
ON THE FORCED LIENARD EQUATION 

R.R. Stevens 

( rece ived June 21 , 1968) 

We cons ide r the second o r d e r d i f ferent ia l equation 

(1) x + f(x)x + x = p(t) ( . = J 7 ) 
at 

with the a s s u m p t i o n s that 

(2) f ( x ) is cont inuous ( - oo < x < oo) and p(t) is continuous and 
bounded: |p(t) | £ E , - oo < t < oo , 

Also , throughout this p a p e r , F(x) denotes an an t ide r iva t ive of f(x). 

Many r e s u l t s a r e known concern ing pe r iod ic i ty and boundedness 
of solut ions of (1) under v a r i o u s condi t ions , a l l of which include the 
a s s u m p t i o n s in (2). F o r example , a spec ia l c a s e of a r e s u l t of 
W. S. Loud [4] concern ing bounded solut ions of (1) i s the following which 
we s t a t e in a f o r m su i tab le for our p u r p o s e s h e r e . 

THEOREM 1. If t h e r e is a cons tant c > 0 such that f(x) > c for 
a l l r e a l x and x(t) is any solut ion of (1), then t h e r e ex i s t s t such 

that for a l l t > t , | x(t) | + | x ( t ) | < K , the cons tant K depending only 

_on E and c . 

R e m a r k 1. We note that the s t a t e m e n t of T h e o r e m 1 above, as 
given in [3], with the hypothes is nf(x) >; c " r ep laced by n | f ( x ) | :> c " 
is f a l se , as eas i ly cons t ruc ted example s show. (See Example 1 be low. ) 

M o r e r ecen t ly , F r e d e r i c k s o n and L a z e r [2] have proved the 
following r e s u l t concern ing pe r iod ic solut ions of (1). 

THEOREM 2 . If f(x) > 0 for a l l r e a l x _and p(t) ûs 2TT - pe r iod i c , 
then (1) has a 2TT - pe r iod ic solut ion if and only if 

2TT oo 

(3) | J p(t) e1* dt | < 2 J f(x) dx . 
0 - oo 
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It is our p u r p o s e h e r e to inves t iga te so lu t ions x(t) of (1) which 
sa t is fy 

(I) x(t) = o(t) and x(t) - o(t) as t »> + oo 

(II) x(t) = O(t) and x(t) = O(t) as t - + oo 

Clear ly , condi t ions (I) and (II) a r e w e a k e r than those of boundedness and 
p e r i o d i c i t y of T h e o r e m s 1 and 2 and, accord ing ly , our m a i n r e s u l t 
( T h e o r e m 4) g ives a n e c e s s a r y condi t ion that so lu t ions of (1) sa t i s fy (I) . 
This condi t ion is s i m i l a r to (3) above . Sufficient condi t ions a r e s ta ted 
in T h e o r e m 5. 

The following example shows that condi t ions m o r e s t r i n g en t than 
those in (2) m u s t be p laced on equat ion (1) in o r d e r that i t s so lu t ion 
sat isfy condi t ion (II). Such condi t ions a r e given in T h e o r e m 3 , 

1 
Example 1. Let p(t) s 0 and f(x) = - 2 x - — for a l l x >_ 1 and 

f(x) = -3 for x < 1 . Then the so lu t ion of the r e s u l t i n g equat ion (1) 
sat isfying x(0) = 1, x (0) = 1 is 

1 
x(t) = for 0 < t < 1 . 

1 1 - t ~ 

In th is c a s e , not a l l so lu t ions of (1) ex i s t in the f u t u r e . 

T H E O R E M S . If (2) holds and 

( sgn x ) F ( x ) > - M ^and | F(x) | < C | x | 

holds for a l l r e a l x, w h e r e M and C a r e pos i t ive c o n s t a n t s , then al l 
so lut ions x(t) of (1) ex i s t in the fu ture and sa t i s fy (II). 

P roof . Equat ion (1) is equiva len t to the s y s t e m 

x = y -F (x ) 

y = p(t) - x . 

2 2 
Let V(x, y) = x + y . Then along a solut ion x(t), y(t) of (1): 
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V = ~2xF(x) + 2yp(t) < 2 M | x | + 2 E | y | < 4(M + E) V2 

and thus, for all t for which V(t) M , we have letting B = 4(M + E) 

d -
T- (2 V2 - Bt) < 0 , 
d t ~~ 

2V2 - Bt is decreasing and 

i I 
-Bt < 2V2 - Bt < 2 V2(t ) - BtQ , 

1 i 
0 < 2V2(t) < 2V2(0) - Bt -f Bt , 0 

which shows that V2(t) = O(t) as t-*- + co . Thus x = O(t) and 
y = O(t) and since x = y - F(x) , x = O(t) also. 

