where Eγ is the surface energy, Ek the kinetic energy and Ed the viscous dissipation.
The superscripts account for the film ( f ), the surroundings (s) and air (a). Of course,
for the two-phase case, the terms associated with air (a) do not exist as there is no
air phase. Figure 9 depicts (8.1) for both the two-phase and three-phase configurations.
Coincidentally, even for the three-phase configuration, the energies associated with the air
phase are negligible (see figure 9, the dashed and dot–dashed lines overlap), even though
the velocity field in air is not negligible (figure 7c). We keep Ea

k (R) and Ea
d(R) in the

energy budget for the sake of completeness. In general, the sum of all these energies at
any hole radius R(t) equals the total surface energy at R = 0, i.e. the total energy available
to the system. As the film retracts, it continuously releases energy, as its surface energy
decreases. Therefore, to calculate (8.1), one can choose a reference for surface energy
arbitrarily. In figure 9, the surface energy at a hole radius of R = Rmax is used as this
arbitrary instance. This datum is chosen such that by the time the hole expands to Rmax, the
film would have reached a constant velocity. Furthermore, we can normalize the energies
in (8.1) with the total surface energy released as the film retracts to a hole of radius Rmax.
The energy budget now reads

Ē f
k (R̃) + Ēs

k(R̃) + Ēa
k (R̃) + �Ēγ (R̃) + Ē f

d (R̃) + Ēs
d(R̃) + Ēa

d(R̃) = 1. (8.2)

Here, Ē(R̃) = E(R̃)/(Eγ (0) − Eγ (R̃max)), �Eγ (R̃) = Eγ (R̃) − Eγ (R̃max), and R̃ = R̃(t) =
R(t)/h0 is the dimensionless hole radius. The reader is referred to Appendix B for details
of the energy budget calculations.

Removing the arbitrary datum described above and noting that there is a continuous
injection of surface energy (−Ėγ , minus sign because the surface energy is decreasing
with the growing hole) into the system, we can also write the energy budgets in terms of
rates,

Ė f
k (R̃) + Ės

k(R̃) + Ė f
d (R̃) + Ės

d(R̃) =
(
−Ėγ (R̃)

)
. (8.3)

Figure 10 visualizes (8.3) by plotting the proportion of the rate of surface energy
released that goes into the rate of increase of kinetic energy and the rate of total viscous
dissipation. From figures 10(ai–iii) and 10(bi–iii), we observe that these fractions saturate
after initial transients. So, we also plot these steady state values (8.4) in figures 10(a) and
10(b) for the two-phase and three-phase configurations, respectively,

(
Ė/Ėγ

)
∞ = lim

R̃→∞

(
Ė(R̃)

Ėγ (R̃)

)
. (8.4)

We devote the rest of this paper to understanding the distribution of the energy injection
rate into the rates of increase of kinetic energy and viscous dissipation for both the inertial
and viscous regimes.
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Figure 9. Energy budget at different Ohs for the (a) two-phase and (b) three-phase configurations. The energies
E are normalized by the total surface energy released as the film retracts creating a hole of radius R̃max = 100
for Ohs ≤ 1, and R̃max = 1000 (two-phase case) and R̃max = 1200 (three-phase case) for Ohs = 100. Note that
this R̃max, and hence the surface energy datum, are arbitrarily chosen. We use hole radii that are large enough
such that the sheets approach a constant velocity. The superscripts account for the film ( f ), the surroundings
(s) and air (a).

8.1. Energy transfers in the inertial regime
We first focus on the energy balance in the classical Taylor–Culick retraction and the
famous Dupré–Rayleigh paradox (Villermaux 2020). Dupré (1867, 1869) hypothesized
that the total surface energy released during retraction manifests as the kinetic energy of
the film (Rayleigh 1891). As a result, the predicted retraction velocity was off by a factor
of

√
2 (see Appendix A), leading to discrepancies with experiments (Ranz 1959; Culick

1960). Nonetheless, it is noteworthy that Dupré (1867, 1869) reached the correct scaling
relationship by identifying the essential governing parameters of classical sheet retractions.

