
Proceedings of the Royal, Society of Edinburgh, 129A, 787-809, 1999

On the existence of bounded Palais—Smale
sequences and application to a
Landesman-Lazer-type problem set on RN

Louis Jeanjean
Universite de Marne-La-Vallee,
Equipe d'Analyse et de Mathematiques Appliquees,
5, bd Descartes, Champs-sur-Marne,
77454 Marne-La-Vallee Cedex 2, France
(j eanj eanQmath.univ-mlv.fr)

(MS received 6 April 1998; accepted 22 June 1998)

Using the 'monotonicity trick' introduced by Struwe, we derive a generic theorem. It
says that for a wide class of functionals, having a mountain-pass (MP) geometry,
almost every functional in this class has a bounded Palais-Smale sequence at the MP
level. Then we show how the generic theorem can be used to obtain, for a given
functional, a special Palais—Smale sequence possessing extra properties that help to
ensure its convergence. Subsequently, these abstract results are applied to prove the
existence of a positive solution for a problem of the form

-Au + Ku = f(x,u), )
> (P)

«efl"1(MJV), K>o.j
We assume that the functional associated to (P) has an MP geometry. Our results
cover the case where the nonlinearity / satisfies (i) f(x, s)s~1 —¥ a 6]0, oo) as
s —>• +oo; and (ii) f(x, s)s~x is non decreasing as a function of s ^ 0, a.e. x E M.N.

1. Introduction

A first aim of this paper is to study, for a large class of functionals having an
MP geometry, the existence of a bounded Palais-Smale sequence at the MP level.
Proving the existence of such sequences is a preliminary step when one wants to
show that the functionals have a critical point. More precisely, let X be a Banach
space, and denote by X~l its dual. By saying that a functional I G C1(X,R)
possesses an MP geometry, we mean that there are two points («i,f2) in X, such
that setting

r = {7GC([0,l],X), 7(0) = vu 7(1) = "2}>

there holds
c := inf max I{^/(t)) > max{/(t>i), I(v2)}.

-yer t e [o i ]

Also, a Palais-Smale sequence of / at the level c £ K is, by definition, a sequence
{un} C X satisfying I{un) —> c and I'{un) —> 0 in X^1.

It is well known that if / possesses an MP geometry, the value c e M., called
the MP level, is a good candidate for being a critical value of / . Indeed, assume
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in addition that the (PS)C condition holds, namely that all Palais-Smale sequences
for / at the level c £ R possess a convergent subsequence. Then there exists u G X
satisfying I(u) = c and I'(u) = 0. This is a celebrated result, known as the MP
theorem, due to Ambrosetti and Rabinowitz [3]. Observing the proof given in [3],
or alternatively using Ekeland's variational principle [13], one sees that the MP
geometry directly implies the existence of a Palais-Smale sequence {un} C X for /
at the level c g l . Thus, to find a critical point, it is sufficient to establish that this
particular sequence has a convergent subsequence. Traditionally, this is done in two
steps. First one proves that {un} is bounded and this implies (assuming that X is
reflexive) the existence of a u € X, such that, up to a subsequence, un —*• u weakly
in X. Second, one shows that un —> u strongly in X and, by continuity of / and /',
u then satisfies I(u) = c and I'(u) = 0. Note that in many cases, one is interested
in finding a (non-trivial) critical point of /, but not necessarily at the MP level.
Then, instead of proving that un —»• u strongly in X, it is sufficient to show that
I'(u) = 0 (with I(u) ^ 7(0)). See [10,17,21,29] for some examples.

Concerning the first step, namely the problem of finding conditions on / insuring
the existence of a bounded Palais-Smale sequence (a BPS sequence for short), at
the MP level, most of the work we know about deals with specific situations. We
mean by this that the functional / is introduced in order that its critical points
correspond to (weak) solutions of a given PDE or Hamiltonian-type problem. Then
particular properties of the underlying problem can directly and crucially be used to
prove the existence of a BPS sequence (see, for example, [18,31]). A more systematic
approach is due to Ghoussoub [14], where his ideas of using dual sets to localize
the critical points of the functionals are often a strong help in concluding the
existence of a BPS sequence. Let us also mention the work of Cerami [11], which
leads to proof that a sequence {un} C X always exists that satisfies I(un) —» c and
||/'(un)||(l + ||un||) ->• 0. For this Palais-Smale sequence, called a Cerami sequence,
the additional information that ||/'(ura)||(l + ||un||) —* 0 has, in several situations,
been successfully used to establish that {un} is bounded. However, probably the
most significant contribution is due to Struwe (see also [22]). He introduces a general
technique often referred to as the 'monotonicity trick' (see [23,24]), which has been
used by Struwe and others to solve difficult variational problems in an MP setting
[2,4] and also in minimization problems [26] or in a linking-type situation [25]. Most
of these problems have in common the difficulty of establishing the existence of a
BPS sequence.

Unfortunately, Struwe's approach has only been used so far on specific examples.
Thus, it is not always clear what is the core of the approach and what belongs to the
specific problem under study. An initial achievement of our paper is the derivation
of a general abstract result based on Struwe's 'monotonicity trick'. Clearly, with
respect to the existing works, one advantage is the simplicity of the presentation
and the 'ready to use' aspect of the result. We also point out, however, that the
possibility of obtaining a result as general as ours, starting from Struwe's work, was
not so obvious (M. Struwe, personal communication; see also [23, 9.5, Chapter II]).
Roughly speaking, we establish, for a wide class of functionals, a generic result that
for states that for almost every functional in this class there exists a BPS sequence
at the MP level.
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THEOREM 1.1. Let X be a Banach space equipped with the norm || • ||, and let
J C R+ be an interval. We consider a family (I\)\ej of C1-functionals on X of
the form

h(u) = A(u) - XB(u), VAeJ,

where B(u) ^ 0, V« £ X, and such that either A(u) —> +oo or B{u) —>• +oo as
\\u\\ —> oo. We assume that there are two points (i»i,i>2) in X, such that setting

r = {7 e C([0,1], X), 7(0) = vi, 7(1) = v2},

there hold, VA G J,

cA := inf max Ix{l{t)) > m&x{I\(vi),I\(v2)}.
7€rte[oi]

Then, for almost every A 6 J, there is a sequence {vn} C X, swc/i

(i) {vn} is bounded;

(ii) /A(un) ->• cA; and

(iii) /A(wn) -> 0 m £/«e d«aZ X" 1 o/X.

