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351, cours de la Lib́eration, 33405 – Talence, Cedex, France
e-mail: matignon@math.u-bordeaux.fr

Received 21 October 1996; accepted in final form 20 May 1997

Abstract. Let (C;G) be a smooth integral proper curve of genusg over an algebraically closed field
k of characteristicp > 0 andG be a finite group of automorphisms ofC: It is well known that here,
contrary to the characteristic 0 case, Hurwitz’s boundjGj 6 84(g � 1) doesn’t hold in general; in
such cases this gives an obstruction to obtaining a smooth galois lifting of(C;G) to characteristic 0.

We shall give new obstructions of local nature to the lifting problem, even in the case whereG
is abelian. In the case where the inertia groups arepae-cyclic with a 6 2 and(e; p) = 1; we shall

prove that smooth galois liftings exist overW (k)[ p
2p

1].
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0. Introduction

In this paper we consider the following question

SITUATION: Letk be an algebraically closed field of characteristicp > 0;andC=k
be a smooth integral proper curve of genusg = g(C): LetR be a complete discrete
valuation ring dominating the ring of Witt vectorsW (k) and� be a uniformising
parameter ofR:

QUESTION:LetG be a finite subgroup ofAutk(C) and suppose

C ! D = C=G

is a finite galois cover of smooth integral proper curves overk. Is it possible to findR
as above and a finite galois cover of smooth relative curves overR; C ! D = C=G
which lifts the given coverC ! D?

Background results

� If (jGj; p) = 1 the answer is yes for anyR; by Grothendieck, SGA I.
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238 BARRY GREEN AND MICHEL MATIGNON

� If jGj > 84(g(C) � 1) then the answer is no, due to a contradiction using
Hurwitz bounds. In characteristicp there exist curvesC=k such that one can
chooseG with jGj > 84(g � 1); see [Ro], but in characteristic 0 the order of
the automorphism group of a curve of genusg is at most 84(g � 1).

One remarks that ifG is abelian then by Nakajima, [N], the bounds for
G � Autk(C) are the same in any characteristic and so in this case one
doesn’t expect a contradiction using bounds. So one speculates that for suchG
smooth liftings may always exist, and the first case one studies is forG cyclic.
Here one knows:

� If G is cyclic of orderpe, with (e; p) = 1; the answer is yes ifR contains a
primitive pth root of unity, say�. This result is due to Oort–Sekiguchi–Suwa,
[O-S-S].

Following these results it then became natural to ask for the following general-
isation (see [O1] I.7 and [O2]):

CONJECTURE:The answer is yes ifG is a cyclic group.

In this paper we prove two main theorems. In the first we give necessary
conditions for the solvability of the lifting problem when thep-parts of the inertia
groups aren’t cyclic. Our second main theorem answers the conjecture positively,
forG-galois covers whose inertia groups arepae-cyclic with a 6 2 and(e; p) = 1.
More precisely in Section I, 5.7, we prove

THEOREM 1.Let f : C ! C=G := D be aG-galois cover of proper integral
smooth curves overk. Let y 2 C, x = f(y) and suppose that thep-part of
the corresponding inertia group,Ip; is isomorphic to(Z=pZ)2. Then a necessary
condition forf to be lifted as aG-galois cover of smooth integral properR-curves,
for some extensionR of W (k); is that the minimal conductor of thep-cyclic
extensions ofbOIp

C;y in bOC;y is congruent to0 modulop.

As a corollary to the proof method for this theorem we present examples of
galois covers with group(Z=pZ)2 which cannot be lifted over any extensionR of
W (k). Our second theorem (III, 1.3) is:

THEOREM 2.Let f : C ! C=G := D be aG-galois cover of smooth integral
proper curves overk. Assume that the inertia groups arepae-cyclic with a 6 2
and(e; p) = 1. Thenf can be lifted overR = W (k)[�(2)] as aG-galois cover of
smooth integral properR-curves, where�(2) is a primitivep2-root of unity.

We have used rigid methods to study this question and these also enable us to
reprove the result from [O-S-S] in this context. In this respect the crucial study
is that of the existence of liftings ofG-galois covers of formal power series rings
k[[z]]=k[[z]]G = k[[t]] over k to G-galois covers of the formal power series rings
R[[Z]]=R[[Z]]G = R[[T ]] overR. This is the condition which ensures smoothness of
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LIFTINGS OF GALOIS COVERS OF SMOOTH CURVES 239

the lifting of curves. In contrast, the methods used by Oort, Sekeguchi and Suwa are
global in the sense that they use generalized Jacobians. In our context the results we
have proved give more information than those stated in Theorems 1 and 2 above,
but rather than embarking on explanations now, we invite the reader to go straight
to the paper for these.