Culick (1960) identified that the rate of surface energy released (8.9) should be
distributed into an increase in kinetic energy of the rim and the viscous dissipation inside
the film: −Ėγ (t) = Ė f

k (t) + Ė f
d (t). The viscous dissipation can be attributed to the inelastic

948 A14-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

67
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.671


V. Sanjay, U. Sen, P. Kant and D. Lohse

0

0.2

0.4

0.6

0.8

1.0

0

10–2 10–1 100

(i) Ohs = 0.01

(iii) Ohs = 100

(iii) Ohs = 100

– (E· /E·γ)∞

–
 (

E· /E· γ
) ∞

–
 (

E· /E· γ
) ∞

–
E· /E· γ

–
E· /E· γ

–
E· /E· γ

–
E· /E· γ

(ii) Ohs = 1

(i) Ohs = 0.01

– (E· /E·γ)∞ (ii) Ohs = 1

R

R

R

R

101 102

10–2 10–1 100

Ohs

101 102

0.2

0.4

0.6

0.8

1.0

10 20 30 40 50 600

0.2

0.4

0.6

0.8

1.0

200 400 600 800 10000

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

20 40 60 80 100

0

0.2

0.4

0.6

0.8

1.0

400 800 1200

0

0.2

0.4

0.6

0.8

1.0

20 40 60 80 100 0

0.2

0.4

0.6

0.8

1.0

10 20 4030

(s)

( f )

(s)

( f )

(a)

(a)

(b)

E· d
f

E· k
f + E· k

s

E· k
f

E· d
f + E· d

s

E· d
f

E· k
f + E· k

s

E· k
f

E· d
f + E· d

s

E· d
f

E· k
f + E· k

s

E· k
f

E· d
f + E· d

s

E· d
f

E· k
f + E· k

s

E· k
f

E· d
f + E· d

s

Figure 10. Variation of the rate of change of kinetic energy (Ėk) and viscous dissipation (Ėd) as proportions
of the rate of energy injection (−Ėγ ) with Ohs at steady state for the (a) two-phase and (b) three-phase
configurations. For both cases, in the inertial limit (Ohs � 1), the fraction of energy that goes into kinetic
energy and viscous dissipation are comparable. However, in the viscous limit (Ohs � 1), viscous dissipation
in the surroundings dominates. Insets show the representative temporal variations of the ratio of the rate of
change of energy (Ė) to the rate of energy injection (−Ėγ ) with dimensionless hole radius R̃ at three different
Ohs. The superscripts account for the film ( f ), the surroundings (s) and air (a).

acceleration of the undisturbed film up to the velocity of the edge of the rim. Note that the
dissipation is independent of the fluid viscosity and is given by (Culick 1960)

Ė f
d (t) = 1

2
dm(t)

dt
v2

f , (8.5)

where m(t) is the mass of the retracting film.
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Taylor–Culick retractions

Coincidentally, this rate of viscous dissipation in the film is the same as the rate of
increase in its kinetic energy (constant rim velocity; Culick (1960) and Villermaux (2020)).
We confirm this hypothesis in Appendix A (see figures 12c,d, and Sünderhauf et al.
(2002)), whereby

Ė f
k (t) ≈ Ė f

d (t) ≈ −Ėγ (t)/2. (8.6)

Next, we delve into the energy transfers in the two-phase and three-phase configurations.
In the inertial limit, in a manner akin to the classical case, the fraction of the rate of
energy injection that goes into increasing the kinetic energy is similar to that of viscous
dissipation. However, unlike the classical case, the kinetic energy as well as viscous
dissipation are distributed among the film and the surrounding medium (figures 9 and
10, Ohs � 1). We observe that(

Ė f
d (t) + Ės

d(t)
)

≈
(

Ė f
k (t) + Ės

k(t)
)

≈ −Ėγ (t)/2. (8.7)