To derive theorem 1.1 we have been inspired by [2] and [27]. In particular, in [27]
the authors obtain a conclusion similar to ours for a special family (I\)\eJ. Their
result, however, is derived using the precise form of the functional, and it may not be
apparent that it is, in fact, very general. In view of theorem 1.1 a natural question
to ask is: is the limitation that a BPS sequence exists only for almost every A e J
essential? The answer to this question is yes, and was pointed out to the author
(H. Brezis, personal communication; see also [9]). Indeed, at the end of § 2 we give
an example of a family (I\)\£j, satisfying all the assumptions of theorem 1.1, such
that for a Ao G J, all Palais-Smale sequences at the MP level, c\0, are unbounded.
Note that for a linking-type problem arising in the study of periodic solutions of
Hamiltonians systems (see theorem 9.1 in [23]), the fact that a BPS sequence may
not exist for every value of A € J was proved by Ginzburg [15] and Herman [16].

In many situations, one is interested in finding a critical point for a given func-
tional, namely for a given value of A G J. Then, a first step is to prove the existence
of a BPS sequence at the MP level or, alternatively, at a level different from I\ (0)
to avoid finding u = 0 as a critical point. We claim that the generic result, theo-
rem 1.1, is a powerful tool for establishing the existence of such a sequence. This is
particularly true if the problem enjoys some compactness properties.

COROLLARY 1.2. Let X be a Banach space equipped with the norm || • ||, and let
I G CX{X, K) be of the form

I(u) = A(u)-B(u),

where B and B' take bounded sets to bounded sets. Suppose there exists e > 0, such
that, for J = [1 — £, 1], the family (I\)\ej defined by

h(u) = A(u) - XB(u),

satisfies the assumptions of theorem 1.1. Finally, assume that for all A G J, any
BPS sequences for 1\ at the level c\ G K admits a convergent subsequence. Then
there exists

{{K,un)}c [ l - e , l ] xX,
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with

Xn —> 1 and {An} is increasing,

hn(un)=c\n and I'Xn(un)=0, inX^1,

such that, if {un} C X is bounded, there hold,

I(un) = I\n(Un) + (An - l)B{un) -> lim CXn = CX,
n—>oo

I'{un) = I'K(un) + (An - l)B'(un) -> 0, m X"1.

The point of corollary 1.2 is that if {un} is bounded, it is a BPS sequence for /
at the level c\. Clearly, corollary 1.2 is a direct consequence of theorem 1.1 if we
prove that the map A —> c\ is continuous from the left. This is done in lemma 2.3.

At this point, however, one may question the usefulness of corollary 1.2. Indeed,
the existence of a Palais-Smale sequence for / at the MP level was already known,
and the only remaining problem was, as it is now, to show that it is a bounded
sequence. So what progress have we made? In reality, we are now in a more ad-
vantageous position since, with respect to a standard Palais-Smale sequence, the
sequence {un} given in corollary 1.2 possesses properties that are very useful when
one tries to establish that it is bounded. The difference is that, instead of starting
from a sequence of approximate critical points of / (as in the case of a standard
Palais-Smale sequence), we now start from a sequence of exact critical points of
nearby functionals. The fact that un is an exact critical point often provides addi-
tional information on the sequence {un}, which helps to show that it is bounded.
For example, imagine that / is defined on a Sobolev space and that its critical
points (as those of IXn) correspond to solutions of a PDE problem. They then
possess stronger regularity properties than elements of the ambient space normally
do. Also, the use of a maximum principle can often guarantee a given sign for un,
Vn€ N (see § 3 for an application of this idea). Moreover, constraints sometimes
exist that un must satisfy. Just think of all situations where the solutions of a PDE
problem satisfy a Pohozaev-type identity. More globally, for A G R, let

Kx = {u e X : Ix{u) = cx and I'x(u) = 0},

and suppose that L>xe[i-6ji\Kx is bounded for e > 0. Then, if for all A G [1 — e, 1]
any BPS sequence for Ix at the level cx G R admits a convergent subsequence, the
functional I has a critical point.

The idea of constructing Palais-Smale sequences that possess some extra prop-
erties that might help to ensure their boundedness, or more generally their conver-
gence, is an old topic. Among some significant contributions in that direction, let
us mention [5,20], where Morse-type information on the sequence proves crucial for
ensuring its compactness. This is also the central issue in [14].

REMARK 1.3. It should be clear that the possibility of using theorem 1.1 to con-
struct a special, up to boundedness, Palais-Smale sequence for a given functional
exists in a large variety of situations. A particularly important case is the follow-
ing. Let X be a Banach space with norm || • || and / G C1(X, R) be such that
1(0) = 0. Assume that there are two positive constants, r, p, and v G X with
||w|| > p satisfying

I(u) ^ r, if ||u|| = p and I(v) < 0.
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Under these hypotheses, / has an MP geometry and we denote by c ̂  r the MP
level. Now, writing I as

I(u) = / (u)-0 | |u | | 2 ,

we see that there exists e > 0, such that the family

Ix(u)=I(u)-X\\u\\2, forAe[0,e] ,

satisfies the assumptions of theorem 1.1. Indeed, I\(v) ^ 0 for all A ^ 0 and, since
for ||w|| = p

h(u)=I{u)-\\\u\\2>r-\p2,

the claim holds as soon as s < rp~2. Thus, when, in addition, the family (/A)A€[O,E]
satisfies the compactness conditions of corollary 1.2, we obtain, up to boundedness,
a special Palais-Smale sequence for / at the level c := limA_,.0+ c\. Note that if
the map A —» c\ is discontinuous at A = 0 we may have c < c. But clearly, also
c > 0 = 1(0). Thus, as far as the search for a non-trivial critical point is concerned,
we can forget that c and c may be different.