THEOREM 4. If (2) holds and p(t) j j 2TT - periodic then there 
exists a solution x(t) of (1) satisfying condition (I) only if 

2ir 

(4) | / p(t) e1 dt | < 2 Rng F . 
0 

Here Rng F = sup | F(a) - F(b) | where the supremum is taken over 
all a, b in the domain of the function F(x) (all real a, b). 

For the proof of Theorem 4, we require the following inequality. 

LEMMA 1. If h(t) is a bounded Lebesgue measurable function for 
0 < t < 2TT , then 

2TT 

(5) | J h(t) e dt | < 2 Rng h . 
0 

Proof. It is clearly no restr ict ion to assume that 

0 < h(t) < 1, Rng h = 1 

and that h(t) is a step function: 
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h(t) = a, f o r a, . < t < a, , w h e r e 
k k - 1 — k 

0 = a„ < a j < . . . < a = 2TT and 0 < a < 1 
0 1 n - k -

T h e n 

2TT n i a i a 

(6) | f h ( t ) e X t d t | = | S o ^ ( e k - e k " d ) 

0 k = 4 

The indicated s u m in (6) Lies ins ide the se t 

n i a k i a k - i 
S P k ( e - e ) ; 0 < p k < 1 

k=l 

which i s a convex polygon whose v e r t i c e s a r e a subse t of 

(7) < S p . (e k - e • ) ; P t = 0 or 1 { , 

and each e l emen t of (7) i s not g r e a t e r in modu lus than the d i a m e t e r of 
the unit c i r c l e . 

[z; | z | = ij . 

2TT 

Hence, | J h(t) e dt | < 2 < 2 Rng h, as d e s i r e d . 
0 

R e m a r k 2 . L e m m a 1 r e p r e s e n t s a g e n e r a l i z a t i o n of an old r e s u l t 
of de La Val lée P o u s s i n [ l ; p . 16] who proved , us ing a modu lus of 
continuity a r g u m e n t , that under the hypothes i s of L e m m a 1, 

2TT 

J J h(t) e dt | < NT2TT Rng h. 

0 

Proof of T h e o r e m 4 . Suppose that x(t) is a solut ion of (1) sat isfying 

condi t ion (I). Mult iplying (1) by e and i n t e g r a t i n g , 
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2 nu 

J 
0 

J [ x e + f(x)x e + x e ] dt 
2mr 

/ P(t) e l l d t 
0 

An in t eg ra t ion by p a r t s y ie lds 

(8) x - ix + F(x) 
2nir 2mr . _„ 

- i / F(x)e l 1 : dt = n / p(t) e1* dt 
0 

2n 

/ 
0 

using the 2TT - pe r iod ic i ty of p(t) . 

We m a y a s sume , of c o u r s e , in proving (4) that F(x) is bounded 
for a l l r e a l x (Rng F < oo). Thus, 

2n 2n 
(9) o(n) - i J F(x) e dt = n J p(t) e dt 

0 0 

Using L e m m a 1, we have 

2mr n 2kir 
J F (x)e l t : dt | = | 2 J FCxJe11 dt | 
0 k=l 2(k-l)Tr 

n 2kir 
< 2T | / F(x)e l t : dt | 

k=l 2 ( k - l h 

n 2TT 

= S | / F( x ( t + 2 ( k - 1)TT ) e 1 dt 
k=l 0 

< n 2 Rng F(x(t)) < n 2 Rng F 

and, f rom (9), it follows that 

(10) | f p(t)ei<: dt | < ^ ^ + 2 Rng F « n 

which i m p l i e s the inequal i ty (4). 

THEOREM 5. If (2) holds and 

( H ) xF(x) _> - M and | F ( x ) | < B for a l l r e a l x, with 
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M and B positive constants, and if x(t) is a solution of (1) such that 
p(t)x(t) is bounded above, p( t )x( t ) < C for all x , then x(t) satisfies 
condition (I). 

Proof. We note first that the stated conditions imply, by Theorem 3, 
that all solutions of (1) exist in the future and satisfy (II). Let x(t), y(t) 

2 2 
be the corresponding solution of (l f) above and let V = x + y . Then 

V = 2yp - 2xF(x) < 2yp + M = 2(x + F(x))p + M < 2(C + BE) + M 

2 
and thus V(t) = o(t ), which implies that x = o(t) and y = o(t). Since 
x = y - F(x) , x = o(t) and the proof is complete. 
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