In a manner reminiscent of Dupré (1867, 1869), we can write

− Ėγ (t) ≈
(

Ė f
k (t) + Ės

k(t)
)

∼ (
ρf vf h0 (2πR(t))

)
v2

f , (8.8)

where vf = vs (kinematic boundary condition at the tip of the film) and ρs = ρf .
Additionally, following Bohr & Scheichl (2021) and Appendix B, the rate of change of
surface energy is given by

Ėγ (t) ≈ −Fγ (t)
dR(t)

dt
= −2γsf (2πR(t)) vf . (8.9)

Using (8.8)–(8.9), and rearranging, we get

Wef =
ρf v

2
f h0

2γsf
∼ O (1) , (8.10)

which is the same as the inertial scaling derived using the force balance (insets of
figures 6a and 7a).

8.2. Demystifying dissipation in the viscous regime
In the viscous limit (Ohs � 1), for both the two-phase and three-phase configurations, the
surface energy released is entirely dissipated in the surrounding medium (figures 9 and
10), i.e.

− Ėγ (t) ∼ Ės
d(t). (8.11)

In fact, this interplay between the surface energy and the viscous dissipation sets the
velocity scale (vs) in the surrounding medium, which is equal to the retraction velocity
(vf , kinematic boundary condition at the hole). Therefore, to estimate this velocity, we
first calculate the rate of viscous dissipation Ės

d(t), which depends on both the viscosity
ηs of the surrounding medium and the velocity gradients D, following the relation (see
Appendix B)

Ės
d =

∫
Ωs

2ηs (D : D) dΩs =
∫

Ωs

εs dΩs. (8.12)

Here, εs is the rate of viscous dissipation per unit volume, and the integrals are evaluated
over the volume Ωs of the surrounding medium. Note that εs is the highest at the expanding
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hole, i.e. the tip of the retracting film in the case of two-phase retractions (figure 6c), and
the macroscopic contact line in the case of three-phase retractions (figure 7c). The latter
is analogous to wetting and dewetting of rigid surfaces (de Gennes 1985; Bonn et al.
2009; Snoeijer & Andreotti 2013). Motivated by this analogy, we calculate the local rate
of viscous dissipation integrated over volume elements Ωs(r) centred at the expanding
hole,

Ės,local
d (r, t) =

∫ Ωs(r)

0
εs(r, t) dΩs, (8.13)

where r is the radial distance away from the hole (see insets of figure 11c). Additionally,
in the viscous regime, we can use the viscocapillary velocity vη = 2γsf /ηs and the film
thickness h0 to non-dimensionalize (8.13) (see § 4.3 and Stone & Leal (1989)),

˙̃Es,local
d

(
r̃, t̃
) ≡ Ės,local

d
(
r̃, t̃
)

ηsv2
ηh0

=
∫ Ω̃s(r̃)

0
ε̃s
(
r̃, t̃
)

dΩ̃s. (8.14)

Figures 11(ai) and 11(bi) show that the local viscous dissipation increases as we move
away from the hole (increasing r̃). Furthermore, the energy dissipated increases in time as
the region of flow expands, owing to the increasing hole radius and the dominant radial
flow. To rationalize this increase, we plot the rate of local viscous dissipation per unit
circumference of the hole in figures 11(aii) and 11(bii).

For the two-phase case, the viscous dissipation occurs in the viscous boundary layer
(δ̃ν ∼ Ohs

√
t̃) and saturates at r̃ ≈ δ̃ν (figure 11aii). However, for the three-phase case,

we can identify two distinct regions of viscous dissipation, the wedge region close
to the macroscopic contact line, where the viscous dissipation per unit circumference
of the expanding hole increases steeply (r̃ < 0.01δ̃ν), and the viscous boundary layer
(r̃ < 0.1δ̃ν), beyond which it saturates (figure 11bii). Furthermore, this saturation value
gives the total viscous dissipation per unit circumference of the hole,

˙̃Es
d(t̃)(

2πR̃(t̃)
) = lim

r̃→∞

˙̃Es,local
d

(
r̃, t̃
)

(
2πR̃(t̃)

) , (8.15)

which is shown in figure 11(c) as a function of Ohs. We observe that for the two-phase
case, the total dissipation is independent of Ohs, whereas in the three-phase case, it scales
with Oh1/2

s :

˙̃Es
d(t̃) ∼

⎧⎨
⎩

Oh0
s

(
2πR̃(t̃)

)
, two-phase case,

Oh1/2
s

(
2πR̃(t̃)

)
, three-phase case.