In the second part of the paper we apply the abstract results of § 2 to study the
existence of solutions of the problem

-Au(x)+Ku(x) = f(x,u(x))A

u G i f 1 ^ ) , K>0. J

Because we shall look for positive solutions, we may assume without restriction
that f(x,s) = 0, Vs < 0, a.e. x G RN. We require that / satisfies the following
conditions.

(HI) (i) / : RN x M+ ->• R is a Caratheodory function;

(ii) /(-,s) G L°°{RN) and /(-,s) is 1-periodic in xu 1 ̂  i < N.

(H2) There is p G]2, (2N/N - 2)[ if N ^ 3 and p > 2 if N = 1,2, such that
lim^oo /(a;, s)s1~p = 0, uniformly for x G I * .

(H3) / (x , s)s~l ->• 0 if s -» 0, uniformly in x G K^.

(H4) There is a G]0, OO], such that fix, s)s~1 —> a if s —> CXD, uniformly in x G

Let G : RN x K+ -> R be defined by

G(x,s) = y{x,s)s-F(x,s), with F(x, s) = / f(x,t)dt.
Jo

We shall also use

(Al) G(x, s) > 0, Vs ̂  0, a.e. i G l * 1 , and there is S > 0, such that

f(x, s)s~1 > K-6=> G(x, s) > 6;

(A2) There is £> G [1, oo[, such that, a.e. x G RN,

G(x,s)^DG(x,t), V( t , s ) eK + xR+, with s ̂  t.
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THEOREM 1.4. (i) Assume that (H1)-(H4) and (Al) hold with a < oc in (H4).
Then, if K G]0, a[, there exists a non-trivial positive solution of (P).

(ii) Assume that (H1)-(H4) and (A2) hold with a = oo in (H4). Then there exists
a non-trivial positive solution of (P).

REMARK 1.5. If f(x,s)s~1 is a non-decreasing function of s ^ 0, a.e. x G WN,
both (Al) and (A2) are satisfied. In particular then, (A2) holds with D = 1. Note
also that (A2) implies (Al) and, thus, the assumption on G is weaker when the
nonlinearity is asymptotically linear. Finally, observe that (H2) always hold when
a < oo in (H4).

Theorem 1.4 will be proved using a variational procedure in the spirit of corol-
lary 1.2. For the moment, note that, formally, each critical point of the functional
I :H1(RN) -^R denned by

{\Vu\2 + Ku2)dx- f F(x,u)dx,
JRN

is a solution of problem (P). Also, by the weak maximum principle it is a positive
solution of (P). As we shall see, when hypotheses (H1)-(H4) hold and K G]0,a[, /
possesses an MP geometry.

The existence of solutions of (P), or of closely related problems, have been exten-
sively studied over the last few years (see [7, 30, 32]). In the special case where
/ is autonomous, namely when the nonlinearity does not depend explicitly on
x G M.N, the existence of one solution of (P) (and even infinitely many) was proved
by Berestycki and Lions [7] under hypotheses (H1)-(H4). To obtain the existence of
one solution, they develop a subtle Lagrange multiplier procedure that ultimately
relies on Pohozaev's identity for (P). The lack of compactness due to the transla-
tional invariance of (P) is regained working in the subspace of iJ1(M'/v) of radially
symmetric functions. In the general case, where / is not autonomous, Pohozaev's
identity provides no information and, in the previous work, in addition to (Hl)^
(H4), it was usually assumed that

3fi > 2, such that 0 ^ fiF(x, s) < f(x, s)s, Vs ^ 0, a.e. x G RN. (SQC)

The condition (SQC), from now on referred to as the superquadraticity condition,
was originally introduced in [3], and is still present in most work involving the search
for critical points of MP type. Roughly speaking, the role of (SQC) is to insure that
all Palais-Smale sequences for / at the MP level are bounded.

In theorem 1.4, we replace (SQC) by (Al) if a < oo or by (A2) if a = oo in (H4).
A simple calculation shows that (SQC) implies that f(x, •) must increase at least as
s^"1 for s —> oo. So, when a < oo, it is not possible that (SQC) holds. When a = oo,
it may happen that (SQC) is satisfied, but our requirements on / do not imply it.
For example, (SQC) is not true for the nonlinearity f(x,s) = f(s) = s\n(s + 1) for
s ^ 0, which satisfies (H1)-(H4) and (A2).

To the best of our knowledge, when a = oo in (H4) there is no general result on
(P) without assuming the (SQC) condition. We believe, however, that the method
applied in [1] to deal with an equation of the type (P), set on a bounded domain of
I f f , could be extended to cover the case of Rw. However, in addition to (H1)-(H4),
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it is required in [1] that f(x,s)s~1 is convex, and this is substantially stronger
than (A2). When a < oo in (H4) we just know two results [30,32] which can be
compared to theorem 1.4. In [32], (P) is studied assuming that / is radial as a
function of x G R^. A similar hypothesis is present in [30] on a problem related
to (P) arising from a model of self-trapping of an electro-magnetic wave. There, as
in many papers dealing with a nonlinearity that is not superquadratic, an abstract
critical point theorem due to Bartolo, Benci and Fortunato [6] is used, which is
based on the work of Cerami [11]. Thanks to the radial assumption, the problems
are somehow set on R, and possess a much stronger compactness. It is not clear
to us how the arguments developed in [30,32] could be extended to treat a general
problem on RN. Also, in addition to (H1)-(H4), the assumptions that f(x,s)s~1

is non-decreasing and that G(x, s) ->• +oo as s —>• oo, a.e. x G RN are needed both
in [30] and [32]. Finally, / has to satisfy a superquadraticity condition for s ^ 0
small. Namely, for some S > 0, there is a [i > 2 such that

0 ^ fj,F(x, s) sC f(x, s)s, Vs G [0,6], a.e. l e i "

For all these reasons we believe that theorem 1.4, both in the cases a = oo and
a < oo that we treat in a unified way, strongly generalize the previous existence
results.