Now we sketch how one uses rigid geometry to solve the lifting problem, under
the assumption that the automorphisms of the formal power series rings overk can
be lifted:

Supposef : C ! D = C=G and letD denote a smooth relative curve over
W (k)[�(2)] whose special fiber isD. Denote byDan the generic fibre endowed
with rigid analytic structure and letr : Dan ! D be the reduction map. Let
U � D = C=G be theétale locus, andU � Dan, be the affinoid defined by
U = r�1(U). Then by Grothendieck, up to isomorphism one can lift in a unique
diagram

V
~f - U � Dan

V
?

r

f - U � D;

r
?

whereV = f�1(U) � C andU = V=G. The aim is to compactify the morphism
~f : V ! U with a morphism of discs in aG-galois way. For this one extends~f to
aG-galoisétale cover~f 0 : V 0 ! U 0 � Dan whereU 0 is the union ofU and suitable
annuli. On the other hand, for eachx 2 D � U if we are able to lifta

y:f(y)=x

SpecbOC;y ! SpecbOD;x
in aG-galois cover of open discs, then using a prolongation lemma one can glue
this cover to~f 0: V 0 ! U 0 along the morphisms induced on the annuliU 0 � U .

We remark that in his thesis, [G], Garuti has proved that for anyG such a
lifting of k[[z]]=k[[z]]G = k[[t]] in A=AG = R[[T ]] is always possible for suitableR
dominatingW (k), whereA has generic fibre a suitable open 1-dimensional rigid
analytic space of genus not necessarily 0. This gives rise to liftingsC0 ! D = C0=G
of galois coversC 0 ! D = C 0=G, whereC 0 is birational toC, with only cusps as
singularities, and the generic fibreC0� ! D� is aG-cover of smooth curves.

Hence the question is if over the open disc SpecR[[T ]], we have ‘genus 0’, more
precisely open discs, and so we begin our investigation by studying the geometry
of automorphisms of open discs.

Contrary to prime top-order automorphisms, the geometry of orderp automor-
phisms of the open disc SpecR[[Z]], is far from understood. One can show that
mod�, the automorphisms

Z 7! Z(��m + Zm)�1=m;
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240 BARRY GREEN AND MICHEL MATIGNON

for (m; p) = 1 and� a primitivepth root of unity, define the extension ofk((t))
with conductorm+ 1 given by the Artin–Schreier equation:

xp � x = 1=tm:

One can use these in a way that mimics [O-S-S] in order to lift galois covers whose
p-inertia at each point is cyclic of order at mostp.

Our main contribution concerns higherp-exponent, one first needs a presentation
of p2-cyclic extensions from which one can easily read the degree of the different;
this is done via Artin–Schreier–Witt Theory in Lemma 5.1, Section II. The first
challenge is then to lift the equations as ap2-cyclic cover of the open disc and this
can be done using Sekiguchi and Suwa’s recent work ‘On the unified Kummer–
Artin–Schreier–Witt theory’, [S-S1], but in order to cover the disc by discs we need
to minimize the degree of the generic different; this is done after developing this
theory in an effective way: namely we explicitly describe the map 2 from [S-S1],
and finally we give explicit equations for liftings (over open discs).

As a result this gives rise top2-order and so (taking thep-power composition)
p-order automorphisms of the open disc which are not defined overW (k)[�] and
so are of quite distinct nature from those appearing in [O-S-S]. For the geometry
of automorphisms of orderp of the open disc we refer to our forthcoming paper,
[G-M].

We would like to thank Tsutomu Sekiguchi and Noriyuki Suwa for communi-
cating their workOn the unified Kummer–Artin–Schreier–Witt theoryto us. Their
approach inspired our own work onp2-cyclic liftings in Section II.

I. LOCAL OBSTRUCTIONS TO THE LIFTING

Letk be an algebraically closed field of characteristicp andW (k) be its associated
Witt-ring. The aim of this section is to give obstructions for a given group of
automorphismsG of k[[z]] to be lifted to the formal power series ringR[[Z]],
whereR is any complete discrete valuation ring dominatingW (k). We shall use
the notation~R to denote the unique valuation ring in the algebraic closure which
dominatesR.

