DECOMPOSING CUBES

P. HORAK, J. ŠIRÁŇ and W. WALLIS

(Received 8 December 1994)

Communicated by L. Caccetta

Abstract

A graph H decomposes into a graph G if one can write H as an edge-disjoint union of graphs isomorphic to G. H decomposes into D, where D is a family of graphs, when H can be written as a union of graphs each isomorphic to some member of D, and every member of D is represented at least once. In this paper it is shown that the d-dimensional cube Q_{d} decomposes into any graph G of size d each of whose blocks is either an even cycle or an edge. Furthermore, Q_{d} decomposes into D, where D is any set of six trees of size d.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 05C70; secondary 05C99.

1. Introduction

We use the standard ideas of graph theory. All graphs are finite, simple and undirected.
A graph H decomposes into a graph G if H can be written as an edge-disjoint union of copies of G.

It has been thought for a long time that the general graph decomposition problem is hard. This was confirmed when Dolinski and Tarsi [1] proved that unless G is of the form $t K_{2} \cup n P_{3}$, the G-decomposition problem is NP-complete. In view of their result it is not surprising that there is an interest in restricted decomposition problems. One of the most famous conjectures is that of Ringel [4]:

CONJECTURE. The complete graph on $2 n+1$ vertices decomposes into any tree of size n.

Many partial results have been obtained and recently an analogue of the conjecture has been proved independently by Fink [2] and Jacobson, Truszczynski and Tuza [3].

Theorem. $([2,3])$ The d-dimensional cube Q_{d} decomposes into any tree of size d.
The Theorem can be generalized in three ways: one can replace 'cube' by a more general graph, replace 'tree' by a more general graph, or consider decompositions into families rather than decompositions into a single graph. In [3] the following generalization of the first kind is proposed.

CONJECTURE. Every d-regular bipartite graph decomposes into any tree of size d.
In the present paper we focus on a generalization of the second kind, namely we show that if the graph G of size d has the property that any block is either an even cycle or an edge then Q_{d} decomposes into G. In view of this result and other supporting evidence we believe that the following conjecture could be true.

CONJECTURE. If G is a graph of size d embeddable into Q_{d}, then Q_{d} decomposes into G.

This conjecture is of course an analog of Wilson's Theorem [5] that for fixed λ and G, the λ-fold complete multigraph $K_{n}^{(\lambda)}$ decomposes into G provided n is sufficiently large and the obvious divisibility conditions hold.

In [2] Fink discusses a generalization of the third kind. Let F be a set of graphs. Then it is said that there is an F-decomposition of a graph G if G can be partitioned into subgraphs each of which is isomorphic to a member of F such that every graph from F is represented at least once in the decomposition of G. He asks what is the largest number n such that, for any set F of n trees of size d, there is an F-decomposition of Q_{d}, and shows that $n \geq 2$. In the second part of this paper we shall prove that $n \geq 6$.

2. Balanced decompositions of cubes

A decomposition of a graph G into a graph H is a system of mutually edge disjoint subgraphs G_{1}, \ldots, G_{n} of G such that $E\left(G_{1}\right) \cup \cdots \cup E\left(G_{n}\right)=E(G)$ and G_{i} is isomorphic to H for $i=1, \ldots, n$. In this paper we deal with decompositions of the n-dimensional cube which we denote by Q_{n}. There are many ways to represent an n cube. The following one is the most suitable for our purposes. The vertex set is the set A^{n}, the set of all ordered n-tuples of 0 's and 1 's, and two vertices are connected if they differ in precisely one coordinate. By O and I we denote the n-tuples $(0,0, \ldots, 0)$ and $(1,1, \ldots, 1)$ respectively. For $\alpha \in A^{n}$ we denote by α_{i} the i th coordinate of α, and ℓ_{i} is the n-tuple with $\left(\ell_{i}\right)_{i}=1$ and $\left(\ell_{i}\right)_{j}=0$ for $j \neq i$. If α and β belong to A^{n}, the sum $\alpha+\beta$ is also in A^{n} and is the componentwise sum (mod 2). Further $\alpha \in A^{n}$ is called even or odd according to whether the number of non-zero coordinates of α is even or odd. Finally, let G be a graph of size n. Then a decomposition
$D=\left\{G_{1}, \ldots, G_{2^{n-1}}\right\}$ of Q_{n} into G is said to be balanced if there exist isomorphisms $\varphi_{i}: G \rightarrow G_{i}$ such that, for any $v \in V(G),\left\{\varphi_{i}(v), i=1, \ldots, 2^{n-1}\right\}$ coincides either with the set of all even vertices of Q_{n} or with the set of all odd vertices of Q_{n}.