Let us now sketch the proof of theorem 1.4. We start by noticing that / is of the
form

I(u) = A{u) - B{u),

with A(u) ->• +oo as ||u|| -> oo and B(u) > 0, Vu G H\RN). Then, thanks to
lemmas 3.1 and 3.2, we show that the family of functionals defined by

Ix{u) = A(u)-\B{u), AG[1 ,2 ] ,

satisfies the assumptions of theorem 1.1. Thus we get that for almost every A G [1, 2]
there exists a bounded sequence {vm} C H1(M.N), such that

h(vm)->cx and I'x(vm)^0, mH^(RN).

Using the translational invariance of (P), we establish in lemma 3.5 that there is a
sequence {ym} C ZN, such that um(x) := vm(x — ym) satisfies um —*• ux ^ 0 weakly
in H1(RN) with I\(u\) < c\ and I'x(u\) = 0. From the weak maximum principle
we get that u\ > 0 a.e. x G RN. At this point, we have proved the existence of a
sequence {{Xn,un)} c [1,2] x H^R") with un > 0 a.e. x G RN, such that

(i) \n —> 1 and {\n} is decreasing;

(ii) un ^ 0, hn(un) ^ cXn and IXn{un) = 0.

In lemma 3.6, assuming that {un} C H1(RN) is bounded we show how to obtain a
non-trivial critical point of / corresponding to a positive solution of (P). To prove
the boundedness of {un}, we develop an original approach, relying somehow on the
work of Lions [19] on the concentration compactness principle, which, we believe,
could be applied to a large variety of problems where (SQC) does not hold. The
proof, by contradiction, assumes that ||un|| —> oo. Then, setting wn = UnWunW^1

(and using, if necessary, the translational invariance of (P)), there is a subsequence
of {wn} with wn —A w in H1(RN) satisfying one of the two following alternatives.
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(1) (Non-vanishing) 3a > 0, R < oo, such that
r

lim / w\ dx > a > 0;

(2) (Vanishing)

lim sup / w2
n dx = 0, \/R < oo.

' Jy+BR

We shall prove that neither of the two cases can occur and this will give us the
desired contradiction. If we assume that {wn} does not vanish, then w / 0. To
eliminate this alternative, we distinguish the cases a < oo and a = oo in (H4).
When a < oo, we show in lemma 3.7 that w j= 0 satisfies the equation

-Aw + K w = aw, xeRN.

Since the operator —A has no eigenvector in i71(R-/v), this is a contradiction. When
a = oo, we show in lemma 3.8 that the condition f(x,s)s~1 —> oo as s —> oo a.e.
x £ Rw prevents the set Q = {x € HN : w{x) > 0} having a non-zero Lebesgue
measure. But this is the case since w ^ 0. To eliminate alternative (2), we again
distinguish between the cases a < oo and a = oo. Noticing that, Vn £ N,

f
I G(x,un)dx < —— < c,

we show in lemma 3.9 that when a < oo and (Al) holds, the integral goes to
+oo. Finally, when a = oo we show in lemma 3.10 that the vanishing of {wn} is
incompatible with the 'nice' radial behaviour of/, which is ensured by (A2). Having
proved the boundedness of {un} c iJ1(K7V), the proof of theorem 1.4 is completed.

Notation

Throughout the article, the letter C will denote various positive constants whose
exact value may change from line to line but are not essential to the analysis of the
problem. Also if we take a subsequence of a sequence {un} we shall denote it again
{un}.

2. Abstract results

In this section we give the proof of theorem 1.1 and we show that it is sharp in the
sense that a BPS sequence cannot be found for every A G J. Since J C K+ and
B(u) ^ 0, V-u 6 X, the map A —» c\ is non-increasing. Thus, c'A, the derivative of
c\ with respect to A, exists almost everywhere. Theorem 1.1 will be proved if we
establish that the existence of c'x implies that I\ has a BPS sequence at the level
c\-

Let A G J be an arbitrary but fixed value where c'x exists. Let {An} C J be a
strictly increasing sequence such that Xn —¥ A.

PROPOSITION 2.1. There exists a sequence of paths {"fn} C F and K = K(c'x) > 0,
such that
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(i) ||7n(i)|| ^K ifln{t) satisfies

h(ln(t)) ^ cx - (X - Xn); (2.1)

(ii) maxts[Ojl] h(jn(t)) ^ cA + (-c'x + 2) (A - An).

Proof. Let {jn} C F be an arbitrary sequence such that

max hn{ln{t)) < cAn + (A - An). (2.2)

Note that such a sequence exists since the class of paths F is independent of A.
We shall prove that, for n £ N sufficiently large, {/yn} is a sequence such as we are
looking for. When 7n(£) satisfies (2.1), we have

t)) < cXn + (A - An) - cA + (A - A»)
<

A — A n A — A n

Since c'A exists, there is n(A) G N such that Vn ̂  n(A)

A — An

and, thus, Vn ^ n(A),

A - A n ^ - C A +

Consequently,

Also

< cAn + (A - An) + A n ( - c A + 3)

Using our assumption that either A(u) —> +oo or B{u) —> +oo as ||u|] —> oo, the
uniform boundedness of A( 7 n ( t ) ) and B( 7 n ( f ) ) proves (i). To prove (ii), observe
that from (2.3), we have, Vn ̂  n(A),

B( 7 B ( t ) ) = J A " ( 7 " ( ^ " J A ( 7 " ( t ) ) < -c 'A + 3.
A — Xn

An). (2.4)

Using (2.2), (2.4) and since

hn(v) 2 h(v), Vuel,

we get

IXn(ln(t))

cAn + (A - An)

Thus point (ii) also holds. D
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Roughly speaking, proposition 2.1 says that there exists a sequence of paths
{jn} C F, such that

max
*€[0,l]

for which, for all n & N sufficiently large, starting from a level strictly below cA, all
the 'top' of the path is contained in the ball centred at the origin of fixed radius
K = K(c'x) > 0. Now, for a > 0, we define

Fa = {u G X : \\u\\ < K + 1 and |/A(u) - cA| < a},

where the constant K > 0 is given in proposition 2.1.

