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Abstract. Let (C, G) be a smooth integral proper curve of gegusver an algebraically closed field
k of characteristip > 0 andG be a finite group of automorphisms €f It is well known that here,
contrary to the characteristic O case, Hurwitz’s boltl < 84(¢g — 1) doesn’t hold in general; in
such cases this gives an obstruction to obtaining a smooth galois liftift@, 6¥) to characteristic 0.

We shall give new obstructions of local nature to the lifting problem, even in the case @here
is abelian. In the case where the inertia groupspéeecyclic witha < 2 and(e,p) = 1, we shall

prove that smooth galois liftings exist ovigr (k)| pxz/i].
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0. Introduction

In this paper we consider the following question
SITUATION: Letk be an algebraically closed field of characterigtic 0, andC'/k
be a smooth integral proper curve of gegus ¢g(C). Let R be a complete discrete

valuation ring dominating the ring of Witt vectoVg (k) and= be a uniformising
parameter of?.

QUESTION:Let G be a finite subgroup okut, (C') and suppose
C—-D=C/G

is a finite galois cover of smooth integral proper curves dués it possible to find?

as above and afinite galois cover of smooth relative curvesBy€r— D = C/G

which lifts the given covet’ — D?

Background results
e If (|G|,p) = 1 the answer is yes for any, by Grothendieck, SGA I.
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o If |G| > 84(¢g(C) 1) then the answer is no, due to a contradiction using
Hurwitz bounds. In characteristicthere exist curve€’/k such that one can
choosed with |G| > 84(g <1), see [Ro], but in characteristic O the order of
the automorphism group of a curve of gemus at most 84g <1).

One remarks that ifs is abelian then by Nakajima, [N], the bounds for
G C Auti(C) are the same in any characteristic and so in this case one
doesn’t expect a contradiction using bounds. So one speculates that féf such
smooth liftings may always exist, and the first case one studies s éyclic.

Here one knows:

e If G is cyclic of orderpe, with (e,p) = 1, the answer is yes iR contains a
primitive pth root of unity, say. This result is due to Oort—Sekiguchi-Suwa,
[O-S-S].

Following these results it then became natural to ask for the following general-
isation (see [O1] 1.7 and [O2]):

CONJECTUREThe answer is yes @ is a cyclic group

In this paper we prove two main theorems. In the first we give necessary
conditions for the solvability of the lifting problem when theparts of the inertia
groups aren’t cyclic. Our second main theorem answers the conjecture positively,
for G-galois covers whose inertia groups afe-cyclic with a < 2 and(e,p) = 1.

More precisely in Section |, 5.7, we prove

THEOREM 1.Let f: C — C/G := D be aG-galois cover of proper integral
smooth curves ovek. Lety € C, z = f(y) and suppose that thg-part of
the corresponding inertia groud,, is isomorphic to(7 /pZ)2 Then a necessary
condition forf to be lifted as a7-galois cover of smooth integral prop&-curves,
for some extensio® of W (k), is that the minimal conductor of the-cyclic

extensions o@c”y in Oc,, is congruent td modulop.

As a corollary to the proof method for this theorem we present examples of
galois covers with groufiz /pz)? which cannot be lifted over any extensi&of
W (k). Our second theorem (ll1, 1.3) is:

THEOREM 2.Let f: C — C/G = D be aG-galois cover of smooth integral
proper curves ovek. Assume that the inertia groups apée-cyclic witha < 2
and(e,p) = 1. Thenf can be lifted overz = W (k)[((2)] as aG-galois cover of

smooth integral propeR-curves, whereg,) is a primitivep?-root of unity.

We have used rigid methods to study this question and these also enable us to
reprove the result from [O-S-S] in this context. In this respect the crucial study
is that of the existence of liftings @¥-galois covers of formal power series rings
k[2]/k[2]¢ = Kk[t] overk to G-galois covers of the formal power series rings
R[Z]/R[Z]“ = R[T] overR. This is the condition which ensures smoothness of
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the lifting of curves. In contrast, the methods used by Oort, Sekeguchiand Suwa are
global in the sense that they use generalized Jacobians. In our context the results we
have proved give more information than those stated in Theorems 1 and 2 above,
but rather than embarking on explanations now, we invite the reader to go straight
to the paper for these.

Now we sketch how one uses rigid geometry to solve the lifting problem, under
the assumption that the automorphisms of the formal power series rings canr
be lifted:

Supposef: C — D = C/G and letD denote a smooth relative curve over
W (k)[¢(2)] whose special fiber i®. Denote byD?" the generic fibre endowed
with rigid analytic structure and let: D2 — D be the reduction map. Let
U C D = C/G be theétale locus, and/ C D", be the affinoid defined by
U = r~(U). Then by Grothendieck, up to isomorphism one can lift in a unique
diagram

v—L sycop™

o

v L sucp,

whereV = f~1(U) C C andi{ = V/G. The aim is to compactify the morphism
[V — U with a morphism of discs in &-galois way. For this one extengsto
aG-galoisétale coverf’: V' — U' ¢ D*wherel{’ is the union of/ and suitable
annuli. On the other hand, for eaghe D < U if we are able to lift

[T Spedc, — Spedp,,
yf(y)=z

in aG-galois cover of open discs, then using a prolongation lemma one can glue
this cover tof’: V' — U’ along the morphisms induced on the an@flisi/.

We remark that in his thesis, [G], Garuti has proved that for &@guch a
lifting of k[2]/k[2]¢ = Kk[t] in A/ A% = R[T] is always possible for suitabi@
dominatingW (k), whereA has generic fibre a suitable open 1-dimensional rigid
analytic space of genus not necessarily 0. This givesrise to lifthgs D = C'/G
of galois covers”’ — D = C'/G, whereC' is birational toC, with only cusps as
singularities, and the generic fibt¢ — D, is aG-cover of smooth curves.

Hence the question is if over the open disc SREET, we have ‘genus 0’, more
precisely open discs, and so we begin our investigation by studying the geometry
of automorphisms of open discs.

Contrary to prime t@-order automorphisms, the geometry of orgd@utomor-
phisms of the open disc Sp&§~], is far from understood. One can show that
modm, the automorphisms

Z s Z(CT 4 2y m,
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for (m,p) = 1 and¢ a primitive pth root of unity, define the extension &f(¢))
with conductorn + 1 given by the Artin—Schreier equation:

P e =1/t".

One can use these in a way that mimics [O-S-S] in order to lift galois covers whose
p-inertia at each point is cyclic of order at mast

Our main contribution concerns higheexponent, one first needs a presentation
of p2-cyclic extensions from which one can easily read the degree of the different;
this is done via Artin—Schreier—Witt Theory in Lemma 5.1, Section Il. The first
challenge is then to lift the equations ag?acyclic cover of the open disc and this
can be done using Sekiguchi and Suwa’s recent work the unified Kummer—
Artin—Schreier—Witt theofy[S-S1], but in order to cover the disc by discs we need
to minimize the degree of the generic different; this is done after developing this
theory in an effective way: namely we explicitly describe the mafrom [S-S1],
and finally we give explicit equations for liftings (over open discs).

As a result this gives rise to?-order and so (taking the-power composition)
p-order automorphisms of the open disc which are not definedi®Vg[¢] and
so are of quite distinct nature from those appearing in [O-S-S]. For the geometry
of automorphisms of order of the open disc we refer to our forthcoming paper,
[G-M].

We would like to thank Tsutomu Sekiguchi and Noriyuki Suwa for communi-
cating their workOn the unified Kummer—Artin—Schreier-Witt thetyys. Their
approach inspired our own work gi-cyclic liftings in Section II.

|. LOCAL OBSTRUCTIONS TO THE LIFTING

Let% be an algebraically closed field of characterigtendW (k) be its associated
Witt-ring. The aim of this section is to give obstructions for a given group of
automorphisms= of k[z] to be lifted to the formal power series ring[Z],
whereR is any complete discrete valuation ring dominatiiigk). We shall use
the notationR to denote the unique valuation ring in the algebraic closure which
dominatesR.

We begin by collecting and proving those facts on automorphisms of finite
order of the disc SpeR[Z] and their fixed points, which we need in order to show
obstructions to the lifting problem.

1. Geometry of the disc

Recall that by using the Weierstrass Preparation Theorem [B1], Chap. 7, p. 38,
we can describe the geometry of tReschemeX := SpecR[Z]. Namely, the
special fibre, X x r k, has only one closed point which corresponds to the ideal
(m, Z)R[Z], and the closed points of the generic fib’e x p K, correspond to

the irreducible distinguished polynomials Bf Z]. These polynomials have roots
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in the maximal ideal oRR. This allows us to identifyX x z K with the open disc
{z € R:|z| < 1} modulo galois action.

