J. Austral. Math. Soc. (Series A) 61 (1996), 119-128

# **DECOMPOSING CUBES**

## P. HORAK, J. ŠIRÁŇ and W. WALLIS

(Received 8 December 1994)

Communicated by L. Caccetta

#### Abstract

A graph H decomposes into a graph G if one can write H as an edge-disjoint union of graphs isomorphic to G. H decomposes into D, where D is a family of graphs, when H can be written as a union of graphs each isomorphic to some member of D, and every member of D is represented at least once. In this paper it is shown that the d-dimensional cube  $Q_d$  decomposes into any graph G of size d each of whose blocks is either an even cycle or an edge. Furthermore,  $Q_d$  decomposes into D, where D is any set of six trees of size d.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 05C70; secondary 05C99.

## 1. Introduction

We use the standard ideas of graph theory. All graphs are finite, simple and undirected.

A graph H decomposes into a graph G if H can be written as an edge-disjoint union of copies of G.

It has been thought for a long time that the general graph decomposition problem is hard. This was confirmed when Dolinski and Tarsi [1] proved that unless G is of the form  $tK_2 \cup nP_3$ , the G-decomposition problem is NP-complete. In view of their result it is not surprising that there is an interest in restricted decomposition problems. One of the most famous conjectures is that of Ringel [4]:

CONJECTURE. The complete graph on 2n + 1 vertices decomposes into any tree of size n.

Many partial results have been obtained and recently an analogue of the conjecture has been proved independently by Fink [2] and Jacobson, Truszczynski and Tuza [3].

<sup>© 1996</sup> Australian Mathematical Society 0263-6115/96 \$A2.00 + 0.00

THEOREM. ([2, 3]) The d-dimensional cube  $Q_d$  decomposes into any tree of size d.

The Theorem can be generalized in three ways: one can replace 'cube' by a more general graph, replace 'tree' by a more general graph, or consider decompositions into families rather than decompositions into a single graph. In [3] the following generalization of the first kind is proposed.

CONJECTURE. Every d-regular bipartite graph decomposes into any tree of size d.

In the present paper we focus on a generalization of the second kind, namely we show that if the graph G of size d has the property that any block is either an even cycle or an edge then  $Q_d$  decomposes into G. In view of this result and other supporting evidence we believe that the following conjecture could be true.

CONJECTURE. If G is a graph of size d embeddable into  $Q_d$ , then  $Q_d$  decomposes into G.

This conjecture is of course an analog of Wilson's Theorem [5] that for fixed  $\lambda$  and G, the  $\lambda$ -fold complete multigraph  $K_n^{(\lambda)}$  decomposes into G provided n is sufficiently large and the obvious divisibility conditions hold.

In [2] Fink discusses a generalization of the third kind. Let F be a set of graphs. Then it is said that there is an *F*-decomposition of a graph G if G can be partitioned into subgraphs each of which is isomorphic to a member of F such that every graph from F is represented at least once in the decomposition of G. He asks what is the largest number n such that, for any set F of n trees of size d, there is an F-decomposition of  $Q_d$ , and shows that  $n \ge 2$ . In the second part of this paper we shall prove that  $n \ge 6$ .

#### 2. Balanced decompositions of cubes

A decomposition of a graph G into a graph H is a system of mutually edge disjoint subgraphs  $G_1, \ldots, G_n$  of G such that  $E(G_1) \cup \cdots \cup E(G_n) = E(G)$  and  $G_i$  is isomorphic to H for  $i = 1, \ldots, n$ . In this paper we deal with decompositions of the *n*-dimensional cube which we denote by  $Q_n$ . There are many ways to represent an *n*cube. The following one is the most suitable for our purposes. The vertex set is the set  $A^n$ , the set of all ordered *n*-tuples of 0's and 1's, and two vertices are connected if they differ in precisely one coordinate. By O and I we denote the *n*-tuples  $(0, 0, \ldots, 0)$ and  $(1, 1, \ldots, 1)$  respectively. For  $\alpha \in A^n$  we denote by  $\alpha_i$  the *i*th coordinate of  $\alpha$ , and  $\ell_i$  is the *n*-tuple with  $(\ell_i)_i = 1$  and  $(\ell_i)_j = 0$  for  $j \neq i$ . If  $\alpha$  and  $\beta$  belong to  $A^n$ , the sum  $\alpha + \beta$  is also in  $A^n$  and is the componentwise sum (mod 2). Further  $\alpha \in A^n$  is called even or odd according to whether the number of non-zero coordinates of  $\alpha$  is even or odd. Finally, let G be a graph of size *n*. Then a decomposition Decomposing cubes

 $D = \{G_1, \ldots, G_{2^{n-1}}\}$  of  $Q_n$  into G is said to be *balanced* if there exist isomorphisms  $\varphi_i : G \to G_i$  such that, for any  $v \in V(G)$ ,  $\{\varphi_i(v), i = 1, \ldots, 2^{n-1}\}$  coincides either with the set of all even vertices of  $Q_n$  or with the set of all odd vertices of  $Q_n$ .