Clearly, if there is a balanced decomposition of Q_{n} into G then there is a balanced decomposition of Q_{n} into G such that for a given vertex w of G the images of w under the φ_{i} 's occupy all even vertices of Q_{n}.

LEMMA 1. There is a balanced decomposition of $Q_{2 n}$ into cycles of length $2 n$.
Proof. Suppose first that n is even, say $2 n=4 k$. Let T and T^{\prime} denote the vertices $T=\ell_{1}+\ell_{2}+\cdots+\ell_{2 k}$ and $T^{\prime}=\ell_{2 k+1}+\cdots+\ell_{4 k}$. Consider two $4 k$-cycles of C_{1} and $C_{2} Q_{4 k}$, where
$C_{1}=O, \ell_{1}, \ell_{1}+\ell_{2}, \ldots, T, T+\ell_{1}, T+\ell_{1}+\ell_{2}, \ldots, T+\ell_{1}+\ell_{2}+\cdots+\ell_{2 k}(=O)$
and C_{2} is obtained from C_{1} by exchanging any ℓ_{i} in the definition of C_{1} with $\ell_{i+2 k}$ (that is, C_{2} is obtained from C_{1} by cyclicly shifting the coordinates of any vertex of C_{1} by $2 k$ to the right). For example, if $d=8$, where $d=2 n$ is the dimension of the cube,

C_{1}	00000000	C_{2}	00000000
	10000000		00001000
	11000000		00001100
	11100000		00001110
	11110000		00001111
	01110000		00000111
	00110000		00000011
	00010000		00000001
	00000000		00000000

It is obvious that the mapping $\varphi_{\alpha}: A^{d} \rightarrow A^{d}$, defined by $\varphi_{\alpha}(\beta)=\beta+\alpha$ for $\beta \in A^{d}$, is an automorphism of Q_{d}. This implies that $C_{i}+\alpha$ is a d-cycle of Q_{d} for any $\alpha \in A^{d}, i=1,2$. To finish the proof we show that $\mathscr{C}=\left\{C_{1}+\alpha ; \alpha \in A^{d}, \alpha\right.$ is even, $\left.\alpha_{2 k}=0\right\} \cup\left\{C_{2}+\beta ; \beta \in A^{d}, \beta\right.$ is even, $\left.\beta_{4 k}=0\right\}$ is a decomposition of Q_{d} in C_{d} 's.

As \mathscr{C} contains 2^{d-1} cycles it suffices to prove that they are edge disjoint. Suppose, to the contrary, that there is an edge f of Q_{d} which belongs to two different cycles of \mathscr{C}.

We consider two cases.

CASE 1. There exist $\alpha, \beta \in A^{d}, \alpha \neq \beta$, such that f belongs to both $C_{1}+\alpha$ and $C_{1}+\beta$. Let $f=s t$, where $s=t+\ell_{j}$, that is, s and t differ precisely in the j th coordinate. In C_{1}, there are two edges such that their end vertices differ in the j th coordinate; denote them by $g_{1}=v_{1} w_{1}, g_{2}=v_{2} w_{2}$. Then f must be the image of g_{1} or g_{2}. By the definition of C_{1} we can assume

$$
\begin{align*}
& v_{1}+v_{2}=w_{1}+w_{2}=T \tag{1}\\
& v_{1}+w_{2}=v_{2}+w_{1}=\ell_{j}+T . \tag{2}
\end{align*}
$$

Hence, either

$$
f=g_{1}+\alpha=g_{1}+\beta
$$

or

$$
f=g_{1}+\alpha=g_{2}+\beta
$$

In the former case: either $s=v_{1}+\alpha=v_{1}+\beta$, implying $\alpha=\beta$, which is impossible; or $s=v_{1}+\alpha=w_{1}+\beta$ (whence $v_{1}+w_{1}=\alpha+\beta$), so $\ell_{j}=\alpha+\beta$, contradicting the fact that $\alpha+\beta$ is even. In the latter case: either $s=v_{1}+\alpha=v_{2}+\beta$, and by (1), $\alpha+\beta=T$, contradicting $\alpha_{k}=\beta_{k}=0$; or $s=v_{1}+\alpha=w_{2}+\beta$, which, by (2), yields $T+\ell_{j}=\alpha+\beta$ contradicting $\alpha+\beta$ is even. So case 1 is impossible.