2. Automorphisms of finite order with fixed points

Let o be anR-automorphism oRR[ Z] of finite order — we shall always work with
R-automorphisms and so drop the referenc&1tdhen it is defined by a series

U(Z)=GO+G1Z+"'+aiZi—|----,

and as it is an automorphism we must hagyec 7R anda; € R*. Moreovero
induces a SpeB automorphism of the dis&’, which we calls. For rational points

(Z 7o) € X one hasi ((Z & 2o)) = (Z ©2Zp), whereZy = 3. a; Zi. Such a

point is a fixed point if and only i¥p € 7R andZo = °2°( a; Z. More generally,

P € X isafixed pointifand only i = nR[Z], P = (0)or P D (0(Z) <Z). In

the sequel we shall refer to this last set when we speak about fixed points. Moreover,
we use the terminology geometric fixed points to describe the points they define in
the geometric generic fibre.

2.1. EXISTENCE OF FIXED POINTSLeto be an automorphism aR[Z] of
finite order which doesn't induce the identity residudilg., the inertia group at
w, I, is not the full group(c)). Theno has at least one fixed point.

Proof.Using the writing above, suppose first that= 1 modr R. Then sincer
doesn't induce the identity residually, one knows that there is; &h > 1) which
is a unit. Letm be the firsti > 1 such that; is a unit. This integefn is also
referred to as the Weierstrass degree of the seti€3 < Z. By the Weierstrass
Preparation Theorem the series can be expressed as

o(Z)eZ = fn(Z)u(Z)

where f,,(Z) is a distinguished polynomial of degreeand the series(7) is a
unit in R[Z]. It follows that the points ofX which containf,,(Z) are the fixed
points fore. Finally if a; # 1 modr R, we repeat the above argument with= 1.
(Note that in this case has only one fixed point which is rational.)

We shall need the following lemmas.

LEMMA 2.2 ([C] Lemma 14 p. 245)Lete € N* and f(Z) € R[Z]), such that
f(Z) = Zmod(Z?) and defines arR-automorphism o[ Z] of ordere. Then
e=1

We shall also use a weak form of Lemma 15 from [C].

LEMMA 2.3. Consider the serief(Z) = ao+a1Z +---+apn 2™+ --- € R[Z],
ap € mR, and fore € N* let f¢(Z) = bo + b1Z + ---. Then one ha$y =

ap(l+a1+---+ a(f*l)) modaSR andb; = af modagR.
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Proof. By induction one: Check that
FeD(Z) = a0+ arf(Z) + -+

= ag+a1(bo+01Z +--) +ax(bo+ 01 Z +--)>+---
= ag+ atbo + azb§ + -+ + Z(azby + 2azboby + -+ +) + - -+

From this one deduces thag + a1bg + azbg 4+ .-+ = ag + a1bg moda%R, and
a1by + 2abpb1 + - - - = a1b1 ModagR.

COROLLARY 2.4.1f o is an automorphism aR[Z] of ordere, with (e,p) = 1,
theno has a rational fixed point.

Proof.Supposeg # 0,0(Z) = ap + a1Z + - - - and thab®(Z) = by + b1Z +
... = Z.Then by the Lemma abovefai +--- + a(f*l) = 0modagR. Hence
ase #Z 0modp, it follows thata1 # 1 modrR. Therefore the automorphism
doesn’t induce the identity residually, and hence by 2.1 must have a rational fixed
point.

REMARK. The analysis in Coleman [C], Section 5, is more precise: hamely he
proves that there are no automorphisms of ogdever R = W (k), for p > 3.

2.5. LINEARIZATION. Lete be an integer primetp andf(Z) € R[Z] a power
series withf (Z) = sZ mod(Z?), which defines aR-automorphism o[ Z] of
ordere. Then there existg’ € ZR[Z] such thatf(Z') = sZ'.

Proof. Observe that as the order #fis e it follows s is aneth root of unity.
Consider the Lagrange—Hilbert resolvant:

Z'=Z+s (Z)+5 2 fA D)+ 45 VN 2).

Then f(Z') = sZ', and moreoveZ’ = eZ modZ?), with e a unit in R as
(e,p) =1.

The following example shows that not every automorphism of finite order is
linearizable.

EXAMPLE. Let¢ be a primitivepth root of unity andr(Z) = ¢Z(1+ Z)~1, then
oP(Z) = Z and 0,¢ <1 are the fixed points.

3. Comparison of the different

Let o be an automorphism a®[Z] of finite ordern. We denote the inertia group
at in (o) by I, and assume that it is the identity group so thdtas at least
one fixed point. Enlargindg? we can assume that O is such a fixed point and that
o(Z)=C(Z(1+ a1Z + ---), where( is a primitiventh root of unity (see Lemma
2.2).
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CLAIM 3.1. LetT = Zo(Z)--- o™ Y Z) = eZ"(1 + - --) wheree = (1) D,
ThenR[Z]{" = R[T].

Proof.From [B1], Chap. 7, corollary, p. 40, one knows tiift7] is a finite free
R[[T]-module of rank, generated by, 17, Z2, ..., Z"~1. On the other hand by a
dimension consideration it follows that@[Z](")) = Fr(R[T]). As R[Z]‘") is
integral overR[T] which is integrally closed, the claim follows.

CLAIM 3.2. Letd,, resp.d,, be the degrees of the generic, resp. special differents
for the extensiolR[Z]/R[T]. Thend, = d,.

Proof. Let f(X) = Iloci<n(X <0'(Z)) be the irreducible polynomial of
over R[T]. Thenf'(Z) = p(Z)u(Z) wherep(Z) is a distinguished polynomial
andd,, = deg, p(Z). For the special different we have

ds = v, (H(z (:)E%z)))
i
and so the result follows by the Weierstrass Preparation Theorem. We remark that
the same equality for the different holds for towers of such cyclic extensions, see
also 3.4.

CLAIM 3.3. Let F' be the set of geometric fixed pointeaind suppose: is the first
integer such that the coefficiemt, ino(Z) &Z = (1) Z+---+Ca; ZH 1 + - -
is a unit. ThenF| = m + 1.

Proof. First note that by assumptiai} = 1, the identity group, so the integer
m exists. If( Z 1 modr, theno has a unique fixed point. Suppase= 1 modr
(i.e.n is ap-power). Thenn > 0, and the geometric fixed points are given by the
zeros of the distinguished polynomig),(7) of o(Z) < Z. Let Zy be such a zero,
then the derivative af

o'(Zo) = 1+ f.(Zo)u(Zo)

is a primitive nth root of unity (do) = n) and sof,,(Zp) # 0. Hence the roots
are distinct, thus givingn + 1 geometric fixed points. Observe thatif= p this
corroborates the previous fagf = d;.

REMARK. One checks that the integer+ 1 appearing in 3.3 is the conductor of
the residual extensiokf]z]/k[2]'" = k[t].

It is known that Claim 3.2 has a converse in the germ of curves context which
follows from a formula given by Kato [K], Section 5. Namely, given a finite
morphism of strict henselizations of local rings Bfcurves at closed points one
can express the difference between the degrees of the generic and special differents
in terms of Milnor numbers at the closed point. As our contextis that of completions
of local rings, for the convenience of the reader we give an adapted proof in the
special case we use.
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3.4. LOCAL CRITERION FOR GOOD REDUCTION.etA = R[T] andB be a
finite A-module which is a normalintegral local ring, and sék = A®pr K, resp.
Bx = Ber K.We assumethd/mB = Byis reduced and settindg := A/7 A,
that the extensioy/ Ao is genericallyétale. LetBy be the integral closure aBg
and defing,(B) = dim;, By/ Bo. Letd,, resp.d, be the degrees of the generic resp.
special differents, i.e. the degrees of the differents for the extenBigid x resp.
Bo/Ao. Thend,, = d, + 26;,(B) and moreover itl, = d; it follows thatdi,(B) = 0
andB = R[Z].

Proof. It follows from EGA 1V, Chapter 0, corollary to Proposition 17.3.4,
that B is a freeA-module say of rank. Following [S], Chapter Il we consider
det4(B) := A", B and define

Tp/a:deta(B) @ deta(B) — A (%)
to be the homomorphism induced by the symmetric bilinear form
BxB— A; (z,y) = trg/a(zy),

wheretiz 4 B — Alisthe trace map. Then Imgl 4 = cA for somec = 7" P(T)
in A with n > 0 andP(T) a distinguished polynomial. Tensorirtg) by K we
obtain

TBK/AK . detAK(BK) ®AK del;4K(BK) — AK.

Itfollows d,, = Coker T, /4, = degP. Onthe other hand setting & ™ "Tg/a,
mod this induces a homomorphism

To: detyy(Bo) ® 4, dety, (Bo) — Ao.

Moreover Im T, = (¢/n™) Ag = 997 Ay so dim), Coker Ty = degP.
Now considefTj to be the homomorphism defined ag:#) from the extension
Ag C BO:

Tt : dets, (Bo) ®4, dety,(Bo) — Ao.