Clearly, if there is a balanced decomposition of  $Q_n$  into G then there is a balanced decomposition of  $Q_n$  into G such that for a given vertex w of G the images of w under the  $\varphi_i$ 's occupy all even vertices of  $Q_n$ .

LEMMA 1. There is a balanced decomposition of  $Q_{2n}$  into cycles of length 2n.

PROOF. Suppose first that n is even, say 2n = 4k. Let T and T' denote the vertices  $T = \ell_1 + \ell_2 + \cdots + \ell_{2k}$  and  $T' = \ell_{2k+1} + \cdots + \ell_{4k}$ . Consider two 4k-cycles of  $C_1$  and  $C_2 Q_{4k}$ , where

 $C_1 = O, \ell_1, \ell_1 + \ell_2, \dots, T, T + \ell_1, T + \ell_1 + \ell_2, \dots, T + \ell_1 + \ell_2 + \dots + \ell_{2k} (= O)$ 

and  $C_2$  is obtained from  $C_1$  by exchanging any  $\ell_i$  in the definition of  $C_1$  with  $\ell_{i+2k}$  (that is,  $C_2$  is obtained from  $C_1$  by cyclicly shifting the coordinates of any vertex of  $C_1$  by 2k to the right). For example, if d = 8, where d = 2n is the dimension of the cube,

| Cı | 0000000  | $C_2$ | 00000000 |
|----|----------|-------|----------|
|    | 1000000  |       | 00001000 |
|    | 11000000 |       | 00001100 |
|    | 11100000 |       | 00001110 |
|    | 11110000 |       | 00001111 |
|    | 01110000 |       | 00000111 |
|    | 00110000 |       | 00000011 |
|    | 00010000 |       | 00000001 |
|    | 00000000 |       | 00000000 |

It is obvious that the mapping  $\varphi_{\alpha} : A^{d} \to A^{d}$ , defined by  $\varphi_{\alpha}(\beta) = \beta + \alpha$  for  $\beta \in A^{d}$ , is an automorphism of  $Q_{d}$ . This implies that  $C_{i} + \alpha$  is a *d*-cycle of  $Q_{d}$  for any  $\alpha \in A^{d}$ , i = 1, 2. To finish the proof we show that  $\mathscr{C} = \{C_{1} + \alpha; \alpha \in A^{d}, \alpha \text{ is even}, \alpha_{2k} = 0\} \cup \{C_{2} + \beta; \beta \in A^{d}, \beta \text{ is even}, \beta_{4k} = 0\}$  is a decomposition of  $Q_{d}$  in  $C_{d}$ 's.

As  $\mathscr{C}$  contains  $2^{d-1}$  cycles it suffices to prove that they are edge disjoint. Suppose, to the contrary, that there is an edge f of  $Q_d$  which belongs to two different cycles of  $\mathscr{C}$ .

We consider two cases.

CASE 1. There exist  $\alpha, \beta \in A^d, \alpha \neq \beta$ , such that f belongs to both  $C_1 + \alpha$  and  $C_1 + \beta$ . Let f = st, where  $s = t + \ell_j$ , that is, s and t differ precisely in the *j*th coordinate. In  $C_1$ , there are two edges such that their end vertices differ in the *j*th coordinate; denote them by  $g_1 = v_1 w_1, g_2 = v_2 w_2$ . Then f must be the image of  $g_1$  or  $g_2$ . By the definition of  $C_1$  we can assume