(8.16)

Moreover, upon non-dimensionalizing (8.9) using the same scales as used in (8.14), and
noting that vf = vs and Cas = ηsvs/(2γsf ), we get

− ˙̃Eγ (t) ≡ γsf vf (2πR(t))
ηsv2

ηh0
= Cas

(
2πR̃(t̃)

)
. (8.17)

Lastly, equating (8.16) and (8.17), we get

Cas ∼
{

Oh0
s , two-phase case,

Oh1/2
s , three-phase case.

(8.18)
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Figure 11. Dissipation in the viscous limit (Ohs � 1) of Taylor–Culick retractions: evolution of the local rate
of viscous dissipation (

˙̃Es,local
d (r̃, t̃)) with dimensionless distance r̃ = r/h0 away from (a) the tip of the film in

the two-phase configuration and (b) the macroscopic three-phase contact line in the three-phase configuration.
In insets (ii), this distance is normalized with the dimensionless viscous boundary layer thickness in the
surrounding medium, δ̃ν = δν/h0 = Ohs

√
t̃. Here, R̃ = R/h0 and t̃ = t/τη are the dimensionless hole radius

and dimensionless time, respectively. (c) Variation of the total viscous dissipation rate per unit circumference
of the hole (

˙̃Es
d(t̃)/(2πR̃(t̃))) at steady state with the surroundings Ohnesorge number Ohs.

In summary, in this section, we confirmed our hypothesis that the presence of the
oil–air–water contact line in the three-phase configuration dramatically alters the scaling
relationships and dynamics as compared with the two-phase configuration (see § 6.2). We
also relate the dimensionless retraction velocity Cas with the control parameter Ohs in
the viscous limit by following the location and magnitude of the local rate of viscous
dissipation during Taylor–Culick retractions in viscous surroundings.

9. Conclusion and outlook

In this paper, we have studied the effects of the surrounding media on the retraction
dynamics of liquid sheets in three canonical configurations. In the classical Taylor–Culick
configuration, the interplay between capillarity and inertia of the film results in a constant
retraction velocity. We can further neglect the surrounding medium as it does not influence
the retraction process. However, for a film retracting in a dense and viscous oil (two-phase
configuration), and that at an oil–air interface (three-phase), both inertia and viscosity
of the oil phase influence the retraction process. The former presents itself as an added
mass-like effect. Even though capillarity still governs the constant retraction velocity, the
surrounding medium’s inertia reduces the magnitude of the film’s momentum as it retracts.
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Moreover, when the viscosity of the oil is significantly higher than that of the film,
the viscous stresses dictate the retraction process and set the velocity scale. To further
demystify the energy balance in this process, we have used thermodynamically consistent
energy transfer mechanisms to understand the fate of the released surface energy owing
to the loss of surface area of the retracting film. This energy is injected into the system
and manifests itself as kinetic energy and viscous dissipation. In the inertial regime,
the proportions of kinetic energy and viscous dissipation are the same, conforming to
the analyses of Culick (1960). However, in the viscous regime, the total surface energy
released goes into viscous dissipation in the surroundings.

Following the lumped elements analysis, motivated by Taylor (1959b) and Culick
(1960), we also developed scaling relations to relate the non-dimensionalized retraction
velocity (Wef and Cas) with the control parameter Ohs. In the inertial limit, the Weber
number Wef based on the retraction velocity is a constant for all three configurations. On
the other hand, in the viscous limit, the retraction velocity in the two-phase configuration
scales with the viscocapillary velocity scale (constant capillary number, Cas ∼ O(1));
while for the three-phase configuration, the capillary number Cas increases with increasing
Ohs, owing to the localization of viscous dissipation near the three-phase contact line.