PROPOSITION 2.2. For all a > 0,

i n f { | | J » | | : u e F Q } = 0. (2.5)

Proof. Seeking a contradiction, we assume that (2.5) does not hold. Then there
exists a > 0, such that for any u £ Fa one has

||/»||>a, (2.6)

and, without loss of generality, we can assume that

0 < a < \[cx -max{/A(ui),/A(v2)}]-

A classical deformation argument then says that there exist e G]0, a[ and a home-
omorphism r\ : X —>• X, such that

r)(u)=u, if | / A (u) -c A | >a, (2.7)

h(v(u)) < h(u), Vu e X, (2.8)

h(r)(u)) ^CX-S, \/U€X satisfying ||u|| < K and Ix(u) ^ cA + e. (2.9)

Let {7n} C F be the sequence obtained in proposition 2.1. We choose and fix m G N
sufficiently large in order that

(-c'A + 2)(A-AT O)<e. (2.10)

Clearly, by (2.7), r)('jm) G T. Now if u = 7m(t) satisfies

/A(«) < c A - ( A - A m ) ,

then (2.8) implies that

JA(77(u))^cA-(A-Am). (2.11)

On the other hand, if u = jm(t) satisfies

I\{u) > cA - (A-Am),

then proposition 2.1 and (2.10) implies that u is such that ||w|| ^ K with I\{u) ^
c\ + e. Applying (2.9), one has

h{r]{u))^cx-e^cx-(\-\m). (2.12)

Thus, combining (2.11) and (2.12), we get

max Ix(r){^m(t))) < eA - (A - Am),

which contradicts the variational characterization of cA. •
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Proof of theorem 1.1. Since proposition 2.2 is true, there exists a Palais-Smale se-
quence for I\ at the level c\ e R, which is contained in the ball of radius K + 1
centred at the origin. This proves the theorem. •

LEMMA 2.3. The map A —> c\ is continuous from the left.

Proof. Seeking a contradiction, we assume that there are Ao G J and {Xn} C J
with Xn < Ao, Vn G N and An —>• Ao for which

cAo < lim c\n.
n—>-oo

Let S = linin^oo c\n - c\0 > 0. By definition of c\0, there is 70 € F such that

max /A0(7OW) < CAO + | 5 -

Using the fact that /A(u) = I\0(u) + (X0-X)B(u), VA e J, V« 6 X, we get, VA < Ao,

max /A(7O(O) < CA0 + |<5 + (Ao - A) max

But B being continuous, we have maxte[o,i] B{^o{t)) ^ C for C > 0, and, thus, for
any n £ N sufficiently large,

t e [ o , i ] •--'"^ " - "

We reach a contradiction noticing that, by definition of c\n,

max 7 ^ ( 7 0 ( 0 ) ^ .

•
We end this section by presenting a family (7A)ASJ f°r which there does not

exist a BPS sequence for every A £ J. As we already mentioned, this example was
provided for us by Brezis, and it shows that theorem 1.1 is sharp. Let F : M2 —> M
be defined by

F(x,y)=x2 -(x-l)V-

The space M2 is equipped with the Euclidean norm ||(:r,y)|| = A/X2 + y2. Around
the origin, F behaves as ||(x,y)||2. Moreover, taking x > 0 sufficiently large, we
see that F(x, 1) < 0. In particular F has an MP geometry and, as we notice in
remark 1.3, there exists e > 0 such that the family of functions (.FA)AG[O e] denned
by

Fx(x,y) = F(x,y)-X(x2 + y2),

satisfies the assumptions of theorem 1.1. In fact, it is even possible to assume that
A e [—e, e]. Let us show that there is no BPS sequence for F = Fo at the MP level.
We have

Fx = 2 z - 3 ( z - l ) V

Fy = -2{x-lfy.

Thus, any sequence {(xn,yn)} C M2, such that HF^Xn,^)!! —> 0 must satisfy

2xn - 3(xn - \fy2
n ->• 0, (2.14)

(xn - \fyn -)• 0. (2.15)

3 , (2-13)
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Without restriction, we can assume that xn —•»• x G [—00,00] and yn —> y G
[—00,00]. We distinguish two cases:

(I) xn -ft 1. Then, from (2.15), we get that yn ->• 0 and since

(xn - ifyl = [(xn - i)3yn]2/3y4
n
/3 -> 0,

it follows from (2.14) that xn —» 0;

(II) xn —> 1. Then, from (2.14), (xn — l)2y2 —> § and, in particular, |yn| —>• 00.

In the first case F(xn, yn) —¥ 0 and in the second F(xn, yn) —> 1. We deduce that
the MP level for F is c = 1 and that there is no BPS sequence for F at this level.
Analysing the Palais-Smale sequences of F\ for A G [~£>e] \ {0}> we find that a
critical point always exists at the MP level cx = (1 - A)(l - A1/3)2. We have c\ -> 1
as A -> 0 and, thus, c\ is continuous on [—£, e]. Moreover,

c'x = (1 - A^JCfA1/3 - 1 - §A-2/3), for A G] - e,e[\{0}

and, thus, c'A exists for all A G] — £,e[\{0}. On the contrary, we can check that c'A
for A = 0 does not exist as we already know from theorem 1.1.

3. Applications

The main aim of this section is to prove theorem 1.4 applying the abstract vari-
ational approach of §2. In the proofs that follow, we shall routinely take N > 3.
The proofs for N ~ 1 or N = 2 are not more complicated. Our working space is
the Sobolev space iJ1(MA'), equipped with the norm

( r V/2

\\u\\ = \ / ( \ V \ 2 + K 2 ) d
V/2

\ ,
J

which, since K > 0, is equivalent to the usual one. We denote by || • ||p, for each
p G [l,oo], the standard norm of the Lebesgue space LP(M.N). As we mentioned
in the introduction, proving theorem 1.4 amounts to finding a non-trivial critical
point of the functional / : H1^1*) -> R, denned by

f
7R

F{x,u)dx.

A proof that, under (H1)-(H3), / is a C1-functional is given in [12, proposition 2.1].
Let us show that / has an MP geometry. Since 1(0) = 0, this is a consequence of
following two results.

LEMMA 3.1. Assume that (H1)-(H3) hold, Thenl(u) = i||w||2 + o(||«||2) as u -> 0.