(1) 
$$v_1 + v_2 = w_1 + w_2 = T$$
,

(2) 
$$v_1 + w_2 = v_2 + w_1 = \ell_j + T_j$$

Hence, either

$$f=g_1+\alpha=g_1+\beta,$$

or

$$f=g_1+\alpha=g_2+\beta.$$

In the former case: either  $s = v_1 + \alpha = v_1 + \beta$ , implying  $\alpha = \beta$ , which is impossible; or  $s = v_1 + \alpha = w_1 + \beta$  (whence  $v_1 + w_1 = \alpha + \beta$ ), so  $\ell_j = \alpha + \beta$ , contradicting the fact that  $\alpha + \beta$  is even. In the latter case: either  $s = v_1 + \alpha = v_2 + \beta$ , and by (1),  $\alpha + \beta = T$ , contradicting  $\alpha_k = \beta_k = 0$ ; or  $s = v_1 + \alpha = w_2 + \beta$ , which, by (2), yields  $T + \ell_j = \alpha + \beta$  contradicting  $\alpha + \beta$  is even. So case 1 is impossible.

CASE 2. There exist  $\alpha$ ,  $\beta \in A^d$  such that f = st belongs to  $C_1 + \alpha$ , implying s and t differ in the *j*th coordinate,  $j \leq 2k$ , and also f belongs to  $C_2 + \beta$  implying s and t differ in the *j*th coordinate for j > 2k. So case 2 is impossible.

To finish the proof it is necessary to show that  $\mathscr{C}$  is a balanced decomposition. Because of the symmetry of a cycle and the way we have defined C it is sufficient to pick, for any cycle  $C \in \mathscr{C}$ , a vertex  $v_C \in C$  such that the set  $\{v_C; C \in \mathscr{C}\}$  is the set of all even vertices of  $Q_d$ . It is a matter of routine to verify that the following choice has that property:

For 
$$C_1 + \alpha$$
 pick  $O + \alpha$  if  $\alpha_{4k} = 0$ ; otherwise pick  $T + \alpha$ .  
For  $C_2 + \alpha$  pick  $O + \alpha$  if  $\alpha_{2k} = 1$ ; otherwise pick  $T' + \alpha$ .

**Suppose now** 2n = 4k + 2. We represent  $Q_d$  as in Figure 1, where the four squares stand for copies of  $Q_{d-2}$  induced by *d*-tuples with the same last two coordinates. These last two coordinates are written down above each cube. Consider the decomposition of  $Q_{d-2}$  into cycles of length d-2 given in the first part of the proof. We take the same decomposition for all four  $Q_{d-2}$ 's. By means of these decompositions we generate a decomposition of  $Q_d$  into cycles of length d. We write  $v_{ij}$  for the vertex v from the  $Q_{d-2}$  whose last two coordinates are ij.



FIGURE 1.

Consider a cycle of  $\mathscr{C}$  which is of the form  $C_1 + \alpha$ . One of these is depicted in Figure 1. By  $vuw (v\ell w)$  we denote the 'upper' ('lower') part of the cycle. Then the cycle generates four cycles of length d, namely

$$K_{1} = v_{00}uw_{00}w_{01}uv_{01}v_{00}; \qquad K_{2} = v_{00}\ell w_{00}w_{10}\ell v_{10}v_{00}; K_{3} = v_{10}uw_{10}w_{11}uv_{11}v_{10}; \qquad K_{4} = v_{01}\ell w_{01}w_{11}\ell v_{11}v_{01}.$$

We choose v and w be the vertices  $O + \alpha$  and  $T + \alpha$ , respectively. Clearly, the set of vertices  $\{O + \alpha, T + \alpha; \alpha \text{ is even}, \alpha_{2k} = 0\}$  is the set of all even vertices of  $Q_{d-2}$ . On the other hand, consider a cycle of  $\mathscr{C}$  which is of the form  $C_2 + \alpha$ . In this case we choose as v and w the vertices  $O + \alpha + \ell_1$  and  $T' + \alpha + \ell_1$ , respectively. Then the set  $\{O + \alpha + \ell_1, T' + \alpha + \ell_1; \alpha \text{ is even}, \alpha_{4k} = 0\}$  is the set of all odd vertices of  $Q_{d-2}$ . Hence, the cycles generated in the above stated manner form a decomposition D of  $Q_d$ .