A natural extension of the present work would be to understand the retraction of
non-Newtonian sheets and filaments (Sen et al. 2021) in similar surroundings. In such
scenarios, the retraction dynamics will depend not only on capillarity and viscosity as
described in this work, but also on the rheological properties of both the film and the
surroundings. Furthermore, in a broader perspective, the precursor film-based three-fluid
VoF method can be used to elucidate several spreading phenomena, both at small and large
scales, e.g. drop-film interactions in the inkjet printing process (Lohse 2022) and late time
spreading during oil spillage (Hoult 1972), respectively.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.671.
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Appendix A. Classical Taylor–Culick retractions

In this section, we discuss the classical Taylor–Culick retractions, which are modelled
using the numerical method used for the two-phase configuration (see § 4.2.1) by replacing
the surrounding medium (s) with air (a). The VoF tracer advection equation (4.5), and the
Brackbill et al. (1992) surface tension force formulation (4.6) remain the same, whereas,
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Taylor–Culick retractions

the VoF property equations are modified as

ρ̃ = Ψ + (1 − Ψ )
ρa

ρf
, (A1)

Oh = Ψ Ohf + (1 − Ψ ) Oha, (A2)

where ρa/ρf is the air to film density ratio (fixed at 10−3), and the two dimensionless
groups

Ohf = ηf√
ρf
(
2γaf

)
h0

, Oha = ηa√
ρf
(
2γaf

)
h0

(A3a,b)

represent the film Ohnesorge number and the air Ohnesorge number (fixed at 10−5),
respectively.

Figure 12 summarizes the results of the classical Taylor–Culick retractions for a typical
Ohf = 0.05. After the initial transients, the growing hole follows a linear evolution in time
and the growth rate approaches the Taylor–Culick velocity (1.1) (see figure 12b and its
inset). In the steady state, both the water film and the ambient air move (figure 12a), but
the density of air is negligible as compared with that of the film. Consequently, the air
does not contribute to the force or energy equilibrium described below.

A.1. Force balance
For the classical configuration (figure 1a), the force balance strictly implies that the
capillary force (Fγ (t)) equals the rate of change of momentum (P(t)) of the moving rim
written as (Taylor 1959b)

Fγ (t) = dP(t)
dt

= d
dt

(
m(t)vf

)
, (A4)

where the capillary force is given by Fγ (t) = 2γaf (2πR(t)), γaf is the surface tension
coefficient between the film and the surrounding air. Assuming that the film velocity vf is
a constant, we can simplify (A4) to

2γaf (2πR(t)) = vf
dm(t)

dt
, (A5)

where we can employ the continuity equation to get

dm(t)
dt

= ρf vf h0 (2πR(t)) . (A6)

Further, using (A5) and (A6),

2γaf (2πR(t)) = ρf v
2
f h0 (2πR(t)) , (A7)

for the classical configuration (figure 1a), giving

vf =
√

2γaf

ρf h0
. (A8)

Note that (A4)–(A7) are similar to the calculations of Taylor (1959b), and only consider
momentum equilibrium while disregarding the fate of the liquid accumulated in the rim
(Villermaux 2020). Furthermore, it assumes no interaction with the surrounding medium
(air). In terms of the dimensionless numbers, (A8) implies that Wef = ρf v

2
f h0/(2γaf ) is

constant and equal to 1 (i.e. vf = vTC, see (1.1)).
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Figure 12. Classical Taylor–Culick retractions. (a) The morphology of the flow when the dimensionless hole
radius R̃ = 50. The left-hand side contour shows the velocity magnitude normalized with the inertiocapillary
velocity scale (‖v‖/vγ ), while the right-hand side shows the dimensionless rate of viscous dissipation per
unit volume normalized using the inertiocapillary scales (2Oh(D : D)τ 2