Then dim, Cokerﬂ) = d, and it follows from [S], Chap. lll, Proposition 5, that
dim;, CokerTy = d, + 20;(B). Collecting the previous equalities we obtain the
desired equality.

If d, = d,, thenBy = Bo = k[z] and it follows from [B2], Chapter 9, Section
2, No. 5, thatB = R[[Z].

4. Automorphisms of the disc without fixed points

In this paragraph we want to show the reader that automorphisms of the open disc
without fixed points appear quite naturally within the study of those which have a
fixed point.
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Leto be an automorphism @t[ 7] of finite order which has at least one rational
fixed point inX. We are interested in the open discsXirwith rational centre and
radius in|R| which are stabilized by.

If (o(c),p) = 1, such a disc necessarily contains the fixed point bfy 2.4.
So we shall concentrate on the case whéed e= p and has a rational fixed point,
which we assume to be 0.

Leta € nR, choose: € |R| and setD(a, ") = {z € R||z <a| < r}. There
are two cases to look at; either the inertia grdyp= (o), or I, = 1.

(a) Suppose thdt, = (¢). Theno(Z) = (Z, for ¢ a primitivepth root of unity.
One checks thab(a,r™) is stabilized byo iff » > |(¢ &1)a|, and moreover
will have no fixed point iffla| > 7.

(b) Nextsupposé, = 1. Thenwe haveseenthat”?) = (Z(1+-- -4+ a, Z™+
---) where( is a primitivepth root of unity,a; € mR fori < m,a,, € R* for some
m, and further by Artin—Schreier theofyn, p) = 1. By the preparation theorem
0(Z)<Z = fm(Z)u(Z) where f,,,(Z) is a distinguished polynomial of degree
m+ 1, andu(Z) isaunit.

Let F = (Z;)1<i<m+1 € R be the zeros of,,,. ThenD(a,r") is stabilized by
o iff |o(a) ©a| = [1z,cr la ©Z;)| < r. Furthero has no fixed point irD(a, r*)
iff |a <Z;| > rforall Z; € F. These last two conditions are satisfied as soan as
is smaller than but sufficiently close to njia < Z;|.

For example itv(Z) = (Z(1+ Z)~1, thenF = {0, ¢ <1} and the conditions
above are:

max(|¢ ©1<al,lal) > r > |al.|¢ ©1<al.

5. Obstructions to liftings of automorphisms

In this paragraph we shall give necessary conditions on the conductars of
cyclic subextensions of abelian extensideje] of £[t], for the liftability of
automorphisms of[z] to R[Z]. In the sequel given a finite groug and a
G-coverk[[z] /k[2]¢ = k[t], by a lifting of this cover oveR we mean a-cover
R[Z]/R[Z]“ = R[T] such that specializing modutoR one obtaing[z] /k[].
We shall use the same notation for the automorphisms actig[@f and those
acting modular R on k[ z].

THEOREM 5.1LetG be an abelian group isomorphic {@ /pZ)% LetG;, 1 < i <
p+1, be thep+ 1 subgroups of ordes. Assume that? is a group of automorphisms
of k[z] and arrange the5; in such a way that the extensiokf:]“ /k[2]“ have
conductorsm; + 1, withmy < mo < --- < my,11. Denote the conductor of the
extensionk[2]/k[z]“ by m! + 1. Then if there is a lifting of7 to a group of
automorphisms oR[ Z] the following two cases can occur

1st CaseSupposeni < mgy. Thenmi = <1 modp, m) = mop <mi(p <1),
mj = mp, andm) =maq, for2<i <p+ 1.
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2nd CaseSupposeni = my. Thenm; = m; = <1 modp, andm! = m, for
1<ig<p+ 1L

In each case the two coveR{ Z]“: / R[ Z]“ fori = 1,2 have(p<1) mlT“ common
geometric branch points.

Conversely, ifny = <1 modp and if one can liftk[2] % /k[2]“ fori = 1,2
in such a way that the corresponding covers h@we=1)(mj + 1)/p common
geometric branch points, then the normalisation of the compositum of these two
covers liftsk[ 2] /k[2] €.

Proof.Let G = (o1, 02), with o(c;) = p and seG; = (o;) fori = 1,2. We let
m! + 1 be the conductor of the extensibffe]/k[2]“ and suppose that we can lift
G as a group of automorphisms Bf Z]. Then for eachi, m + 1 is the number of
geometric branch points @t[Z]/R[Z]%:.

Settingk[t] := k[z]¢, for eachi the extensiork((z)){") /k((t)) is defined by
an Artin—Schreier equation

1

It is possible to choosk(and saz;) such that
1 1
fl <Z> = tTla (ml’p) = l’

1 Cm, Cmy—1 C1
k (z) = gme T w1 T

where for 1< 1 < mo, ¢, =01if p | [, (m2,p) = 1 and we assume < ma.

1st Case: Suppose; < my. Thenmi = <1 modp, m} = mop <ma(p <1), and
m; = mg, respectivelyn; = mq, for2<i <p+ 1.

We begin by expressing the conducta] + 1 of the extensiok((z)) /k((z))“
in terms ofmy andm;,. One hasi((z)) = k((2))%1[z] and aszy 1= z77™ €
k((2))% is a uniformizing parameter

1

7 _ Zl—p(l{:z?lnl(iﬂ—l))l/ml_

Therefore
xg ST2
= 3 Z@en® Y)im with (i,p) =1

pe
1<ig<my 21

. C; ) 1 1
= Y — e > oei— (W + smallerterm} .
1

X N m
1<i<my 1<i<my 1

* Note that by geometric branch points we mean the set of points defined by the branch points in
the geometric generic fibre.
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By assumptionn; < my, so it follows that the final expression on the right is
equivalent (after an Artin—Schreier translation)4g——"——5 + smaller terms.
%1

Hence we obtaim| = pmy < (p <1)ma.

Letd be the number of common geometric branch poin®[jif]“: /R[Z]“ =
R[T] for i = 1,2. Now the degree of the generic different BB Z]/R[Z]“"
is (m2 + 1 <d)(p < 1)p (the points of R[Z]“ corresponding to the set are
completely decomposed.) It follows from the equality of the degrees of the generic
and special differents (Claim 3.2) that

(m2+1ed)(pel)p = (my +1)(p<1).
This together with the identity forn gives
(pel)(mi+1) =pd, i.e myg=<1modp.

Now we remark that thg-cyclic extensions ok((z))¢ insidek((z)) are gen-
erated by the elements;z1 + wozy, for (w1, wp) € IF‘% \ {(0,0)}. Moreover, one
can choose an Artin—Schreier generator,8a9r x1 + woz, for eachw, € F,. As

1 C;
(1 + wox2)? < (z1 + wozp) = prevy + w2 Z _;’
1<i<my

it follows that the set of conductors of these- 1 cyclic extensions is
mi+1mo+1lmo+1,...,mx+1

providedmi < mo.
The degree of the different of the extensiaitz)) /k((z))¢ is

ds = (m1+1)(p&p+ (my+1)(p=1)
= (mi+Dpelp+(m;+(pel) fori=2,...,p+1

Sincem) = pmy&(p<l)miandm; = myp,i = 2,...,p+1, itfollows m] = m;.
This finishes the proof of the first case.

2nd Case: Suppose; = my. Thenm; = m1 = <1 modp, andm!) = m; for
1<ig<p+ 1.

We first observe that in this case, = m; foralli = 2,...,p+ 1, for otherwise
we can argue as in case 1, so obtainimg+# m1. To simplify the notation we set
m = m; for all 7. The equations for the extensions admit the writing

» 1

T ST = ﬁ,

» uP  a

Ty Sx2=——+ 7+,

tm ol
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whereu,a € k, I < m and(l,p) = 1. First observe that” is distinct from
u, for otherwise &F,-linear combination of:; andz, would generate a-cyclic
sub-extension of((z)) overk((t)) having conductor strictly less tham+ 1. This

contradicts the observation at the beginning of this case. Seta_tiﬁgmfl/m, the

first equation gives ™! = z P(1 @z{"(p*l))l/m. The second equation becomes
_ l _
b ery =uP (2" 27" + % <l(:>—z1n(p S > +ee
21 m

where the dots indicate terms having increasipngowers. By making the usual
Artin—Schreier translation the right side of the equation above becomes

ueul a  al mp-1)-ip

27" 2T m
Observe thatn(p <1) <lp > <l > <m, so the conducton + 1ism + 1. Thus
mi=m,=mfori=1...,p+1.

Comparing the degrees of the generic and special differents for the covers
R[Z]% /R[T] andk[z]“ /k[t] we obtain

dy = (m +1&d)(pp = (m +1)(p 1) = d;,

whered is the number of common geometric branch point®[fZ]“: / R[T] for
2 different values of. It follows that

(pel)(m+1) =dp, i.em=<lmodp.

This finishes the second case, and also shows that for both cases the number
of common geometric branch points R[Z]% /R[T], for i = 1,2, isd =
(p 1) (m1 + 1)/p.