We now show that the decomposition is balanced. From the way we constructed the decomposition, it is sufficient to pick from any  $C \in D$  a vertex  $v_C$  and that  $\{v_C; C \in D\}$  is the set of all even vertices of  $Q_d$ . In the case that the underlying cycle from  $\mathscr{C}$  is of the form  $C_1 + \alpha$  we choose as  $v_C$  the vertex  $v_{00}$  for  $K_1$ ,  $w_{00}$  for  $K_2$ ,  $v_{11}$ for  $K_3$ , and  $w_{11}$  for  $K_4$ . For a cycle of  $\mathscr{C}$  of the form  $C_2 + \alpha$  we choose  $v_{01}$  for  $K_1$ ,  $w_{10}$  for  $K_2$ ,  $v_{01}$  for  $K_3$ , and  $w_{01}$  for  $K_4$ .

## 3. Decomposing a cube into a graph

Our first main result is the following generalization of the theorem of Fink, Jacobson, Truzczyński and Tuza.

THEOREM 2. Let G be a graph of size n, each block of which is either a cycle or an edge. If G is embeddable into  $Q_n$  then  $Q_n$  can be decomposed into G.

REMARK. Since  $Q_n$  is bipartite G is embeddable into  $Q_n$  if and only if each cycle of G has even length.

PROOF. We proceed by induction on the number of blocks of G. To be able to carry out the second step of the induction we prove a stronger statement, namely that there is a balanced decomposition of  $Q_n$  into G.

Firstly, suppose the number m of blocks equals 1. If G is a single edge the statement is obvious. If G is a cycle then it must be of even length and the claim follows from Lemma 1.

Now we assume m > 1. Suppose first that G is connected and let w be a cutpoint of G. We split G at w into two connected subgraphs F and H of sizes k and n - krespectively. Any block of G belongs entirely to F or entirely to H and w is the only vertex which belongs to both F and H. Now we consider two decompositions A and B of the set of vertices of  $Q_n$ . A is a decomposition into  $2^k$  classes where two vertices of  $Q_n$  belong to the same class when their last k coordinates coincide. B has  $2^{n-k}$  classes; two vertices are in the same class of B when their first n - kcoordinates coincide. Clearly, the subgraph of  $Q_n$  induced by any class in A is an (n-k)-dimensional cube. Analogously, a k-dimensional cube is induced by any class in B.

It is straightforward that the  $2^k + 2^{n-k}$  cubes induced by A and B form an edgedecomposition of  $Q_n$ . Take a balanced decomposition into H of any (n - k)dimensional cube  $Q^*$  given by a class of A and a balanced decomposition into F of any k-dimensional cube  $Q^*$  given by a class of B such that the images of the vertex w occupy even vertices. (Note that  $Q^*$  is a k- (or (n - k)-) dimensional cube but any of its vertices has n coordinates and the phrase 'even vertex' refers to the number of non-zero coordinates in this description of vertices of  $Q^*$ .) Thus we get  $2^{n-1}$  subgraphs of G isomorphic to F and  $2^{n-1}$  subgraphs of G isomorphic to H with vertex w occupying any even vertex twice.

For each even vertex, take the subgraphs isomorphic to F and H which have that vertex as w and paste them together (at w) to form a graph isomorphic to G. Then these graphs form a decomposition of  $Q_n$  into G, and clearly it is balanced.

If G is disconnected we proceed as above, where F is a component of G and H = G - F, and we skip over the last step of pasting copies of F and H.

It is obvious from the proof that Theorem 2 could be strengthened in the following way: let  $\mathscr{H}$  be a family of graphs such that for any graph  $H \in \mathscr{H}$  there is a balanced decomposition of  $Q_{|H|}$  into H. Then for any graph G all of whose blocks are from  $\mathscr{H}$  there is a balanced decomposition of  $Q_{|G|}$  into G.

## 4. Decomposing a cube into a family

In order to prove our theorem on decomposing cubes into families of trees, we need a result on decomposing the union of two disjoint copies of  $Q_3$  into rooted trees of size 3. We consider the set  $S = \{P_3^m, P_3^t, C^c, C^p\}$ , where:

 $P_3^m$  is a path of length 3 rooted at a midpoint;

 $P_3^t$  is a path of length 3 rooted at a terminal point;

 $C^c$  is a claw of size 3 rooted at the center;

 $C^{p}$  is a claw of size 3 rooted at a pendant vertex.

We write  $Q_3^1$  and  $Q_3^2$  for two disjoint copies of  $Q_3$ , with vertices  $\{000^1, \ldots, 111^1\}$  and  $\{000^2, \ldots, 111^2\}$  respectively.  $H = Q_3^1 \cup Q_3^2$ .