We begin by collecting and proving those facts on automorphisms of finite
order of the disc SpecR[[Z]] and their fixed points, which we need in order to show
obstructions to the lifting problem.

1. Geometry of the disc

Recall that by using the Weierstrass Preparation Theorem [B1], Chap. 7, p. 38,
we can describe the geometry of theR-schemeX := SpecR[[Z]]. Namely, the
special fibre,X �R k, has only one closed point which corresponds to the ideal
(�;Z)R[[Z]], and the closed points of the generic fibre,X �R K, correspond to
the irreducible distinguished polynomials ofR[[Z]]. These polynomials have roots
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in the maximal ideal of~R. This allows us to identifyX �R K with the open disc
fz 2 ~R : jzj < 1g modulo galois action.

2. Automorphisms of finite order with fixed points

Let � be anR-automorphism ofR[[Z]] of finite order – we shall always work with
R-automorphisms and so drop the reference toR. Then it is defined by a series

�(Z) = a0 + a1Z + � � �+ aiZ
i + � � � ;

and as it is an automorphism we must havea0 2 �R anda1 2 R�. Moreover�
induces a SpecR automorphism of the discX, which we call~�. For rational points
(Z �Z0) 2 X one has~�((Z �Z0)) = (Z � ~Z0), where~Z0 =

P1
i=0 aiZ

i
0. Such a

point is a fixed point if and only ifZ0 2 �R andZ0 =
P1
i=0 aiZ

i
0. More generally,

P 2 X is a fixed point if and only ifP = �R[[Z]],P = (0) orP � (�(Z)�Z). In
the sequel we shall refer to this last set when we speak about fixed points. Moreover,
we use the terminology geometric fixed points to describe the points they define in
the geometric generic fibre.

2.1. EXISTENCE OF FIXED POINTS.Let � be an automorphism ofR[[Z]] of
finite order which doesn’t induce the identity residually(i.e., the inertia group at
�; I�; is not the full grouph�i). Then� has at least one fixed point.

Proof.Using the writing above, suppose first thata1 � 1 mod�R: Then since�
doesn’t induce the identity residually, one knows that there is anai (i > 1) which
is a unit. Letm be the firsti > 1 such thatai is a unit. This integerm is also
referred to as the Weierstrass degree of the series�(Z) � Z. By the Weierstrass
Preparation Theorem the series can be expressed as

�(Z)� Z = fm(Z)u(Z)

wherefm(Z) is a distinguished polynomial of degreem and the seriesu(Z) is a
unit in R[[Z]]: It follows that the points ofX which containfm(Z) are the fixed
points for�. Finally if a1 6� 1 mod�R, we repeat the above argument withm = 1.
(Note that in this case� has only one fixed point which is rational.)

We shall need the following lemmas.

LEMMA 2.2 ([C] Lemma 14 p. 245).Let e 2 N� andf(Z) 2 R[[Z]], such that
f(Z) � Z mod(Z2) and defines anR-automorphism ofR[[Z]] of ordere. Then
e = 1.

We shall also use a weak form of Lemma 15 from [C].

LEMMA 2.3. Consider the seriesf(Z) = a0 + a1Z + � � �+ anZ
n+ � � � 2 R[[Z]],

a0 2 �R, and for e 2 N� let f e(Z) = b0 + b1Z + � � �. Then one hasb0 �

a0(1+ a1 + � � �+ a
(e�1)
1 )moda2

0R andb1 � ae1 moda0R.
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Proof.By induction one: Check that

f (e+1)(Z) = a0 + a1f(Z) + � � �

= a0 + a1(b0 + b1Z + � � �) + a2(b0 + b1Z + � � �)2 + � � �

= a0 + a1b0 + a2b
2
0 + � � � + Z(a1b1 + 2a2b0b1 + � � �) + � � � :

From this one deduces thata0 + a1b0 + a2b
2
0 + � � � � a0 + a1b0 moda2

0R, and
a1b1 + 2a2b0b1 + � � � � a1b1 moda0R.

COROLLARY 2.4.If � is an automorphism ofR[[Z]] of ordere, with (e; p) = 1,
then� has a rational fixed point.

Proof.Supposea0 6= 0,�(Z) = a0 + a1Z + � � � and that�e(Z) = b0 + b1Z +

� � � = Z. Then by the Lemma above 1+ a1 + � � � + a
(e�1)
1 � 0 moda0R. Hence

ase 6� 0 modp, it follows thata1 6� 1 mod�R. Therefore the automorphism�
doesn’t induce the identity residually, and hence by 2.1 must have a rational fixed
point.