For the converse, supposg = <1 modp and that one can lift[2]“ /k[2]“
to G/G;-coversR[Z;]/R[T] for i = 1,2 in such a way that these haye <
1)(m1 + 1)/p common geometric branch points. We examine the normalisation of
their compositum. The degree of the generic different of the normalisation of the
compositum R[Z1] ®r R[Z2])" is

my+ 1

dy, = <m1 +ma+2&(pel) > (p<1)p.

The specialisation of the compositum generically gives the céfie}/k[z]“
whose degree of different is

ds = (m1+ 1)(p&Lp + (my + 1) (p &1).
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The direct part of the theorem shows that = pmy < (p <1)ms in both cases
sod, = d,, therefore applying criterion 3.4 from this section, we conclude that
(R[Z] ®r R[Z2])~ ~ R[Z], R[Z]% ~ R[Z], R[Z]“ ~ R[T] and the cover
R[Z]/R[Z]€ lifts k[z])/k[=]C.

EXAMPLES. Below we give two examples of covers with groi@ypZ)? where

the theorem above is applied. The firstis an example of a cover with §7gi2a,)>

for which the conditions of the theorem are satisfied and one is able to lift the cover.
The second is for a cover which cannot be lifted over Brgominatingi’ (k).

5.2. Suppose ch@r) = 2 and setG = (Z/27)% Letu € k with u?> # « and
consider the covers d@f((¢)) defined by

2 1 2 u?
1T = n and z5 &z = -

These covers are lifted to covers over= W (k) by the equations

(2X1+12e1 1 and (RX2+ 121 U?
4 T 4 T’

whereU € R lifts u. The equation for the compositum of these two covers is
X2 X, =U?%X?<X;) and settingZ := X, U Xy, this becomes

7%+ (2UX,e1)Z = (U aU?) X, (%)

Remark that RIR[T, X1, Z]) = Fr(R[Z]) = K(Z), i.e., the projective linerL..
From the equatiorXf < X1 =1/T we see that

T <1le|X1>1
and from(x) that
[ Xa|<1=|Z| <1

Now assumgX;| > 1 and|Z| < 1, then|X;| = |Z%2 & Z + 2UX,1Z| and so
| X1] = |2UX1Z],i.e.|Z| = 1/|2U| which is a contradiction. Hence

T <1ls|Z] > 1

The groupG is realized as the group of automorphisms of the gi§c> 1, i.e., of
R[Z7Y], by

Z+U

)=l ety

https://doi.org/10.1023/A:1000455506835 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000455506835

250 BARRY GREEN AND MICHEL MATIGNON

Z &1

02(Z) = (1) 5

One checks that each of these automorphisms has order 2. Notice that this cover
gives rise to a globat-lifting overIPlR.

5.3. Consider the covers &f(¢)) defined by the equations
, 1 :
T ST = - with m1 # 0, <1 modp

and

Th Sxp = % +o 4 %, with (mg,p) = 1,
cm, # 0 andey,, € F, if my = mo. Then ifm, > m1 the compositum of these
covers cannot be lifted over aydominatingl¥ (k). Note, we need the condition
cm, & Fp if m1 = mp to ensure that no other subextensionkgft)) in the
compositum has smaller conductor than+ 1. We know thatry + wzz, w € F,,
are Artin—Schreier generators for these extensions and now the above condition
guarantees there is no cancellation which would give smaller conductor.

5.4. OBSERVATION. Suppose we can lift@-coverk[z] /k[2]“ to a G-cover
R[Z]/R[Z]% with G = (Z /pZ)? x Z./¢Z and(p, £) = 1. We first assume thétis
prime. Then considering the subgra@y pZ)? C G and the correspondingcyclic
subcovers on the one side and the quotient g®f¥ /¢Z) and the corresponding
p-cyclic subcovers on the other, one can apply the congruence identity of Theorem
5.1, namely in1 = <1 modp’, to deduce that = 1 modp. It follows for general
¢ that for any primey | ¢, ¢ = 1 modp.

The geometry of fixed points of automorphisms of orgesf the open disc
SpecR[Z] and the constraint to realise the converse part of Theorem 5.1 leads us
to the following:

5.5. QUESTION. Assumg > 2; what are the abelian non-cyclic automorphism
groups ofk[z] that we can lift to automorphism groups Bf Z]? For example, if

G = (7 /pZ)? then there do exist such automorphism groups which can be lifted
if p =2 (see 5.2) ang = 3 (see [G-M]). Recently Matignon, [M], has solved the
caselG = (z/pz)" for anyp andn > 1 positively.

5.6. LOCAL TO GLOBAL OBSTRUCTIONS. In the literature the method used
to show obstructions to smooth galois liftings of curves is of global nature, by using
‘Hurwitz’ bounds for the number of automorphisms in characteristic 0. Now using
the local obstruction we can give new families of covers which are not liftable.
Indeed, consider any finite-group G which occurs as the galois group of an
extensionk[z]]/k[t] and cannot be lifted oveR. From Harbater’s theorem, [H]
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2.7, see also [Ka] 2.1.4, one can extend this t@-galois cover of the projective
line for whichG is the inertia group ato. The extensio[z]/£[¢] is that induced
by the cover abo, and moreover the cover can be choétale outsidex. Such
covers cannot be lifted to characteristic 0.

If G is an abelian group, itis known that the bounds for the number of automor-
phisms obtained using the Hurwitz formula are the same in characteristic) and
[N]. We remark that the equations of Example 5.3 are those @fa (Z/pZ)?
galois cover of?} which cannot be lifted over ang O W (k).

Now supposg : C — C/G = D is aG-galois cover of proper smooth curves
overk.Lety € C,z = f(y) and suppose that thepart of the corresponding inertia
group, which we denote hi, is isomorphic tdZ /pZ)2. Assume that it is possible
to lift f as aG-galois coverC/D of smoothR-curves, for some extensiaR of

W (k). Then, this lifting induces af},-galois covec,,,/OF, which specializes to
@C,y/@éﬁy modn R and so Theorem 5.1 implies that the minimal conductor of the

p-cyclic subextensions df)c,y/@é”’y is congruent to 0 modulp. We have proved
Theorem 1 from the introduction, namely:

THEOREM 5.7.Let f: C — C/G := D be aG-galois cover of smooth integral
proper curves ovek. Lety € C, z = f(y) and suppose that thepart of corre-
sponding inertia groupl,,, is isomorphic taZ /pZ)?. Then a necessary condition
for f to be lifted as a=-galois cover of smooth integral prop&-curves, for some
extensionk of W (k), is that the minimal conductor of thecyclic extensions of

O, in O, is congruent td modulop.

6. Ramification in p"-cyclic covers of the disc — the Hasse—Arf Theorem

Let k[=]/k[¢t] be aG-galois extension witlly = (o) cyclic of orderp™. Assume
that G can be lifted as & galois cover of the disé&C — X/G. Let F; be the
geometric fixed points o6? and N, = |F;|, 0 < I < n. The p-cyclic cover
X/(o?™*") = X/(o7') is unramified over the image ., < F}; this means that
o” defines a partition of}., ; <F, in orbits of lengttp, hencep|(N,; 1 <N,). Note
that the conductor for thig-cyclic extension isV;, soN; > 0.

This congruence above is the classical Hasse—Arf congruences-fryclic
covers (see[S], p. 84) and following Serre’s notation oneWigs 1+ig,..., N, =
1+ 49 + piy + - - - + pl4;. The fact that at each stagé, 1 < N; # 0 (which gives
the full Hasse—Arf Theorem) follows as the conductors are distinct from 1.

We remark that the method of thickening Spég] in SpecR[Z] was recently
successfully exploited by Lubin, [L], in order to give a new proof of Sen’s Theorem
on formal power series (this is an extension of Hasse—Arf congruences). In fact he
only needs to lift the serieg(z) € k[z] to o(Z) such thatr(Z) < Z has only
simple zeros (but may have infinite order). For automorplasshfinite order this
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is clearly a less stringent condition than what we intend to do, i.e., to lift in an
automorphisna of finite order.

[I. LOCAL LIFTING IN THE p®e-CYCLIC CASEWITHa < 2

In this section we begin by recalling certain results from Oort—Sekiguchi—Suwa,
[O-S-S] and Sekiguchi—-Suwa, [S-S1]. In [O-S-S] ghecyclic casefe,p) = 1, is
studied and in [S-S1] the genepi&-cyclic case. Our aim here is to treat the local
lifting of G galoisp®e-cyclic covers witha < 2. Here we follow the Sekiguchi—
Suwa exposition from [S-S1].