LEMMA 3. Suppose  $\mathscr{F}^1$  is the collection  $\{T_1, T_2, T_3, T_4, T_5, T_6\}$ , where each  $T_i$  is a member of S. Then one can choose  $T_7$  and  $T_8$  in  $\mathscr{F}^1$  so that there is a decomposition  $H = \bigcup_{i=1}^{8} T_i$  with the property that the roots of the  $T_i$  which lie in  $Q_3^1$  form a set  $V^1$  and the roots of the  $T_i$  which lie in  $Q_3^2$  form a set  $V^2$  where  $V^2 = \{v^2 : v^1 \notin V^1\}$ .

PROOF. First we state four propositions which can be easily verified by the reader. Denote by E and O the sets of even or odd vertices of  $Q_3$ , respectively.

**PROPOSITION 1.** For any tree F in S there is a decomposition of  $Q_3$  into F so that the roots of the F's occupy the set E.

**PROPOSITION 2.** Let  $F_1$ ,  $F_2$  be a pair of trees of  $\mathscr{S}$  such that  $\{F_1, F_2\} \neq \{C^c, C^p\}$ . Then there is a decomposition of  $Q_3$  into two copies of  $F_1$  and two copies of  $F_2$  so that the roots occupy the set E.

**PROPOSITION 3.** Let  $\{F_1, F_2\} = \{C^c, C^p\}$ . Then there is a decomposition of  $Q_3$  into three copies of  $F_1$  and a copy of  $F_2$  so that the roots occupy the vertices of the set  $S = \{000, 100, 001, 111\}$ .

**PROPOSITION 4.** There is an  $\mathscr{S} = \{P_3^m, P_3^t, C^c, C^p\}$  decomposition of  $Q_3$  so that the roots occupy the set E.

In each case, the symmetry of  $Q_3$  means that the proposition remains true if the set of root positions is replaced by its complement (S by its complement in Proposition 3, E by O in the others).

To exhibit the required decompositions of H we use the notation

 $(a, b, c, d) \rightarrow (a', b', c', d') : (a_1, b_1, c_1, d_1) + (a_2, b_2, c_2, d_2).$ 

Here (a, b, c, d) means that  $\mathscr{F}^1$  contains *a* copies of *A*, *b* copies of *B*, *c* copies of *C* and *d* of *D* (where *A*, *B*, *C*, *D* are  $P_3^m$ ,  $P_3^t$ ,  $C^c$ ,  $C^p$  in some order); a + b + c + d = 6. (a', b', c', d') exhibits the same information when trees  $T_7$  and  $T_8$  are included, so a' + b' + c' + d' = 8. The quadruple  $(a_1, b_1, c_1, d_1)$  gives the same information for the trees in  $Q_3^1$ , and  $(a_2, b_2, c_2, d_2)$  for  $Q_3^2$ , so  $a_1 + a_2 = a'$ , and so on. For example,  $(4, 2, 0, 0) \rightarrow (4, 4, 0, 0) : (4, 0, 0, 0) + (0, 4, 0, 0)$  means that in the family  $\mathscr{F}^1 = \{T_i^1; i = 1, \dots, 6\}$  one tree from  $\mathscr{S}$  occurs 4 times, one other tree occurs 2 times and the other two are not represented. As  $T_7^1$  and  $T_8^1$  we choose two copies of the tree of  $\mathscr{S}$  which is  $\mathscr{F}^1$  twice. In the decomposition of *H* we have 4 copies of the first tree in  $Q_3^1$  and four copies of the second tree in  $Q_3^2$ . By Proposition 1 we can carry out the first decomposition so that the four roots are the members of *E*, and the second so that the roots are the members of *O*, so the roots have the required property.

Below we list all possibilities and corresponding choices of  $T_7^1$  and  $T_8^1$  and decompositions of H.