Proof. By (H3) we know that f(x, s)s~1 -> 0 as s -> 0 uniformly in x G KN. Thus,
for any e > 0, it follows by (H2) that there exists a C£ > 0 such that

f(x,s)^es + Ces
p-\ Vs Ss 0, a.e. x G 1^, (3.1)

or, equivalently, that

F(x,s) < \es2 + — sp, VOO.a.e.ieR^. (3.2)

https://doi.org/10.1017/S0308210500013147 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500013147


Bounded Palais-Smale sequences 799

We deduce that

and this implies that

/ F(x,u)dx = o(\\u\\2),

as u —> 0. D

LEMMA 3.2. Assume that (HI), (H2) and (H4) hold, and that K e]0,a[. Then we
can find av £ H1^), v ̂  0 satisfying I(v) < 0.

Proof. Without loss of generality, we can assume that a < oo in (H4). The proof is
based in the construction of a family of testing functions that we borrow from [32]
(see also [28]). Let

d2(N)= [ e~2^2 dx and D(N) = 4[d(7V)]"2 f \x\2e-2^2 dx.

For a > 0, we set

wa{x) = K A O r ^ V 0 ^ 2 .
Straightforward calculations show that

| K | | 2 = 1 and ||V«;Q||l = a£>(JV).

Thus, in particular if we fix a G (0, [(a - K)/D{N)}) we get that

\\Vwa\$<{a-K). (3.3)

On the other hand, by (H4),

lim (F(x, s)/s2) = \a, uniformly in x G K^.
s—>oo

and, since for every x £ WN, twa(x) —> +oo asf^- +oo, it follows that

lim (F(x,twa)/t
2w2) = ±a, a.e. x £ RN.

Now observe that (HI), (H3) and (H4) imply the existence of a constant C < oo,
such that Vs ^ 0, a.e. x G M.N,

0^(F(x,s)/s2)^C. (3.4)

Thus, using (3.4), it follows by Lebesgue's theorem that

Fir tin )
hm / da; = ±a

Now, using (3.3), we get

f Fix, til)a)
?, da;

and the lemma is proved. •
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We define on H1(RN) the family of functional

h(u) = ±\\u\\2 - \ f F(x,u)dx, A G [ 1 , 2 ] .
JILN

LEMMA 3.3. Assume that (H1)-(H4) hold. The family (I\) with A e [1,2] satisfies
the hypotheses of theorem 1.1. In particular, for almost every A € [1,2] there exists
a bounded sequence {vm} c iJ1(]RiV) satisfying

JR'

Proof. For the v G H1(RN) obtained in lemma 3.2, I\(v) < 0 for all A ^ 1 since

F(x,u)dx ^ 0, V u e f f 1 ^ ) .

Also, from lemma 3.1, we know that

/ F(x,u)dx = o(\\u\\2), as it->• 0.

Thus, setting

r = {7 e C([0,1], ff^R*)), 7(0) = 0 and 7(1) = v},

we have, VAG [1,2],

An application of theorem 1.1 now completes the proof. •

In the rest of the paper we shall often use the following terminology. Let {un} C
i?1(IRAr) be an arbitrary bounded sequence. If it is possible to translate each un

in RN such that the translated sequence (still denoted {un}) satisfies, up to a
subsequence, 3a > 0, R < oo such that

lim / u\ dx ^ a > 0,

we say that {un} does not vanish. If it is not the case, then one necessarily has

lim sup / v?n dx = 0, Vi? < oo,
Jy+BR

and, in this case, we say that {un} vanishes.

LEMMA 3.4. Assume that (H1)-(H3) hold. Let {un} C H1(RN) be an arbitrary
bounded sequence which vanishes. Then

lim / G(x,'i dx = 0.

Proof. It is known that if {un} C Hl(M.N) vanishes, then un -¥ 0 strongly in
L"(RN) for all q e]2,2N/(N - 2)[. A proof of this result is given in lemma 2.18
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of [12]. It is a special case of lemma I.I of [19]. Now, by (3.1) and (3.2), we know
that Ve > 0, 3CE > 0, such that

f(x,un)undx

JR1
F(x,un) dx < iUlluJlo H -\\un

2 p
Thus, if {un} C iJ1(RAr) vanishes, both

/ /(a;,wn)undx —> 0 and / F(x,un) dx —>• 0,

and the lemma follows from the definition of G. •

LEMMA 3.5. ,4sswme iftaf (H1)-(H4) and either (Al) or (A2) hold. Let X G [1,2]
be fixed. Then, for all bounded sequences {vm} C H1(RN) satisfying

(I) 0 < limm^oo I\(vm) sC cA;

(II) rAvm) -> 0 in H-l(RN);

there exists {ym} C Z^ , SMC/I t/iai, wp to a subsequence, um(x) := vm(x — ym)
satisfies um —^ u\ ^ 0 with I\(u\) ^ c\ and /A(wA) = 0.

Proof. Since {wm} C if1(RAf) is bounded, we have

G(a;,t;m) dx = I\(vm) - \l'x{vm)vm ->• lim /A(«m) > 0./
JRN

Thus, we see, by lemma 3.4, that {vm} C H ^ R ^ ) does not vanish and there is
{Vm} C ZN such that, up to a subsequence, um(x) := vm(x — ym) satisfies: 3a > 0,
R < oo such that

lim / u2
mdx^a>0. (3.5)

Moreover, since problem (P) is invariant under the translation group associated to
the periodicity of /(• , s), we still have

(I) 0 < lirrim-yoo h(um) ^ cA;

(II) I'x(um) -> 0 in tf

We have, up to a subsequence, um —*• uA for a « j £ if1(MJ V), and to complete the
proof of the lemma we just need to show tha t u\ ^ 0,

I'x(ux) = 0 and Ix(ux) < cA.

: ux i- 0

Since (3.5) holds, we get by the compactness of the Sobolev embedding

https://doi.org/10.1017/S0308210500013147 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500013147


802 L. Jeanjean

that
f

l > / u\dx = lim
J
JBR

 m^°° JBR

Thus, u\ ^ 0 and step 1 is completed.