CASE 2. There exist $\alpha, \beta \in A^{d}$ such that $f=s t$ belongs to $C_{1}+\alpha$, implying s and t differ in the j th coordinate, $j \leq 2 k$, and also f belongs to $C_{2}+\beta$ implying s and t differ in the j th coordinate for $j>2 k$. So case 2 is impossible.

To finish the proof it is necessary to show that \mathscr{C} is a balanced decomposition. Because of the symmetry of a cycle and the way we have defined C it is sufficient to pick, for any cycle $C \in \mathscr{C}$, a vertex $v_{C} \in C$ such that the set $\left\{v_{C} ; C \in \mathscr{C}\right\}$ is the set of all even vertices of Q_{d}. It is a matter of routine to verify that the following choice has that property:

For $C_{1}+\alpha$ pick $O+\alpha$ if $\alpha_{4 k}=0$; otherwise pick $T+\alpha$.
For $C_{2}+\alpha$ pick $O+\alpha$ if $\alpha_{2 k}=1$; otherwise pick $T^{\prime}+\alpha$.
Suppose now $2 n=4 k+2$. We represent Q_{d} as in Figure 1 , where the four squares stand for copies of Q_{d-2} induced by d-tuples with the same last two coordinates. These last two coordinates are written down above each cube. Consider the decomposition of Q_{d-2} into cycles of length $d-2$ given in the first part of the proof. We take the same decomposition for all four Q_{d-2} 's. By means of these decompositions we generate a decomposition of Q_{d} into cycles of length d. We write $v_{i j}$ for the vertex v from the Q_{d-2} whose last two coordinates are $i j$.
$00 \quad 01$

Figure 1.

Consider a cycle of \mathscr{C} which is of the form $C_{1}+\alpha$. One of these is depicted in Figure 1. By $v u w(v \ell w)$ we denote the 'upper' ('lower') part of the cycle. Then the cycle generates four cycles of length d, namely

$$
\begin{array}{ll}
K_{1}=v_{00} u w_{00} w_{01} u v_{01} v_{00} ; & K_{2}=v_{00} \ell w_{00} w_{10} \ell v_{10} v_{00} \\
K_{3}=v_{10} u w_{10} w_{11} u v_{11} v_{10} ; & K_{4}=v_{01} \ell w_{01} w_{11} \ell v_{11} v_{01}
\end{array}
$$

We choose v and w be the vertices $O+\alpha$ and $T+\alpha$, respectively. Clearly, the set of vertices $\left\{O+\alpha, T+\alpha ; \alpha\right.$ is even, $\left.\alpha_{2 k}=0\right\}$ is the set of all even vertices of Q_{d-2}. On the other hand, consider a cycle of \mathscr{C} which is of the form $C_{2}+\alpha$. In this case we choose as v and w the vertices $O+\alpha+\ell_{1}$ and $T^{\prime}+\alpha+\ell_{1}$, respectively. Then the set $\left\{O+\alpha+\ell_{1}, T^{\prime}+\alpha+\ell_{1} ; \alpha\right.$ is even, $\left.\alpha_{4 k}=0\right\}$ is the set of all odd vertices of Q_{d-2}. Hence, the cycles generated in the above stated manner form a decomposition D of Q_{d}.

We now show that the decomposition is balanced. From the way we constructed the decomposition, it is sufficient to pick from any $C \in D$ a vertex v_{C} and that $\left\{v_{C} ; C \in D\right\}$ is the set of all even vertices of Q_{d}. In the case that the underlying cycle from \mathscr{C} is of the form $C_{1}+\alpha$ we choose as v_{C} the vertex v_{00} for K_{1}, w_{00} for K_{2}, v_{11} for K_{3}, and w_{11} for K_{4}. For a cycle of \mathscr{C} of the form $C_{2}+\alpha$ we choose v_{01} for K_{1}, w_{10} for K_{2}, v_{01} for K_{3}, and w_{01} for K_{4}.