γ ), represented on a log10 scale to
differentiate the regions of maximum dissipation. (b) Temporal evolution of R̃(t). Time is normalized using the

inertiocapillary time scale, τγ =
√

ρf h3
0/γsf . Inset of panel (b) shows the variation of dimensionless growth

rate of the hole radius. Notice that
√

Wef = limR̃→∞
˙̃Rγ = 1. (c) Energy budget where the energies (E) are

normalized using the total surface energy released as the film retracts, creating a hole of radius R̃max = 150.
(d) Variations of the rate of change of energy Ė(t) as a fraction of the rate of energy injection into the system
(−Ėγ (t)) with dimensionless hole radius R̃(t). The superscripts account for the film ( f ) and air (a). The
Ohnesorge number of the film for this simulation is Ohf = 0.05, and that of air is Oha = 10−5 to respect
the assumption that the surrounding medium has negligible effect on the retraction process (Taylor 1959b;
Culick 1960). Additionally, the air-to-film density ratio is ρa/ρf = 10−3. Also see supplementary movie 4.

A.2. Energy balance
Dupré (1867, 1869) wrongly assumed that the entire surface energy released during the
retraction manifests as the kinetic energy of the film (Rayleigh 1891), giving

−Ėγ (t) = Ė f
k (t), (A9)

2γaf (2πR(t)) vf = d
dt

(
1
2

m(t)v2
f

)
. (A10)
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Using conservation of mass dm(t) = ρvh0(2πR(t)) dt, Dupré (1867, 1869) calculated the
retraction velocity to be

vf =
√

4γaf

ρf h0
=

√
2vTC, (A11)

which is off by a factor of
√

2 (see Dupré–Rayleigh paradox in Villermaux (2020)).
Culick (1960) realized that the correct energy balance entails that the rate of surface

energy released should be distributed equally into an increase in kinetic energy of the
rim and the viscous dissipation inside the film (A12). Figure 12(c,d) illustrate the energy
balance associated with the classical Taylor–Culick retractions (note that Ē f

k (t) ≈ Ē f
d (t) in

figure 12c and Ė f
k (t) ≈ Ė f

d (t) in figure 12d),

− Ėγ (t) = Ė f
k (t) + Ė f

d (t), (A12)

where −Ėγ (t) ≈ 2γaf (2πR(t))vf (see Appendix B and Bohr & Scheichl (2021)). Note that
the rate of viscous dissipation at any given instant is analogous to the inelastic collision of
a tiny fluid parcel in the film with the massive rim. Indeed, the local viscous dissipation
(2Oh(D : D)τ 2

γ ) is maximum in the region connecting the rim to the film (figure 12a).
Consequently (Culick 1960),

2γaf (2πR(t)) vf = d
dt

(
1
2

m(t)v2
f

)
+ 1

2
dm(t)

dt
v2

f . (A13)

Again, using conservation of mass dm(t) = ρvh0(2πR(t)) dt and rearranging (A13), we
get

vf = vTC =
√

2γaf

ρf h0
(A14)

for the classical configuration.

Appendix B. Energy calculations

This appendix explains the motivation and mathematical expressions used in the present
study to describe different energy transfers, and their rates, as discussed in § 8. Similar
approaches have been used in the literature to study the dynamics of two-phase flows
(Bohr & Scheichl 2021; Sanjay, Lohse & Jalaal 2021). Here, we extend these formulations
to three-phase flows.