Step 2: I'x{ux) = 0

Noting that C§°(RN) is dense in ff1^), it suffices to check that Ix(v)ip = 0
for all ip G ^ ( l " ) . Let (•, •) denote the inner product on H1(RN) associated with
our chosen norm. Then

r
I'x(um)ip- rx(u\)<p= (um-ux,<p) - I (f(x,um) - f(x,ux))<pdx ->0,

since um -± ux weakly in ff^R^) and strongly in L?OC(KN) for q G [2, 2N/(N - 2)[.
Thus, recalling that I'x(um) —>• 0, we indeed have that I'x(ux) = 0.

Step 3: Ix{ux) < cA

Observe that either (Al) or (A2) implies that

G(x, s) > 0, Vs > 0, a.e. x 6 R^. (3.6)

Thus, using Fatou's lemma, we get using step 2

cA ^ lim [Ix{um) - \l'x{um)um]

f
= lim / G(x,um)dx

777—^OO / e i V

This ends the proof of the lemma. •

At this point, combining lemmas 3.3 and 3.5 we deduce the existence of a sequence
{(\n,un)} C [1,2] x F 1 ^ ) with un > 0 a.e. x G RN, such that

(I) An —> 1 and {An} is decreasing;

(II) un ^ 0, IXn{un) < cAn and / j , n K) = 0.

Since

\\\un\\
2-\nl F{x,un)Ax^cXn and ||wn||

2 = \n I f(x,un)undx.
JRN JRN

we have in particular that

/ G(x,un)dx ^ -p1.

Clearly, cXn/Xn is increasing and is bounded by c = c\. It follows that

G(x, un) dx < c, Vn G N. (3.7)

https://doi.org/10.1017/S0308210500013147 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500013147


Bounded Palais-Smale sequences 803

LEMMA 3.6. Assume that (H1)-(H4) and either (Al) or (A2) hold. If the sequence
{un} c H1(RN) given above is bounded, there exists u ^ 0 such that I'{u) = 0. In
particular, u is a non-trivial positive solution of (P).

Proof. First, notice that

I/(un)v = I'x (un)v+(Xn-X) [ f(x,un)vdx^0, Vv&H1^).

Now, knowing that

I(un) = IXn (un) + (Xn - A) / F(x, un) dx,
7

A

we distinguish two cases. Either l imsup,^^ I\n(un) > 0 or limsupn_>oo IXri{un) ^
0. In the first case, we get l imsup,^^ I(un) > 0 and the result follows from
lemma 3.5. In the second case, we define the sequence {zn} C iJ1(RAr) by zn = tnun

with tn £ [0,1] satisfying

I\n(zn)= max hn(tun). (3.8)
t fc [U, 1J

(If, for n £ N, tn defined by (3.8) is not unique, we choose the smallest value.) By
construction, {zn} C 7f1(RA') is bounded. Moreover, on one hand, I'x (zn)zn = 0,
VneN and, thus,

nf G{x,zn)dx = IXn(zn)-±IXn(zn)zn = IXn(zn). (3.9)

On the other hand, it is easily seen, following the proof of lemma 3.1, that I'x (u)u =
\\u\\2 + o(||w||2) as u -> 0, uniformly in n G N. Thus, since I'x (un) = 0, there is
a > 0 such that ||un|| ^ a, Vn € N. Writing that limsup^^^ IXn(un) ^ 0, we then
obtain from lemma 3.1 and (3.8) that liminfrl_).0O IXn(zn) > 0 and, from (3.9), it
follows that

liminf / G(x,zn)dx = liminf Ix (zn) > 0.
n—^oc JmN n—>oo

Lemma 3.4 then shows that {zn} does not vanish and, thus, neither does {«„}. At
this point, we conclude by repeating steps 1 and 2 of the proof of lemma 3.5. •

In view of lemma 3.6, to complete the proof of theorem 1.4 we just need to check
that {un} C H1(RN) is bounded. This is the purpose of our last four lemmas.
Seeking a contradiction, we assume that ||un|| —> oo and define the sequence {wn} C
ff1^) by

wn = un/| |un| | .

Clearly, ||wn|| = 1 and, thus, wn —*• w up to a subsequence. Either {wn} C i?1(M7V)
vanishes or it does not vanish. Using (Al) when a < oo or (A2) when a = oo in (H4),
we shall prove that none of these alternatives can occur and this contradiction will
prove that {un} c i J^R^) is bounded. Assume, first, that {wn} C H1(RN) does
not vanish. Then, as in the proof of lemma 3.5, using, if necessary, the translation
invariance of problem (P), we get that wn —^ w ^ 0. Also, we can assume without
loss of generality, that wn —> w a.e. x 6 WLN. At this point, the proof bifurcates to
cover separately the cases a < oo and a = oo in (H4).
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LEMMA 3.7. Assume that (H1)-(H4) hold with a < oo in (H4) and that K G]0, a[.
Then the non-vanishing of {wn} C 7J1(Riv) is impossible.

Proof. We shall prove tha t 0 / « ) € H1(HN) satisfies the eigenvalue problem

+ Kw(x)=aw(x), x<ERN. (3.10)

This gives us the desired contradiction since it is well known that the operator —A
has no eigenvalue in if1(RAr). To prove that (3.10) holds, it suffices to check that,
for any ip G Cfi°(RN),

f f
I [VwVtp + Kwip} dx = / [awip}dx. (3.11)

Recall that I'Xn{un) = 0. Thus, we have

-Aun + Kun = Xnf(x,un), inH~1(RN).

Consequently, {wn} c Hl(RN) satisfies

-Awn + Kwn = Xn(f(x, un)/un)wn, in H~1(RN),

and this implies that, V<p G Cg°(RN),

r r t(f -,, \ i
x. (3.12)f

7R
Since wn -± w weakly in F ^ R ^ ) , we have, \/ip G C°°

u

0°°

f I'
/ [X7wnVtp + Kwnip] dx -4 / [VwVip + Kwip] dx. (3.13)

JRN JM.N
We claim that

Xn(f(x,un)/un)wn^>-aw, a.e. a; £ l " . (3-14)

To prove (3.14), it is convenient to distinguish the cases w(x) = 0 and w{x) ^ 0
(without loss of generality we can assume that w ^ 0 is defined everywhere on M.N).
Let x E RN be such that w(x) = 0. Using the assumptions (HI), (H3) and (H4) we
see that there exists C < oo such that

0 < (/(x, s)/s) < C, Vs > 0, a.e. x e RN. (3.15)

Thus, since {Xn} C R is bounded and wn{x) —> w{x) a.e. a; G Rw, we have for such
l e E * that

0 < Xn(f(x,un(x))/un(x))wn(x) < AnCwn(a;) -4 0 = aw(x).