3. Decomposing a cube into a graph

Our first main result is the following generalization of the theorem of Fink, Jacobson, Truzczyński and Tuza.

THEOREM 2. Let G be a graph of size n, each block of which is either a cycle or an edge. If G is embeddable into Q_{n} then Q_{n} can be decomposed into G.

REMARK. Since Q_{n} is bipartite G is embeddable into Q_{n} if and only if each cycle of G has even length.

Proof. We proceed by induction on the number of blocks of G. To be able to carry out the second step of the induction we prove a stronger statement, namely that there is a balanced decomposition of Q_{n} into G.

Firstly, suppose the number m of blocks equals 1 . If G is a single edge the statement is obvious. If G is a cycle then it must be of even length and the claim follows from Lemma 1.

Now we assume $m>1$. Suppose first that G is connected and let w be a cutpoint of G. We split G at w into two connected subgraphs F and H of sizes k and $n-k$ respectively. Any block of G belongs entirely to F or entirely to H and w is the only vertex which belongs to both F and H. Now we consider two decompositions A and B of the set of vertices of $Q_{n} . A$ is a decomposition into 2^{k} classes where two vertices of Q_{n} belong to the same class when their last k coordinates coincide. B has 2^{n-k} classes; two vertices are in the same class of B when their first $n-k$ coordinates coincide. Clearly, the subgraph of Q_{n} induced by any class in A is an ($n-k$)-dimensional cube. Analogously, a k-dimensional cube is induced by any class in B.

It is straightforward that the $2^{k}+2^{n-k}$ cubes induced by A and B form an edgedecomposition of Q_{n}. Take a balanced decomposition into H of any ($n-k$)dimensional cube Q^{*} given by a class of A and a balanced decomposition into F of any k-dimensional cube Q^{*} given by a class of B such that the images of the vertex w occupy even vertices. (Note that Q^{*} is a k - (or $(n-k)$-) dimensional cube but any of its vertices has n coordinates and the phrase 'even vertex' refers to the number of non-zero coordinates in this description of vertices of Q^{*}.) Thus we get 2^{n-1} subgraphs of G isomorphic to F and 2^{n-1} subgraphs of G isomorphic to H with vertex w occupying any even vertex twice.

For each even vertex, take the subgraphs isomorphic to F and H which have that vertex as w and paste them together (at w) to form a graph isomorphic to G. Then these graphs form a decomposition of Q_{n} into G, and clearly it is balanced.

If G is disconnected we proceed as above, where F is a component of G and $H=G-F$, and we skip over the last step of pasting copies of F and H.

It is obvious from the proof that Theorem 2 could be strengthened in the following way: let \mathscr{H} be a family of graphs such that for any graph $H \in \mathscr{H}$ there is a balanced decomposition of $Q_{|H|}$ into H. Then for any graph G all of whose blocks are from \mathscr{H} there is a balanced decomposition of $Q_{|G|}$ into G.

4. Decomposing a cube into a family

In order to prove our theorem on decomposing cubes into families of trees, we need a result on decomposing the union of two disjoint copies of Q_{3} into rooted trees of size 3 . We consider the set $S=\left\{P_{3}^{m}, P_{3}^{t}, C^{c}, C^{p}\right\}$, where:
P_{3}^{m} is a path of length 3 rooted at a midpoint;
P_{3}^{t} is a path of length 3 rooted at a terminal point;
C^{c} is a claw of size 3 rooted at the center;
C^{p} is a claw of size 3 rooted at a pendant vertex.
We write Q_{3}^{1} and Q_{3}^{2} for two disjoint copies of Q_{3}, with vertices $\left\{000^{1}, \ldots, 111^{1}\right\}$ and $\left\{000^{2}, \ldots, 111^{2}\right\}$ respectively. $H=Q_{3}^{1} \cup Q_{3}^{2}$.