REMARK. The analysis in Coleman [C], Section 5, is more precise: namely he
proves that there are no automorphisms of orderp overR =W (k), for p > 3.

2.5. LINEARIZATION. Lete be an integer prime top andf(Z) 2 R[[Z]] a power
series withf(Z) � sZ mod(Z2), which defines anR-automorphism ofR[[Z]] of
ordere. Then there existsZ 0 2 ZR[[Z]] such thatf(Z 0) = sZ 0.

Proof. Observe that as the order off is e it follows s is aneth root of unity.
Consider the Lagrange–Hilbert resolvant:

Z 0 = Z + s�1f(Z) + s�2f2(Z) + � � �+ s�(e�1)f e�1(Z):

Then f(Z 0) = sZ 0, and moreoverZ 0 � eZ mod(Z2), with e a unit in R as
(e; p) = 1.

The following example shows that not every automorphism of finite order is
linearizable.

EXAMPLE. Let � be a primitivepth root of unity and�(Z) = �Z(1+Z)�1, then
�p(Z) = Z and 0,� � 1 are the fixed points.

3. Comparison of the different

Let � be an automorphism ofR[[Z]] of finite ordern. We denote the inertia group
at � in h�i by I� and assume that it is the identity group so that� has at least
one fixed point. EnlargingR we can assume that 0 is such a fixed point and that
�(Z) = �Z(1+ a1Z + � � �), where� is a primitiventh root of unity (see Lemma
2.2).
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LIFTINGS OF GALOIS COVERS OF SMOOTH CURVES 243

CLAIM 3.1. LetT = Z�(Z) � � � �n�1(Z) = �Zn(1+ � � �) where� = (�1)(n�1).
ThenR[[Z]]h�i = R[[T ]].

Proof.From [B1], Chap. 7, corollary, p. 40, one knows thatR[[Z]] is a finite free
R[[T ]]-module of rankn, generated by 1; Z; Z2; : : : ; Zn�1. On the other hand by a
dimension consideration it follows that Fr(R[[Z]]h�i) = Fr(R[[T ]]). AsR[[Z]]h�i is
integral overR[[T ]] which is integrally closed, the claim follows.

CLAIM 3.2. Letd�, resp.ds, be the degrees of the generic, resp. special differents
for the extensionR[[Z]]=R[[T ]]. Thend� = ds.

Proof. Let f(X) = �06i<n(X � �i(Z)) be the irreducible polynomial ofZ
overR[[T ]]. Thenf 0(Z) = p(Z)u(Z) wherep(Z) is a distinguished polynomial
andd� = degZ p(Z). For the special different we have

ds = vz

 Y
i

(z � �i(z))

!

and so the result follows by the Weierstrass Preparation Theorem. We remark that
the same equality for the different holds for towers of such cyclic extensions, see
also 3.4.

CLAIM 3.3. LetF be the set of geometric fixed points of� and supposem is the first
integer such that the coefficientam in �(Z)�Z = (��1)Z+ � � �+ �aiZ

i+1+ � � �
is a unit. ThenjF j = m+ 1.

Proof.First note that by assumptionI� = 1, the identity group, so the integer
m exists. If� 6� 1 mod�, then� has a unique fixed point. Suppose� � 1 mod�
(i.e.n is ap-power). Thenm > 0; and the geometric fixed points are given by the
zeros of the distinguished polynomialfm(Z) of �(Z)�Z. LetZ0 be such a zero,
then the derivative atZ0

�0(Z0) = 1+ f 0m(Z0)u(Z0)

is a primitiventh root of unity (o(�) = n) and sof 0m(Z0) 6= 0. Hence the roots
are distinct, thus givingm + 1 geometric fixed points. Observe that ifn = p this
corroborates the previous factd� = ds.

REMARK. One checks that the integerm+ 1 appearing in 3.3 is the conductor of
the residual extensionk[[z]]=k[[z]]h�i = k[[t]].