1. Kummer theory

Let / be an integer witd > 2 andK be a field containing.,, the group of/th
roots of unity (chafK) { /). Let X a K-scheme, then one has the following exact
sequence of sheaves of groups onétade site onX (Kummer exact sequence):

1 py e = G —r Gue = 1, Ot 1! (1)
and a long exact cohomology sequence
G,k (X) — H*(Xey, Mo i) = HY(Xet, G, i) — HY(Xet, G ¢ )-

Here HY( X, My i) is identified with the set of isomorphy classes wf/Z-
torsors overX. Now let X be the spectrum of a locdl-algebraB, then as
H(SpecB, Gy, ) = 0 (Hilbert Theorem 90) it follows that the map

G, (SpecB) — H*(SpecB, u;)

is surjective. This means that for afgyclic étale extensiod’ of B, there exists
amorphismf: SpecB — G, x and SpeC is given by the fibre product:

Spedd —— G i

T

SpecB —— G i

2. Artin—Schreier—Witt theory

Let £ be a field of characteristip > 0 andW,, ;, be the Witt-group scheme of
dimensiom (the truncated Witt-vectors). Lef be ak-scheme. This time one has
the following exact sequence (for tetale site)

W k(X) = HYXet, Z/p"Z) — HY(Xet, W i,) = HY(Xet, Wog).-  (3)

https://doi.org/10.1023/A:1000455506835 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000455506835

LIFTINGS OF GALOIS COVERS OF SMOOTH CURVES 253

In particular, if X is affine, thenff*(X, W,, x) = 0. Therefore, we get the surjec-
tivity of the map

Wk (X) = HY(Xe, Z/p"Z.).

We shall use the following fact$V,, ;, is the extension o, ;, by W,_1 ; and one
has the commutative diagram

0 Z|pl — T./p"% — L[p" " ——— 0
M M M (4)
0 Ga,k Whpg ———— Wp_1), — 0

)

3. Sekiguchi—Suwa theory

ASSERTION 1 ([S-S1] Theorem 7.1). There exists a smooth group schg&me
over the discrete valuation ring = Z,[u,~], containing the constant group
schemdZ /p"7Z) g, such that the exact sequence

0— (Z/p"Z) R — Wy -2 W, /(Z/p"Z)r — O (5)

has the Artin—Schreier—Witt exact sequence as special fibre and an exact sequence
of Kummer type

1— pyn = Gy — Gy, — 1

as the generic fibre. Moreover, for eachvith n > 2, there exists a commutative
diagram consisting of horizontal exact sequences

0

(/p2) R — (Z/p"Z)r — (Z/p"*Z)p —— O

N M M (6)

0

which gives a deformation of (4) to a commutative diagram consisting of exact
sequences of multiplicative groups

O —— Wig —— Wpr — Wyh_1r

1 l‘l’p IJ/pn l.l/pnfl l
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Now this exact sequence is universal &alep™-cyclic coverings of local rings
dominatingR. Namely one has the following

ASSERTION 2 ([S-S1], Theorem 3.8). L&t be a localR-algebra which is flat
overR. Then

H'(SpecB, W,) =0,
I.e. the canonical map
(Wa/(Z/p"2)R)(B) — HY(SpecB, (p,:)r)

is surjective.
Moreover, ifC'is a flatlocalR-algebra which is an unramified-cyclic covering
of B then there exists aR-morphism

f:SpecB — W, /(Z/p"Z)r,
and the covering
Sped”' — SpecB
is given by the fibre product
Sped” W,

[k

SpecB N Wh/(Z]/p"Z)R

We shall apply this last theorem to the case whBre= R[[T],) (herer is
the uniformizing parameter @t); this solves the local lifting fop™-cyclic groups
generically. This lifting is therefore of the same nature as Garuti’s, but in [G] the
method is valid for general groups (see the Introduction).

In order to smoothen the singularities of [G], we need to give theynpapelow
explicitly:

Yn Wy = Wy /(Z[p"Z)R.

We shall do this in the?-cyclic case, i.en = 2. Following [S-S1], Theorem 7.1,
one can take

W = SpecR[X1, X2, A X1+ 1) (A X2+ Fi(X1)) Y

where

1 _ _
Fi(X1) =1+ pX1+ E,UZXf +ooeF pPIXY T = Exp, (1X1)

(p<1)!
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is the Artin—-Hasse exponential truncated at degree
p=mer’)24+ -+ ()PP (p o1)

andr = (2 1. Here((y is a primitivep?th root of unity.
As explained in [S-S1], proof of Theorem 8.4, the group schéme.=
W,/ (Z /p?Z) r is given by a polynomiafi1(X1) such that:

Vo = SpecR[X1, Xo, (W X1 + 1) %, (W X2 + G1(X1)) Y]
and(; satisfies the congruence equation
G]_(’L/J]_(Xl)) = F]_(Xl)p(AXl + 1)_1 mod)P.

Herey1(X1) = ((AX1 + 1)P <1)/)P and the isogeny, is then
P2(X1, X2) = (¢1(X1), X3) with

X3 = (L/A)[(AX2 + Fi(X1))P
S(AX1+ 1)Ga(sha(X1))] (A X1+ 1)

In Lemma 5.2 we shall prove that fdr; as above, the polynomiali(Z) =
Exp, (4P Z) works and then

X5 = (1/X)[(AX2 + Fi(X1))P

S(AX1+ 1) Exp, (1” ($1(X2))](AX1 + 1)L

4. Local lifting of p-cyclic covers

Let (1) be a primitivepth root of unity and sek := (1) 1. Let R be a discrete
valuation ring of characteristic 0, with uniformizing parameteand algebraically
closed residue fielé of characteristip as before, and assume tijat € R.

THEOREM 4.1 (Compare [O-S-S], Theorem 2.2he equation

(A X1+ 1P <1)/NP =T"™ (%)
defines a-cyclic coverC of P}, which after normalisation igtale outside the disc
IT| < 1 (i.e., outside{z € P} : |T(z)| < 1}). The special fiber is smooth and
induces the extension bft] defined by the equation

Ty ez =t (%)

In this way we cover alp-cyclic extensions ok[t]. Moreover the sefa €
Cy:|T(a)| < 1} is an open disc and([l/ml is a parameter.
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Proof. By the criterion 3.4, Section |, to prove the smoothness of the lifting
over]P}z determined by(x), we must show that the degrees of generic and special
differents are equal. From the Artin—Schreier equatiav) it follows immediately
that the special different ig; = (m1 + 1)(p ©1).

The degree of the generic different of the extensiomR§T] defined by(x)
is determined by the roots &f" + A = 0 andT = 0. Hence we obtain
d, = (m1+1)(p&l) = d,. Note, the Artin—Schreier equatiofis) for (p,m1) =1
determine alp-cyclic extensions ok ((t)).

It remains to show thal(l_l/m1 is a parameter for the disc
{a € C,:|T(a)| < 1}.
From the equation
D p-1 p -
Xf+XXf ot pXa=TT™

it follows that supp(X; )0 C supp(T)o and thatX; is integral overR[T]. As
the covelC /P, is smooth, ifr € P corresponds t@" = 0 andz its specialisation
to (PL)y, then(’)ﬂ,,%yf ~ R[T7]. This point is completely ramified i and the disc
above Sped[T7] is of the form(’A)c,g ~ R[Z] (Z = 0 atz), where residually
z = z7 Y™ is a uniformizing parameter far((t))[z1]. We get(X7 /™o = (Z)o
and applying the Weierstrass Preparation Theorem we se& tHat: = ZU, for
some unit inR[Z]. This completes the proof.

5. Local lifting of p2-cyclic covers

In the following section we give explicit equations fpf-cyclic extensions of
k((t)) from which one can immediately read the different. We call them Artin—
Schreier—Witt, representants of the extension and we use them to parametrize all
p?-cyclic covers ofk((t)), for suitable choice of parameter

LEMMA5.1. Leta; € k andp;,—; € k[z], 0 < j < m1, 0 < i < p, be poly-
nomials of respective degreés,_; and assume thdin1, p) = 1. The equations

x’l’ Sp =t ™
and

Th ez = o2, er1) + Z ast?
0<s<ma(p—1)

+ Y Y (df ex)'pjy iz Sz)?
0<j<ma 0<i<p
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define gp?-cyclic extension of((t)) whose degree of different is
(m1+1)(p<lp+ (m2+ 1)(p 1),

where

ma = Max (p*ma, p(ip + (i + pdjp-i)ma)) (p & 1)ma
0<i<p

ande(z,y) = ((x +y)? <P + (<y)P)/p. Moreover, as the semigrogwd + m1 N

covers the integers greater thdm; <1)(p < 1), it follows that every?-cyclic

extension of((t)) has such a representation, for suitable choice of parameter
Proof. Becauseg(mi,p) = 1 it follows thatz := z[l/ml is a uniformizing

parameter ofk((¢))[xz1]. We need to calculate the conductor of the extension

k((t))[z1, z2] /k((t))[z1]. One can easily expresgil= z~?(1 < zmp-D)=1/m

(up to a multiplicative constant), and then

2
c(zl, em) = <277 mit(p—lma 4

gives a smaller contribution in thevaluation than any=7, 0 < j < m1(p <1).
The other terms can be arranged as polynomialsirand restricting our attention
to the nonp-powers, the term of highest degree 4n' comes from only one
polynomial

t77P (] ©21) (pjp-i(2] 1)),

After the standard transformation to eliminatpowers, the nop-power of highest
order inz~—1 gives the conductor for the extension as claimed.
We need to justify that the expressions on the right of the second equation
give Artin—Schreier—Witt representants for pfi-cyclic extensions. This follows
as writing in terms ot ~1, each monomial—!, with > m1(p <1) and prime to,
does occur in expressions of the type given. The monomials occuripgp@asers
can be removed by making a transformation to the variaplr the extension,
S0 give no new covers. This completes the proof of the lemma.