LEMMA 3. Suppose \mathscr{F}^{1} is the collection $\left\{T_{1}, T_{2}, T_{3}, T_{4}, T_{5}, T_{6}\right\}$, where each T_{i} is a member of S. Then one can choose T_{7} and T_{8} in \mathscr{F}^{1} so that there is a decomposition $H=\bigcup_{i=1}^{8} T_{i}$ with the property that the roots of the T_{i} which lie in Q_{3}^{1} form a set V^{1} and the roots of the T_{i} which lie in Q_{3}^{2} form a set V^{2} where $V^{2}=\left\{v^{2}: v^{1} \notin V^{1}\right\}$.

PROOF. First we state four propositions which can be easily verified by the reader. Denote by E and O the sets of even or odd vertices of Q_{3}, respectively.

Proposition 1. For any tree F in \mathscr{S} there is a decomposition of Q_{3} into F so that the roots of the F's occupy the set E.

Proposition 2. Let F_{1}, F_{2} be a pair of trees of \mathscr{S} such that $\left\{F_{1}, F_{2}\right\} \neq\left\{C^{c}, C^{p}\right\}$. Then there is a decomposition of Q_{3} into two copies of F_{1} and two copies of F_{2} so that the roots occupy the set E.

Proposition 3. Let $\left\{F_{1}, F_{2}\right\}=\left\{C^{c}, C^{p}\right\}$. Then there is a decomposition of Q_{3} into three copies of F_{1} and a copy of F_{2} so that the roots occupy the vertices of the set $S=\{000,100,001,111\}$.

Proposition 4. There is an $\mathscr{S}=\left\{P_{3}^{m}, P_{3}^{t}, C^{c}, C^{p}\right\}$ decomposition of Q_{3} so that the roots occupy the set E.

In each case, the symmetry of Q_{3} means that the proposition remains true if the set of root positions is replaced by its complement (S by its complement in Proposition $3, E$ by O in the others).

To exhibit the required decompositions of H we use the notation

$$
(a, b, c, d) \rightarrow\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right):\left(a_{1}, b_{1}, c_{1}, d_{1}\right)+\left(a_{2}, b_{2}, c_{2}, d_{2}\right)
$$

Here (a, b, c, d) means that \mathscr{F}^{1} contains a copies of A, b copies of B, c copies of C and d of D (where A, B, C, D are $P_{3}^{m}, P_{3}^{t}, C^{c}, C^{p}$ in some order); $a+b+c+d=6$. ($a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}$) exhibits the same information when trees T_{7} and T_{8} are included, so $a^{\prime}+b^{\prime}+c^{\prime}+d^{\prime}=8$. The quadruple ($a_{1}, b_{1}, c_{1}, d_{1}$) gives the same information for the trees in Q_{3}^{1}, and ($a_{2}, b_{2}, c_{2}, d_{2}$) for Q_{3}^{2}, so $a_{1}+a_{2}=a^{\prime}$, and so on. For example, $(4,2,0,0) \rightarrow(4,4,0,0):(4,0,0,0)+(0,4,0,0)$ means that in the family $\mathscr{F}^{1}=\left\{T_{i}^{1} ; i=1, \ldots, 6\right\}$ one tree from \mathscr{S} occurs 4 times, one other tree occurs 2 times and the other two are not represented. As T_{7}^{1} and T_{8}^{1} we choose two copies of the tree of \mathscr{S} which is \mathscr{F}^{1} twice. In the decomposition of H we have 4 copies of the first tree in Q_{3}^{1} and four copies of the second tree in Q_{3}^{2}. By Proposition 1 we can carry out the first decomposition so that the four roots are the members of E, and the second so that the roots are the members of O, so the roots have the required property.

Below we list all possibilities and corresponding choices of T_{7}^{1} and T_{8}^{1} and decompositions of H.

$$
\begin{aligned}
&(6,0,0,0) \rightarrow(8,0,0,0):(4,0,0,0)+(4,0,0,0) \\
&(5,1,0,0) \rightarrow(6,2,0,0):(4,0,0,0)+(2,2,0,0) \\
&:(3,1,0.0)+(3,1,0,0) \quad \text { otherwise } \\
& \text { if }\{A, B\}=\left\{C^{c}, C^{p}\right\} \\
&(4,2,0,0) \rightarrow(4,4,0,0):(4,0,0,0)+(0,4,0,0) \\
&(4,1,1,0) \rightarrow(4,2,2,0):(4,0,0,0)+(0,2,2,0) \text { otherwise } \\
&:(2,2,0,0)+(2,0,2,0) \quad \text { if }\{B, C\}=\left\{C^{c}, C^{p}\right\} \\
&(3,3,0,0) \rightarrow(4,4,0,0):(4,0,0,0)+(0,4,0,0) \\
&(3,2,1,0) \rightarrow(4,2,2,0): \text { as above } \\
&(3,1,1,1) \rightarrow(5,1,1,1):(4,0,0,0)+(1,1,1,1) \\
&(2,2,1,1) \rightarrow(2,2,2,2):(1,1,1,1)+(1,1,1,1) .
\end{aligned}
$$