 $(6, 0, 0, 0) \rightarrow (8, 0, 0, 0) : (4, 0, 0, 0) + (4, 0, 0, 0)$   $(5, 1, 0, 0) \rightarrow (6, 2, 0, 0) : (4, 0, 0, 0) + (2, 2, 0, 0) \quad \text{otherwise}$   $: (3, 1, 0, 0) + (3, 1, 0, 0) \quad \text{if } \{A, B\} = \{C^c, C^p\}$   $(4, 2, 0, 0) \rightarrow (4, 4, 0, 0) : (4, 0, 0, 0) + (0, 4, 0, 0)$   $(4, 1, 1, 0) \rightarrow (4, 2, 2, 0) : (4, 0, 0, 0) + (0, 2, 2, 0) \quad \text{otherwise}$   $: (2, 2, 0, 0) + (2, 0, 2, 0) \quad \text{if } \{B, C\} = \{C^c, C^p\}$   $(3, 3, 0, 0) \rightarrow (4, 4, 0, 0) : (4, 0, 0, 0) + (0, 4, 0, 0)$   $(3, 2, 1, 0) \rightarrow (4, 2, 2, 0) : \text{ as above}$   $(3, 1, 1, 1) \rightarrow (5, 1, 1, 1) : (4, 0, 0, 0) + (1, 1, 1, 1)$   $(2, 2, 1, 1) \rightarrow (2, 2, 2, 2) : (1, 1, 1, 1) + (1, 1, 1, 1).$ 

In each case it follows from Propositions 1–4 that the roots can be placed appropriately.

THEOREM 4. Suppose  $\mathcal{D} = \{T_1, T_2, T_3, T_4, T_5, T_6\}$ , where the  $T_i$  are trees of size d. Then  $Q_d$  decomposes into  $\mathcal{D}$ .

PROOF. We represent the cube  $Q_d$  as shown in Figure 2. The eight squares stand for subcubes  $Q_{d-3}$ ;  $Q_{ijk}$  is formed from all vertices with last three binary digits ijk. Any eight vertices with the same first d-3 coordinates induce a subcube of dimension 3. One of these  $2^{d-3}$  subcubes is represented in the Figure 2; v is a vertex of  $Q_{d-3}$ (the same vertex in each case) and the lines represent the  $Q_3$ . We write  $Q_3(v)$  for this 3-cube.



FIGURE 2.

For each *i* select a vertex  $x_i$  of  $T_i$  such that we can split  $T_i$  at  $x_i$  into two subtrees  $T_i^1$ , of size 3, and  $T_i^2$ . We view  $T_i^1$  and  $T_i^2$  as rooted at  $x_i$ ;  $T_i^1$  must be isomorphic to one of  $P_3^m$ ,  $P_3^t$ ,  $C^c$  or  $C^p$ . Write  $\mathscr{F}^1 = \{T_1^1, T_2^1, T_3^1, T_4^1, T_5^1, T_6^1\}$ . Select two trees  $T_7^1$  and  $T_8^1$  from  $\mathscr{F}^1$ , and find a decomposition of a graph  $H = Q_3^1 + Q_3^2$ , as in Lemma 3.

The subcube  $Q_3(v)$  is decomposed as  $Q_3^1$  if v is an even vertex, and as  $Q_3^2$  if v is odd. For each ijk we choose a balanced decomposition of  $Q_{ijk}$  into  $T_s^2$ , where s is the index such that the tree whose root was placed at either  $ijk^1$  or  $ijk^2$  in the decomposition of H was a  $T_s^1$ . (If s = 7 or 8 we take  $T_s^2$  the tree  $T_r^2$  where  $T_s^1$  is isomorphic to  $T_r^1$ .) If it was at  $ijk^1$  then the roots of the copies of  $T_s^2$  will occupy all the even vertices of  $Q_{ijk}$ , otherwise they occupy all the odd vertices of  $Q_{ijk}$ . In either case, at each root we glue together a copy of  $T_s^1$  and  $T_s^2$  to form a member of  $\mathscr{D}$ . These trees form the desired decomposition of  $Q_d$ .

## References

- [1] A. Dolinski and M. Tarsi, 'Graph decomposition is NPC a complete proof of Holyer's conjecture.', in: *Proc. 24th annual ACM symposium on theory of computing* (Victoria, BC, 1992) pp. 252–263.
- J. F. Fink, 'On the decomposition of n-cubes into isomorphic trees', J. Graph Theory 14 (1990), 405-411.

- [3] M. S. Jacobson, M. Truszczynski and Z. Tuza, 'Decompositions of regular bipartite graphs', *Discrete Math.* **89** (1991), 17–27.
- [4] G. Ringel, 'Problem 25', in: Theory of graphs and its applications (Smolenice, 1963) (Czechoslovak Academy of Science, Prague, 1964) p. 162.
- [5] R. M. Wilson, 'Decompositions of complete graphs into subgraphs', Congr. Numer. 15 (1976), 647-659.

Slovak Technical University 81219 Bratislava Slovakia Comenius University 84215 Bratislava Slovakia

Southern Illinois University Carbondale Illinois 62901

128