REMARK. Note thatzs <Y o <y, 77 Yocicp(21)'pjp-i(2] ©21) is an Artin—
Schreier representant for tpecyclic extensiork((¢))[z1, z2]/k((t))[z1].

NOTATIONS. In the seque],) is a primitive p2-root of unity, 7 := (o &lisa
uniformizing parameter iR and\ := g“{z) <1, a uniformizing parameter for the
intermediate-cyclic extension. Lets = Log, (1 + =), where forF(X) € R[X]

we denote the truncation by terms of degree bigger fhanl by F,(X). The
following congruence identities will be used several times in the lemmas that
follow
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(i) One hasu/7 = 1 modr, p/ AP~ = <1 modr and)/uP = 1 modr. Further-
more we often use the identip,u?”/up2 = <1 modr.

(i) We shall also need the binomial congruence iderfffly= p(<1)"~* /i modp?
forl1<i<p.

In the lemmas below, Lemma 5.3 will be an amelioration of Lemma 5.2; this
explains why in the proof of 5.2 we prove estimates which are better than necessary.

LEMMA5.2. LetY := ((AX + 1)? <1)/\?. Then
Exp, (1 X)? < (AX + 1) Exp,(u’Y) =0 modr?”.

Proof. The idea is to prove that the expression on the left of the congruence
satisfies a linear differential equation of first order mgd. This enables us to
handle monomials of degree primegpand then a direct calculation handles the
other monomials. One can easily see the non-triviality of estimates by looking at
the coefficient ofX which ispy <X\ <puP /AP~1,

SUBLEMMA. hy = pu <X <pp? /AP~1 = 0 modr?*+1,
Proof.As (?) = (p(&1)"~1/i) modp?, 1< i < p, consequently

A= (1+ 7)? &1 =P + pumodp?.
Now

hi = e’ epp? [N = ep/ NP H(WP 7 p)rP + pP) modp?.
From the identity A + 1)? <1 = 0 it follows that

Nlp— o Z )\Z = Z

1<igp-1 1<igp-1

-1

(7P + pp)*~ modpr

and so

(AP L/p)aP = 7rp ' modprP L.
1<igp—1

Remarking thad?~1/p = <1 modr we obtain

m= Y (@Tl)i(wp)i

1<i<p—1

N
s ) ((é) 7rz> modpr?*! = 0 modr?"+1.
1

1<i<p— !
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Now we return to Lemmas 5.2 and 5.3
We definef := Exp,(uX)?, g := (AX + 1)Exp,(1PY’) and set

h:=feg= > o kX
1<igp(p—1)+1

First claim: f’ = puf + pr? X~ modp=P*L. This is left to the reader.

Second claimg’ = pug <u?’ (XP <X)P~L modpr?*L. This is a straightforward
calculation using the previous sublemma.
Now we remark that iC'(X,Y) := (X + Y)? &X? &Y?P)/p then

C(XP, X)) = (XP &X)P pXPlel) epxr 14 xr-1
= &(X? X)P~1 + XP~ T modp.
From these observations it follows that
h' = pph + prPC(XP, <X)' modprP*L, (%)
which here will only be used in the weak form
ih; = pph; 1+ prPr;_1, 1,1 € R. (x%)

Using («*) we first note thaw, (i) < 1 fori < p(p <1) + 1; then an induction
argument shows thab; = 0 modp=P, which is Lemma 5.2 for monomials af
of degree prime tg.

Now one can have a look at the other monomials. In fact there is no problem
for them because one can easily locate theghamdg:

For those inf @Zogigp_l((uX)i/z‘!)P: to see them we remark that developing
(1+ X1+ X2+ --- X,_1)P, where theX; are commuting indeterminates, gives

a coefficient in @Xil e X;’fll divisible by p iff this is not ap power (viewed
modp). Now inside one can replack; by (14X )*; this shows that the coefficient
of X7 in

o<ig<p—1

is a multiple ofppirt2zt+E—Dip-1 — 7P,

For those iny <30, <,—1(#X )P /il one has to look at the coefficients &P/
andX?/~1in Y. An easy calculation shows that the coefficienty'®f andy?i—1
in (1+ V)? <1)" are divisible at least by'~/+! for i > j. It follows that the
coefficient of X?7 in

(uX)¥

9@2.7

. 7!
0<ig<p—1
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coming from (4?Y')! /il is divisible by p'~7*1,P \Pi /XPi. This shows that the
contribution ofg <3 o<, 1(#X)P' /it is what we expect. Lemma 5.2 is proved.

LEMMA 5.3. One has
(Exp, (1X)? < (AX + 1) Exp,(u"Y))/(pu?) = C(X”, <X) modr,

whereC/(X?, &X) = ((XP &X)P &(XP* <XP))/p.

Proof. Consider the expressiol = h + uPZC(XP,@X). Then (x) shows
that H' = pph modprP*+1. Now we remark that(X?, <X) has no monomials
which arep-powers. Hence the result follows as in Lemma 2 if we can perform the
estimates fop-powers inh.

Following the estimates in the preceding proof we note that the piplgwer
which can occur with a non-trivial coefficient mad”+1 is X?.

We first work with . The idea is that the coefficient &7 in f is ‘close’ to that
of Exp(puX). In fact in this way you add only one contribution which is that of
(uX)P/p! times powers of 1; so this jg(: X )P /p!. Hence the coefficient ak? in
fis (pp)? /p! <pp? /p! and so the coefficient ok ? in f 3o, ((1X)! /i) is

(pp)? /p! <pp® /p! epP = (<1/(p <1)! <1)uP modr?”+L,

Now we work withg and compute the contribution &f? in

ge Y (X))t = (AX + DEXp,(PY) & > (uX)P/il.

0<igp—1 0<i<p—1
By using the expansion
WY = (/NP (X 1P &1 = (/A7 (ﬁ) (AX)*
1<k<p
1)k

and the binomial congruence identif§) = % modp?, for k # p, we see
that modr?’+1 the coefficient ofx” in Exp,(#PY') is that of X7 in

s KP ((/\X)p—i- 3 %(AX)’C).

1<igp—1 1I<k<p—1

Now modn?*+1 the coefficient ofX? in Exp, (4”Y) <P X? is that of X7 in

( Z ({i)ll{):lek>i.

1<k<p—1

pip'i
AP Z 1 \D?

1<icp—1 ¥
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This is the same as the coefficient®?f in

)J’( > Hpipf(Log(l%-X))i@@(i)zolXp).

1 )\Pi P
<icy 1 I\ A P

Now this is the same as the coefficient®f in

p p—1
#p (G177 o

1Pp

p [ p

A (Exp< /\p Log(l+X)> NeT ) 'Apzpr ) (k%)
Observing thatu?/\P)p = (uP/\)(p/X\P~t = <1) mod 7, and substituting in

2 .
(+*x), modzP 1 we obtain

AP (Exp(c)Log(l X))+ (P77 yp (B2 Xp>

P p!
p—1 P
VY N G TN G S
1+ X P p!
Therefore the coefficient of? here is
1 1
AP (&1)P (14:} &— )

p D!

Finally in order to accommodate the contribution to the coefficient®fn (1 +
AX)Expp(uPY) © Y ocicp1(nX)P' /it coming from the factor(1 + A X), we
compute the coefficient gh X )P~ in Exp,(1Y). One checks, in the same way as
before, that modr?** this is that of Y(1+ X), i.e.(<1)P~L In conclusion we
deduce that mod?**+1 the coefficient ofX” in fegis

1 1 1
AP <—|—|——>—|-(pup+/\p) (l@ S
p:- P p

finishing the proof of Lemma 5.3.

1
: @1) = 0 modnr?**1,
p:

REMARK. Lemma 5.4 below is a deformation of Lemma 5.3 and will enable us
to find all p?-cyclic extensions residually.