The kinetic energies and viscous dissipations associated with the three fluids are given
by (Landau & Lifshitz 1987, pp. 50–51)

E j
k = 1

2ρj

∫
Ωj

‖u‖2 dΩj, (B1)

E j
d = 2

∫
t

(∫
Ωj

ηj (D : D) dΩj

)
dt =

∫
t

(∫
Ωj

εj dΩj

)
dt, (B2)

where dΩj is the differential volume element associated with the jth fluid. Additionally, ρj
and ηj denote the density and viscosity, respectively, of the jth fluid. In the present work,
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j = f (film, water), surroundings, oil (s) and air (a). Furthermore, in terms of rates,

dE j
k

dt
= d

dt

(
1
2
ρj

∫
Ωj

‖u‖2 dΩj

)
, (B3)

dE j
d

dt
=
∫

Ωj

εj dΩj. (B4)

Next, the total surface energy Eγ of the system for the three-phase configuration is

Eγ =
∫
Asf

γsf dAsf +
∫
Asa

γsa dAsa, (B5)

where γij and Aij are the interfacial tension coefficient and area, respectively, associated
with an interface between the ith and the jth fluids. Note that, the assumption of a precursor
film of oil (surroundings, s) on the water film ( f ) implies that there is no film–air interface.
Additionally, γsf = 2γsa (see § 4.2.2). Now as

Eγ = γsf
(Asf + Asa/2

)
, (B6)

so, the rate of surface energy released during the retraction process in the three-phase
configuration is

Ėγ = γsf
(Ȧsf + Ȧsa/2

)
, (B7)

where Ȧij is the rate of change of interfacial area.
For the two-phase configuration, there is no air (Asa = 0), and the rate of change of

surface energy is simply
Ėγ = γsf Ȧsf . (B8)

Note that we use ((B2)–(B8)) for calculating the energies, and their rates of change, in
figures 9, 10 and 12. However, to better understand the individual contributions of the two
terms on the right-hand side of (B7), figure 13 illustrates the ratio of the rate of change of
surroundings–air interfacial area (Ȧsa) to that of the surroundings–film (Ȧsf ). Initially, at
very small hole radii (R̃ → 0), the two rates are comparable (Ȧsa ∼ Ȧsf ). But, after these
initial transients, the rate of change in the surroundings–film interface area dominates
(Ȧsf � Ȧsa). Therefore, even for the three-phase configuration, in the steady state,

Ėγ ≈ γsf Ȧsf . (B9)

As a result, we only need to evaluate Ȧsf for developing a scaling for the rate of change
of surface energy. For doing this, we use the analysis presented in Bohr & Scheichl (2021),
written in our notations as

Ȧsf =
∫
Asf

κ (U · n) dAsf +
∫
C

(U · m) dC (B10)

for a control volume bounded by the control surface Asf (free surface of the film without
the rim, figure 13b). Here, U is the velocity of differential control volume bounded by
dAsf , κ the curvature at this location and n is a unit vector normal to dAsf . Lastly, the
control surface Asf is bounded by the contour C, and m is a unit vector perpendicular
to this contour. Note that capillary traction acts perpendicular to C away from the axis
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Figure 13. (a) Variation of the ratio of the magnitudes of the rate of change of surroundings–air interfacial area
(Ȧsa) to that of the surroundings–film (Ȧsf ) with the dimensionless hole radius R̃(t) = R(t)/h0. (b) Schematic
showing the control surface Asf (free surface of the film without the rim) used for the calculation of the rate of
change of surface energy.

of symmetry. The first term on the right-hand side of (B10) accounts for the change in
surface area due to inflation normal to Asf , and the second term is a consequence of the
distortion of Asf in the tangential direction, i.e. stretching, or in this case, compression
(the growing hole). With this choice of the control surface, the dilation normal to Asf is
zero (area inflation only occurs at the rim which we ignore), and

Ȧsf (t) ≈
∫
C(t)

(U · m) dC = −2vf (2πR(t)) , (B11)

where the factor 2 comes in because of the two surfaces (top and bottom). Therefore, for
both the two-phase as well as three-phase Taylor–Culick retractions, the rate of injection
of energy in the system is

− Ėγ (t) ≈ 2γsf vf (2πR(t)) . (B12)

Note that while calculating the rate of change of surface energy, we did not account for the
growth of the rim because it is much slower than the growth of the hole, and the flow is
predominantly in the radial direction (see figures 6, 7 and Gordillo et al. (2011)).

Appendix C. Code availability

The codes used in the present article are permanently available at Sanjay (2021b).
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