In each case it follows from Propositions 1-4 that the roots can be placed appropriately.

THEOREM 4. Suppose $\mathscr{D}=\left\{T_{1}, T_{2}, T_{3}, T_{4}, T_{5}, T_{6}\right\}$, where the T_{i} are trees of size d. Then Q_{d} decomposes into \mathscr{D}.

Proof. We represent the cube Q_{d} as shown in Figure 2. The eight squares stand for subcubes $Q_{d-3} ; Q_{i j k}$ is formed from all vertices with last three binary digits $i j k$. Any eight vertices with the same first $d-3$ coordinates induce a subcube of dimension 3. One of these 2^{d-3} subcubes is represented in the Figure $2 ; v$ is a vertex of Q_{d-3} (the same vertex in each case) and the lines represent the Q_{3}. We write $Q_{3}(v)$ for this 3-cube.

Figure 2.

For each i select a vertex x_{i} of T_{i} such that we can split T_{i} at x_{i} into two subtrees T_{i}^{1}, of size 3 , and T_{i}^{2}. We view T_{i}^{1} and T_{i}^{2} as rooted at $x_{i} ; T_{i}^{1}$ must be isomorphic to one of $P_{3}^{m}, P_{3}^{t}, C^{c}$ or C^{p}. Write $\mathscr{F}^{1}=\left\{T_{1}^{1}, T_{2}^{1}, T_{3}^{1}, T_{4}^{1}, T_{5}^{1}, T_{6}^{1}\right\}$. Select two trees T_{7}^{1} and T_{8}^{1} from \mathscr{F}^{1}, and find a decomposition of a graph $H=Q_{3}^{1}+Q_{3}^{2}$, as in Lemma 3.

The subcube $Q_{3}(v)$ is decomposed as Q_{3}^{1} if v is an even vertex, and as Q_{3}^{2} if v is odd. For each $i j k$ we choose a balanced decomposition of $Q_{i j k}$ into T_{s}^{2}, where s is the index such that the tree whose root was placed at either $i j k^{1}$ or $i j k^{2}$ in the decomposition of H was a T_{s}^{1}. (If $s=7$ or 8 we take T_{s}^{2} the tree T_{r}^{2} where T_{s}^{1} is isomorphic to T_{r}^{1}.) If it was at $i j k^{1}$ then the roots of the copies of T_{s}^{2} will occupy all the even vertices of $Q_{i j k}$, otherwise they occupy all the odd vertices of $Q_{i j k}$. In either case, at each root we glue together a copy of T_{s}^{1} and T_{s}^{2} to form a member of \mathscr{D}. These trees form the desired decomposition of Q_{d}.

References

[1] A. Dolinski and M. Tarsi, 'Graph decomposition is NPC - a complete proof of Holyer's conjecture.', in: Proc. 24th annual ACM symposium on theory of computing (Victoria, BC, 1992) pp. 252-263.
[2] J. F. Fink, 'On the decomposition of n-cubes into isomorphic trees', J. Graph Theory 14 (1990), 405-411.
[3] M. S. Jacobson, M. Truszczynski and Z. Tuza, ‘Decompositions of regular bipartite graphs’, Discrete Math. 89 (1991), 17-27.
[4] G. Ringel, 'Problem 25', in: Theory of graphs and its applications (Smolenice, 1963) (Czechoslovak Academy of Science, Prague, 1964) p. 162.
[5] R. M. Wilson, 'Decompositions of complete graphs into subgraphs', Congr. Numer. 15 (1976), 647-659.

Slovak Technical University
81219 Bratislava
Slovakia

Comenius University
84215 Bratislava
Slovakia

Southern Illinois University
Carbondale
Illinois 62901