LEMMA 5.4. LetY = ((AX1 + 1)P ©1)/AP = T~™ with (p,m1) = 1, and
supposeP;;(Y) € R[Y],0 < j < m1, 0 < i < p, are polynomials of degree
d;;. We assume that th®; ; which are non-zero are primitivé.e. have leading
coefficient ank-unit). We write

p

Exp,(i’Y) |1+ S T (p 1) Pu(Y) | =G Y+’ BH(T™Y,
0<j<mq
0<i<p
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whereG and H are polynomials if"~* defined by

(WPY)™ :
G(T™Y) = Exp,(uPY) + Y = (u2T 7 (p i2)! Pj;,(Y))?
0<j<mg 1'
(i1,i9)ET

p

+ 1+ Y T (pei)P(Y)
0<j<my
0<i<p

sl s Z (T~ JM (p@Z)'PJz(Y))p

0<j<mq
0<i<p

with 7 = {(i1,i2): 0 < i1 < p,0 < iz < p,i1 +i2 < p}, and

p
pCH(T™Y = (Exp,(u?Y) <) | |1+ Y T7ui(pei)P(Y) | 1
g5
& Y (TP (psi) Pi(Y))
0<j<mq
0<i<p
py .
by Y erip im0y
0<ji<p
(iq,ip)ES
with § = {(i1,42): 0< i1 < p,0 < ip < p,i1 + i2 > p}. Let
d:= max (jp+ (i +pdjp-i)ma).
0<i<p
Then
mi(p<1), ifalP;; =0
deg, 1G = bl o
d &my, otherwise
and
p
Exp,(uX1) [ 1+ Y. T7uP(Y) || €@+ AX1)G(T Y =puPA,
Sl
where

A= C(Xf,@Xl)

& Y T(XY e X1) P, i(X] < X1)P modp.
0g<j<mg
0<i<p
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Proof. We first remark that Lemma 5.2 corresponds to the case where all
Pj;=0.
Next, examining the terms in

Exp,(#’Y) | 1+ E T u'(p i) P, (Y) |
0<j<mq
0<i<p

we remark that the ‘monomials’
(WY ) (=T Py i(Y))P

are all of distinct degree iff—! and the maximum degree attained/isSuppose
d = jop + (io + pdj, p—i;)m1 for someig > 0 andjo. Then the ‘monomial’

(PY ) (WP =T Py i (V)P

lies in G(T~1) and gives the degree 6f(T—1), namelyd <mj. It is an exercise
to see that the mixed terms @h(7—1) don't contribute to the degree.

To prove the congruence identity, we deform Lemma 5.3 by multiplying the
congruence there by

p

1+ Y T7ul(p i) Pi(Y)
0<j<mq
0<i<p

Doing this we obtain

Exp, (#X1)? | 1+ E T~ ' (p i) Pj,;(Y)
0<j<mq
0<i<p

SOX1 +1)(G(T™Y) + " H(T™Y)
= puP C (X7, ©X1) modupz'H.
Simplifying this gives
p

Exp,(uX1)? |14+ > T u'(pei)lPi(Y)| ©AX1+1)G(T 1)
0<j<my
0<i<p

= uPZ(AXl + D)H(T™Y) 4+ ppPC(XY, <X1) mod;ﬂ’zﬂ.
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Dividing by pu? and using the identityy? /u?” = <1 mody we get
p

Exp,(#X1)” | 1+ E T 91 (p i) Pj,;(Y)
0<j<mg
0<i<p

SAX1+DG(T Y | /(pp?)

= &H(T™ 1) + O(X?, X1) mody.
Finally, examining the terms dff (T—1) mod ;. we obtain the desired residue of
A mod .

THEOREM 5.5.We keep the notations from the previous lemma and Jet R,
0 < s < mi(p <1) :=r be given. Then the equations

(M X1+ 1P/ =T

and

AXo 4+ Exp,(uX1) | 1+ > T 9pi(p i)l P(T ™)

0<j<mg
0<i<p

- <G(T—1)+ o > AST_S> (AX1+1)
0<s<r

define apz-cyclic coverC, of IP}% which after normalisation i€tale outside the
disc|T| < 1. The special fiber is smooth and induces the extensigfpdefined
by the equations

p _ —
Ty ery=1"

1 e = o2l ex1) + Z agt S
O<s<r

& > TP err)'pjy (e 1),
0g<j<mg
0<i<p

where the polynomials; ,_; and coefficients, are the residues aP; , _; and A,,
respectively. In this way we cover afl-cyclic extensions di[¢].
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Proof. We know from 4.1 that7; := x7Ymisa parameter for the open disc
defined by the first equation. On the other hand by Lemma 5.# thgoolynomial

FT™H=GT Y+pu Y AT

O<s<r

hasT~-degreeD := my(p <1) if all the P; ; = 0 andd <m; otherwise. Now
TPF(T-1) € R[T] is a primitive polynomial of degre® and we can expand it

as a series iR[Z1]. Using the Weierstrass Preparation Theorem this series can be
expressed as a distinguished polynonfja (Z1) multiplied by a unit fromR[ Z1].

As deg;, f,p = pD, it follows that f,p has at mospD roots in the dis¢Z;| < 1.

This consideration yields a bound for the degree of the generic different. Namely

dy < (m1+1)(p* ©1) + (p ©1)pD

From Lemma 5.1 it follows thad,, < d, and the Theorem now follows from the
criterion 3.4, Section |. Moreover Lemma 5.1 tells us that in this way we lift all
p?-cyclic extensions.

COROLLARY 5.6.We keep the notations from the previous theorem. Let

1 (X)) . . . _
Yo =X - =T I (p i) P;;, (T™™).
(iltiz)GS

Letm; be as defined in Lemn®al. ThenY, ! is integral overR[Z;], moreover

Yz_l/m2 is a parameter for the open disc 6f defined by 71| < 1.

Proof. We shall examine the case where at least one ofRhe# 0, and
remark that the other case works in the same way. First note that the transformation
of the variable above is such that the residual imag&>0is an Artin—Schreier
representant for the-cyclic extensiork((¢))[z1, x2]/k((t))[z1]. One has

AXp +Exp,(uX1) | 1+ ) T77u'(p<i)lPi(T™™) | =AYz + 4,

0<j<my
0<i<p
where
X - ) _
A=Exp,(pX1) + Y (X" p2T ™I (p i) Py iy (T™™).
0<ji<p Zl'
(i1,ip)€T

ThenY, satisfies the equation

P §AY5_1+"'+ %ApflyzzB, (%)
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where

B = Alp (@Ap (G(T1)+ P > AST5> (1+ >\X1)>.

O<s<r

We know from 5.5 thatB € R[Zi]z,), where Z; = Xl_l/ml. The way of
truncating

Exp,(uX1) [ 1+ E T (p <4) Py (T ™)
0<j<mq
0<i<p

mimics that of truncating

Exp,(1’Y) [ 1+ Y T4’ (p i) P(Y)

0<j<mq
0<i<p
in 5.4. It follows that
U
B = Zf(d_ml)_l—ml

for someU € R[Z1] and asny = p(d <m1) + mq, alsothatU' € R[Z1]*.
Multiplying (%) by (Zf("l_ml)“nl/sz)U*1 one gets an integral equation for

Y, * overR[Z;]. Since the defining equation &f, in 5.5 shows that SUgp?) o C

supfT)o, the result follows from the Weierstrass Preparation Theorem.

6. Local lifting of p®e-cyclic covers witha € 2

6.1. THEa = 1 CASE

Let k[[2]/k[t] be ape-cyclic cover,(e,p) = 1, and suppose is a generator. One
can assume, after possibly changing the uniformizing parametek[#j&t " / k[t]
is defined by the equatiorﬁ <z =t~ ™ for somema with (p,mq) = 1.

Let P}, = ProjR[Tp, T1], the projective line oveR, which we assume contains
thepth roots of unity. We assume thais a parameter af, x k atoo = [0, 1] and
setT = Ty/Ty. Let Xo — P} be the morphism of smootR-curves defined by
the equatiorZ® = T This morphism is ramified & = 0 andT’ = oc.

Let X1/ R be the smootliR-curve obtained from Theorem 4.1 afg, its special
fibre, which is arétale cover of the affine line# 0.

CLAIM. The normalisatiofXp x r X1)~ is a smoothR-curve and the morphism
(Xo x g X1)~ — PLis aZ/peZ cover which liftsk[ 2] /k[].
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Proof.We first remark thaf{, x X7 is smooth outside the poibd asXy, —
P} is étale outsidex. In order to see the smoothness oy&aboveco we shall
apply the criterion 3.4 from Section I.

Becausép, e) = 1, the branch locus afXp x g X1)~ — P} consists of a point
totally ramified (forT" = 0) andmye geometric points with ramification of order
p. This yields the degree of the generic different ab@je< 1

dy = pe &1+ me(p 1),

which is easily seen to be equal to that of the special different; this shows the
smoothness ofXp x g X1)™.

6.2. THEa = 2 CASE

We use the same notation as above, but ieontains the)?-roots of unity and
E[2]{"") /k[t] is defined by the two equations

T ez =t"",
ah g = c(2h, ex1) + f(171).