Now let a; G Rw be such that iy(x) ^ 0. Then we necessarily have un(x) —> co and,
thus, using (H4), we get, since Xn -> 1,

An(/(z,«n(a;))/un(z)) -> a.

Consequently, also in this case,

\n(f(x,un(x))/un(x))wn(x) -> aw(x) (3.16)

and (3.14) is established. Now let </? G ^ ( R ^ ) be arbitrary but fixed, and let
Q C I w be a compact set such that suppy? c fi. By the compactness of the
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Sobolev embedding Hl{Q) °->- L1(i7), we have wn —> w strongly in Ll(Q). Thus,
in particular, there is h e LX{Q) such that wn(x) ^ h(x) a.e. xQ.fi (see [8,
theorem IV.9]), and, using (3.15) again, we have

0 < Xn{f{x,un)/un)wn < Cwn < C7i, a.e. x e Q. (3.17)

Now (3.14) and (3.17) allow us to apply the Lebesgue theorem, and we get

Jw
[aw<p]dx. (3.18)

Since (3.18) holds for an arbitrary ip G C§°(RN), combining (3.13) and (3.18) we
indeed get (3.11). Thus, (3.10) holds and the lemma is proved. •

LEMMA 3.8. Assume that (H1)-(H4) hold with a = oo in (H4). Then the non-
vanishing of {wn} c i?1(IR-'v) is impossible.

Proof. From

-Aun + Kun = Xnf(x, un),

we deduce that

-Awn + Kwn = Xn{f{x,un)/\\un\\). (3.19)

Multiplying (3.19) by an arbitrary v G H1^1^) and integrating, it follows that

Kwnv] dx = Xn / " v dx.

Thus, if wn —>• w, we have, Vt; G iJ1 (Mi V) ,

lim [ fyU*>vdx= f [VwVv + Kwv) dx

and, in particular, setting v = w we get

lim / { ' ™'wdx= \\w\\2 < oo. (3.20)

But on Q = {x G M^ : w(x) j^ 0} we have, since a = oo,

f(x,un) f(x,un) mM

Thus, taking into account that \Q\ > 0 and using Fatou's lemma, we deduce that

f(x,un)lim / -wdx — +oo.

This contradicts (3.20). •

Now we shall prove that the vanishing of {wn} C i?1(IRiv) is forbidden. Here, we
also distinguish the cases a < oo and a = oo and (H4).

LEMMA 3.9. Assume that (H1)-(H4) hold with a < oo in (H4). Then, if (Al)
holds, the vanishing of {wn} C iJ1(IR-'v) is impossible.
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Proof. We have

-Aun + Kun = Xnf(x,un).

Thus,

-Awn + Kwn — Xn{f(x, un)/un)wn. (3-21)

Multiplying (3.21) by wn and integrating, we get

and we deduce from the normalization of {wn} C i?1(RAf) that

f^UnKldx = l. (3.22)

We define for 5 > 0 given in (Al)

14 = {x G Kw : ( / ( I ^ I K ) < tf

Then, since 1 = ||wn||
2 = ||Vu;n||2 + JC||u;n||2, we have

Consequently, we see, using (3.22), that necessarily

liminf / f(>X'Un)w2
ndx>0. (3.23)

We claim that

limsup \RN\f2n\ = oo. (3.24)
n—>oo

Seeking a contradiction, we assume that

limsup \RN\nn| < oo. (3.25)

Note that by (3.15),

f(x,un [ w2
ndx. (3.26)

jRN\nnIRN\nn
 un

But, since {wn} C i71(RAr) vanishes, taking (3.25) into account we have
r

lim / w2
n dx -> 0,

and, thus, (3.26) contradicts (3.23). The contradiction proves that (3.24) is true.
Now observe that, by (Al), G{x, s) ^ 0, Vs ^ 0, a.e. x eRN and, thus, Vn e N,

G(x,un)dx = / G(x,un)dx + I G(x,un)dx
J JR

G(x,un)dx.
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Taking (3.7) into account, we deduce that, \/n s N,

G(x,un)dx <C. (3.27)

But, on MN\nrl7 we have (f(x,un)/un) ^ K - \8 and, thus, by (Al),

G(x, un) > S, a.e. x e R w \ f t . (3.28)

Combining (3.24) and (3.28), we get a contradiction with (3.27). •

LEMMA 3.10. Assume that (H1)-(H4) hold with a = oo in (H4). Then, if (A2)
holds, the vanishing of {wn} C 771(MW) is impossible.

Proof. We again use the sequence {zn} C H1(MN) introduced in lemma 3.6. We
claim that, under our assumptions and since we assume that ||un|| —> oo,

lim I\n{zn) = +oo. (3.29)
n—^oo

Seeking a contradiction, we assume that for M < oo

liminf/An(zn) < M, (3.30)

and we define, for the corresponding subsequence, {kn} C 7?1(IRAr) by

kn - V4M(un/\\un\\).

Now, since {kn} C fl"1(Riv) vanishes and is bounded, from the proof of lemma 3.4,
we get that

r

/ F(x, kn) dx -> 0.

It follows that, for n G N sufficiently large,

IXn(kn) = 2M-\n [ F{x, kn) dx > \M. (3.31)

Since kn and zn correspond, for all n £ N, to the same direction, we see using
the definition of zn that (3.31) contradicts (3.30). Thus, (3.29) holds. Now we have
I'K(zn)zn = 0, Vn e N, and, thus,

hn{zn) = hn(zn) ~ ^I'\n(zn)zn = \ n I G(x, zn) dx. (3.32)

Combining (3.29) and (3.32), we see that

/ G(x,zn)dx -> +oo.

But, from (A2) and (3.7), we also have

f
G(x, zn) dx < D / G(x, un) dx < C. (3.33)

This contradiction proves the lemma. •
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