A NOTE ON THE TARRY-ESCOTT PROBLEM
Z.A. Melzak!
(received June 12, 1961)

The Tarry-Escott problem in Diophantine analysis is the
following: consider the system of equations
k k.
3 = z b. I
i=t %17 Tiet 0y

for the unknowns ai, e, ak, bi' c s bk, what is the small-

est integer K = K(n) in the set of all k's for which the system
(1) possesses a non-trivial solution in integers ? By an

(1) = j=1,...n,

integer we mean a rational integer and a solution is called trivial
if the sets {ai, S ak} and {b1, ce bk} are permutations

of each other. By the Tarry-Escott problem one may also mean
the problem of finding an actual solution of (1) or finding all
such solutions but we shall be concerned with the bound X(n)
only. However, the method given here is constructive, that is
to say, with each estimate K1 for K it leads to finding actual

non-trivial solutions of (1) with k = Ki'

Suppose that k <n in (1), then from elementary prop-
erties of the symmeatric functions it follows that a1, ..., a
and bi, ..., b are roots of the same equation of degree k.

n
Consequently the solutions are trivial. Therefore
(2) K(n)>n + 1.

It has been conjectured in [1] that in fact K(n) = n + 1;
this is easily proved to be true for the first few values of n, [1].
A simple combinatorial proof has been given in [1] of the
estimate

(3) K(n) < [n(n + 1)/2] + 14;
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the above bound has been sl1ght1y improved in [2] to

K(n) < (n + 4)/2,
and this would appear to be the best bound known so far.

In this note we shall prove a theorem giving an exact
expression for K(n). Our expression is of non-constructive
nature, that is, it does not allow one to compute K(n), but it
leads to estimates for K(n) which are better that (3) for
certain values of n. Let O be the class of all polynomials
whose coefficients are integers, not all 0. We put

S[P] = Z,N |a.| for P = P(x) = E.N a,xi.
i=o 71 i=o i
THEOREM 1.
(4) mm=%§@aqmmu-xﬁﬁ.

Proof. By the factorial binomial theorem, or otherwise,
it is easy to show that

(5) (ﬂH”H(-jfsm s=1,...,n.

. s
Rearranging this by taking all the powers (x -j) with negative
coefficients to the other side, one gets

n+1 n+4 n+1 n+1i
J—OZIJ( )(X'J) =oZIJ( )(X-J) s=1,....n

Letting in the above x be any integer we obtain a non-
trivial solution of (1) with
nti n+i n

k=32 (. )=2.
J=° )
Write (5) symbolically as
+
(6) -0 oo

and call (5) the expanded form of (6) and (6) the contracted
form of (5). It is clear what operation on (5) leads to (6),
and vice versa. Further, for every polynomial Q¢ Ol there is
an expanded form of Q(x) = 0. Let P ¢ O, then the expansion

+
of the contracted form P(x) (1 - x)n 1 leads, as above, to a
non-trivial solution of (1), with

(7) x = L s[Px) (1 - 0™

Hence

(8) K(n) < + gnin, S[P(x) (1 - 07" ']
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Suppose next that K(n) = K; let ai.m..., ay Bi’ e,

SK be a non-trivial solution of (1). From
K j K
2 = 2 ] j = E B ] 3
(9) - % - [3i j=1 n
one obtains immediately
(10) EK(x a)j-EK(x B)J "—1
i=t i FE TR I E e

It is clear from the definition of K that no equality o, = B,
i

holds. On the other hand, some of the eo's, and B's, may be
equal. Suppose that the distinct values among the numbers

a1, e, aK are p,, ---s P in the order of increasing mag-

nitude, and let the multiplicity of the occurence of p, be m,.
i

Define similarly the numbers q - Q and the multiplicities
s )
n1, R for the set 51, RN ﬁK. Now (410) may be written
r j s j .
> - = E - N = y e+, 11,
as g Ty T P 2 E my (k- g, g =t "
with m,>1, n,>1 and p. #q, . We have
1= 1= 1 1
1 2
(11) = m =2°% 5 =K
1= 1 i= 1
Let

F(x) = Ei:1 mixpi - Zi-ji nixqi ,
then (10) is the expanded form of the contraction F(x) = 0
and we have by (11)
(12) K = ¥+ S[F(x)].
We next verify that the equations (9) can also be written as

F(j) (x)[x=1 =0, j=1,...,n.

Since also clearly F(1) = 0 it follows that x =1 is an (n+1)-
tuple root of the equation F(x) = 0 and hence

(1 - 0™ Fx).

+
We have therefore F(x) = (1 - x)n 1T(x), where T(x) is a

polynomial. From the definition of K it follows that

.c.d. s e ey , s ey =1,
g ¢ (mi mr ni ns) 1

that is, the g.c.d. of the coefficients of F(x) is 4. This im-
plies that the coefficients of T are integers, and so T e {.
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Therefore by (412)

K =+ S[T(x) (1 - ™', Tix) e O

which together with (&) proves (4).

While the equation (4) does not allow an explicit calcul-
ation of K(n), it is possible to obtain bounds on K(n) by taking
in (4) suitable polynomials P(x). By trial and error it has
been found that relatively low bounds result from taking P(x)
of the form

- S J\Ei4 cTT N k
P(x) = - J =
(= [ (= U = x]
where s is a small positive integer and ¢, = 0 or 1. The
bounds on K(n) are then of the form
i .
(13) $sleea T, (1 - )]
j=1
with Q(x) = Wsi 1 - .xJ)Ej, Since-the.calculation of expressions
J:

like (13) 1is rather lengthy for n> 10 say, and since no easy
analytical procedure seems to apply. the problem was programmed
for an automatic calculator (the IBM 704). The results are

given in the enclosed Table 1 where bn is the upper bound on

K(n) obtained from (43), the corresponding polynomial Q
is listed, and the bound [n(n + 1)]/2 + 1 is given for compar-
ison. In constructing the table only four multipliers Q were

considered: 1, 1 - x, 1 - x2 and (1 - x) (1 - xz).

The author acknowledges gratefully the help of Prof. M.
Herschorn of MzGill University who has performed some cal-
culations by hand, and the assistance of various members of
the Computation Centre of the Bell Telephone Laboratories who
have tried to help with programming.
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Table 1

n b Q [n(n+1)]/2+1 n b Q [n(nt+1)]/2+1
2 3 1 4 16 58 1-x 137
3 4 1 7 17 75 1-x 154
4 6 1 11 18 74 1-x 172
5 8 1 16 19 92  (1-x) (1-x2) 191
6 10 1 22 20 400  1-x 211
7T 14 1 29 21 124 (1-x) ('1-x2) 232
& 18 1 37 22 118 (1-x) (i-xz) 254
9 22 1 46 23 146  (1-x) (1-x°) 271
10 22 1-x 56 24 159  (1-x) (1-x2) 301
11 34 1-x 67 25 170 (1-x) (1-x2) 326
12 32 1-x 79 26 196  (1-x) (1-x2) 352
13 44 1-x 92 27 216 (1-x%) (1-x2) 379
14 46 1-x 106 28 207 (1-x) (1-x2) 407
15 58 1-x 1214 29 266 (1-x).(1—x2) 436
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