Theorem 5.5 gives a-cyclic cover X>/R of X1/R which defines g?-cyclic
cover of P}, lifts the extensiork[2]‘°") /k[t], and is totally ramified af’ = O.
As previously one knows thaky, x; X is smooth outsidec. Now look more
precisely at the branch locus for thecyclic cover

(Xo xr X2)™ — (Xo xp A1)~

above|T'| < 1. Now we are in the same situation as previously, so this relative
generic different has degree equal to that of the special one; using the criterion we
conclude the smoothness ©fp x r X2)™~ and that(Xp xr A2)~ — IP}% lifts the
p2e-cyclic coverk[z]/k[t].

[ll. GLOBAL LIFTING

The main ingredient of this section is a prolongation lemma which enables us to
extend certain finite morphisms over an open annulus to the open disc. This result
is adapted from a lemma in the unpublished manuscript, [M-Y].

1. Prolongations of automorphisms to the disc

Let R denote a complete discrete valuation ring with fraction fi€ldiniformizing
parameterr and residue field: of characteristip. Let R be its integral closure
in the algebraic closur& which is endowed with the unique prolongation of the
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valuation. Denote the completion & with respect to this valuation by. Let
X := SpecR[T1], the open disc and séf_, := SpecR[T]{w/T), for w € 7R
where

R[T] <%> = {f => a,T"+ ) a_j’fn ‘a; € Randa_,, — O} :

n>0 n>0

We shall denote the image of suchfin k[t] by f, wheret denotes the reduction of
T with respect to the Gauss valuation. Then the generic fibre of BE§(w /T')
identifies with the semi-open annulfis € R:|w| < |z| < 1} of thicknessw|
modulo the galois action.

PROLONGATION LEMMA 1.1.Let P(X) = X" + A, 1(T)X" 1 4+ ... +

Ao(T) € R[T][X]andQ(X) = X"+A! (T, w/T)X" 1+ + AT, w/T) €

R[T]{w/T)[X], such thatP(X) = Q(X) € k[t][X] are separable Eisenstein

polynomials int. Let Z € Q (2 an algebraically closed field containinB[7"])

suchthatP(Z) = 0. Then

(1) R[T][Z] = R[Z]. MoreoverT = D(Z)u(Z) whereD(Z) € R[Z] is a
distinguished polynomial of degreeand«(7) is a unitin R[Z].

(2) After a finite extensio®’/ R and taking an annulus of smaller thickngss|,
the mapZ — T'(Z) defines a finite morphism

SpecR'[ 7] <%> — SpecR'[T] <%I>

for somev € R’ with |w|™ = |w’|. MoreoverQ has arootZ’ in R'[Z]{(w/Z),
i.e. the morphisms defined By and @ are isomorphic over the semi-open
annulusj@w’| < |T| < 1.
Proof. (1) One hasdo(T) = (a &T)ue(T) for somea € wR anduo(T)
a unit in R[T], so after changing coordinates for the disc one can assume that
Ao(T) = <T. Then

T =2"+ A, 1(T)Z" 1. 4+ A(T)Z
= Zn+P0(Z)+TZH0(T’Z)’ (*)

wherePo(Z) = Y- A;(0)Z° € nZR[Z] andHo(T, Z) € R[T][Z). lterating
T in (x) one express€eB as an element aR[Z]], soR[T][Z] = R[Z]. One has
the writing

T = [[(Z sai)u(Z),
i=1

with g = 0, ; € R, || < 1 andu(Z) € R[Z]*.
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(2) Letw' € R, |@'| < 1, be chosen such that’| > max |o;|™. Then for
z€ R, |z| <1,

/1/n| —

T(2)] = |@'| & 2] = |@ @l

and so for som&’ the injectionR'[T]] — R'[Z] induces a finite morphism
' hd ' “
SpecR'[Z]] <Z> — SpecR'[T] <T> .

Now we can se€)(X) as a polynomial id(w/Z)[X], whereA := R'[Z]. For
the rest of the proof we denote thé derivative of Q(X) by Q'(X). We want to
show that if|@’| is sufficiently near to 1, the@(X) has arootZ’ € A(w/Z).

In order to prove this we use Newton’s method, but must overcome some
technical difficulty asA(w/Z) isn’t a field and moreover is endowed with a norm
||.|| (the spectral norm ofw| < |z| < 1) which isn’t multiplicative. As usual we
build a sequencg; € A(w/Z) such that

Q(Zi)
Q'(Zi)
and prove that it converges. First we shall work in the affinoid algeb{dgp, w/Z)

for p near to 1and take the limit ag — 1.
We have

a2 =2 er2) = Y (4(r.2)eam) 2,

0<i<n

Zis1 =2 &

hence|Q(Z)|| < 1 by the hypothesisK = @ in k[T])[X]); moreoverQ' (Z) +# 0,
hence||Q'(Z)|| = 1. Changingo we can assume th&'(Z) has no zeros in the
semi-open annuluz € R:|w| < |z| < 1}. HenceQ'(Z) € L(Z/p,w/Z)* and
1Q(2)/Q"(Z)?|| < h < 1 (with h independent of).

SetZ1 = Z<Q(2)/Q'(Z) € L{Z/p,w/Z), then using the Taylor expansion

one has
_ QZ) Q(7)\?
Az = Q2) o5 Q@)+ (S5 ) ().
wherel||r(Z)|| < 1 (remark that(X) € A{w/Z)[X]) and consequentlyQ(Z1)/

Q2 < h.

Next we show that)’(71) € L{(Z/p,w/Z)*.

Onehas=Q'(2)+Q'(71) = (Z<Z1)EforsomeE € L{(Z/p,w/Z), || E| < 1.
Therefore

Q7 _,, Q2

oz ~ T qze”
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is invertible and s@)'(Z1) € L{Z/p,w/Z)*. Now
Uz =1 and h?
[o@ o st

<n czc?((zzl))2

_ H '(2) H Q(2)
Q'(Z1) Q'(Z1)?
It follows ||Q(Z2)/Q(Z41)]| < h2.
Recurrently this process works in the same way and in the limit yiglds
lim Z, € L(Z/p,w/Z) independently ofp, such thatQ(Z’) = 0. Moreover
IZ'| = |Z]| = 1and saZ’ € A{w/Z).

THEOREM 1.2.Letw € Rand A, := {z € R:|w| < |z| < 1} which modulo
the galois action identifies with the generic fibreSgecR[Z](w/Z). LetG be a
pe-cyclic group of automorphisms of, with ¢ < 2. We assume that the inertia
at 7R is the identity. Then after enlarging and diminishing the thicknesg, can
be extended to a group of automorphisms of the openSpecR[Z’] and A, is
identified with{2' € R: |w| < |#/| < 1}.

Proof. This is a consequence of the Prolongation Lemma and paragraph 6,
Section I, where we lift automorphisms &f[-'] of orderp®e with a < 2 to
automorphisms oR[Z'].

THE GLOBAL LIFTING THEOREM 1.3.Letf:C — C/G := D be aG-galois
cover of smooth integral proper curves overAssume that the inertia groups are
p“e-cyclic witha < 2. Thenf can be lifted ove? = W (k)[{(2)] as aG-cover of
smoothR-curves.

Proof. Supposef: C — D = C/G and letD denote a smooth relative curve
overW (k)[((»)] whose special fiber iB. Denote byD?" the generic fibre endowed
with rigid analytic structure and let D2" — D be the reduction map. Léf C
D = C/G bethegtale locus, antf c D", be the affinoid defined by = »—1(U).
Then by Grothendieck, up to isomorphism one can lift in a unique diagram

v—L sycop™

v—L .vch
whereV = f~1(U) C C andi/ = V/G. The aim is to compactify the morphism
f:V — U with a morphism of discs in &-galois way.
We write D = U [] Branch f, where Branchf is the branch locus. For

x € Branchf, choosey € f~(z) and letl, be the inertia group aj. Let I'
be a representative system@imod],, thenf—Y(z) = I er{vy}. TheG-cover
fiV = U extends to aG-cover fo:V, — Uy, whereld,, = UIl A, and
Ay = {z € rY(2)|7'| < |2| < 1}. Moreover the germ of prolongation is unique
up to isomorphism, see [Ra], Proposition 3.4.1. Let

f Ay = Ay

r
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be the corresponding,-cover for they € f~1(z), then using Lemma 1.1 again

we observe that deminishing the thicknessAgfit follows that.A, is a semi-open
annulus; so the conditions of Theorem 1.2 are satisfied. Following Raynaud, [Ra]
4.1, one can define th@-cover obtained fromH,, via induction fromZ, to G. Then

fr(Ag) ~ Indf A,

Now one can apply the previous theorem in order to exp@rtd anl,-morphism
of open discs

B, B,
Ay Am

We can then glue the morphism i@, — B, to f. along f, for each
z € Branchf. This gives a lifting off as an analytic cover db?", which via
rigid GAGA can be algebraized to@-cover of smooth integral propét-curves
lifting f.
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