It is known that Claim 3.2 has a converse in the germ of curves context which
follows from a formula given by Kato [K], Section 5. Namely, given a finite
morphism of strict henselizations of local rings ofR-curves at closed points one
can express the difference between the degrees of the generic and special differents
in terms of Milnor numbers at the closed point. As our context is that of completions
of local rings, for the convenience of the reader we give an adapted proof in the
special case we use.
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3.4. LOCAL CRITERION FOR GOOD REDUCTION.LetA = R[[T ]] andB be a
finiteA-module which is a normal integral local ring, and setAK = A
RK; resp.
BK = B
RK. We assume thatB=�B = B0 is reduced and settingA0 := A=�A,
that the extensionB0=A0 is genericallyétale. Let~B0 be the integral closure ofB0

and define�k(B) = dimk
~B0=B0: Letd� resp.ds be the degrees of the generic resp.

special differents, i.e. the degrees of the differents for the extensionsBK=AK resp.
B0=A0. Thend� = ds+2�k(B) and moreover ifd� = ds it follows that�k(B) = 0
andB = R[[Z]].

Proof. It follows from EGA IV, Chapter 0, corollary to Proposition 17.3.4,
thatB is a freeA-module say of rankr. Following [S], Chapter III we consider
detA(B) :=

Vr
AB and define

TB=A : detA(B)
A detA(B)! A (�)

to be the homomorphism induced by the symmetric bilinear form

B �B ! A; (x; y) 7! trB=A(xy);

where trB=A : B ! A is the trace map. Then Im TB=A = cA for somec = �nP (T )
in A with n > 0 andP (T ) a distinguished polynomial. Tensoring(�) by K we
obtain

TBK=AK : detAK (BK)
AK detAK (BK)! AK :

It follows d� = Coker TBK=AK = degP . On the other hand setting T0 = ��nTB=A,
mod� this induces a homomorphism

T00 : detA0(B0)
A0 detA0(B0)! A0:

Moreover Im T00 = (c=�n)A0 = tdegPA0 so dimk Coker T00 = degP .
Now consider~T00 to be the homomorphism defined as in(�) from the extension

A0 � ~B0:

~T00 : detA0(
~B0)
A0 detA0(

~B0)! A0:

Then dimk Coker~T00 = ds and it follows from [S], Chap. III, Proposition 5, that
dimk CokerT 00 = ds + 2�k(B). Collecting the previous equalities we obtain the
desired equality.

If d� = ds, thenB0 = ~B0 = k[[z]] and it follows from [B2], Chapter 9, Section
2, No. 5, thatB = R[[Z]].

4. Automorphisms of the disc without fixed points

In this paragraph we want to show the reader that automorphisms of the open disc
without fixed points appear quite naturally within the study of those which have a
fixed point.
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Let� be an automorphism ofR[[Z]] of finite order which has at least one rational
fixed point inX. We are interested in the open discs inX with rational centre and
radius inj ~Rj which are stabilized by�.

If (o(�); p) = 1, such a disc necessarily contains the fixed point of� by 2.4.
So we shall concentrate on the case where o(�) = p and has a rational fixed point,
which we assume to be 0.

Let a 2 �R, chooser 2 j ~Rj and setD(a; r+) = fz 2 ~R j jz � aj < rg. There
are two cases to look at; either the inertia groupI� = h�i, or I� = 1.

(a) Suppose thatI� = h�i. Then�(Z) = �Z, for � a primitivepth root of unity.
One checks thatD(a; r+) is stabilized by� iff r > j(� � 1)aj, and moreover�
will have no fixed point iffjaj > r.

(b) Next supposeI� = 1. Then we have seen that�(Z) = �Z(1+� � �+amZm+
� � �)where� is a primitivepth root of unity,ai 2 �R for i < m; am 2 R� for some
m, and further by Artin–Schreier theory(m; p) = 1. By the preparation theorem
�(Z) � Z = fm(Z)u(Z) wherefm(Z) is a distinguished polynomial of degree
m+ 1; andu(Z) is a unit.

Let F = (Zi)16i6m+1 2 ~R be the zeros offm: ThenD(a; r+) is stabilized by
� iff j�(a) � aj =

Q
Zi2F ja� Zij < r. Further� has no fixed point inD(a; r+)

iff ja�Zij > r for all Zi 2 F . These last two conditions are satisfied as soon asr
is smaller than but sufficiently close to minija� Zij.

For example if�(Z) = �Z(1+ Z)�1; thenF = f0; � � 1g and the conditions
above are:

max
�
j� � 1� aj; jaj

�
> r > jaj:j� � 1� aj:

5. Obstructions to liftings of automorphisms

In this paragraph we shall give necessary conditions on the conductors ofp-
cyclic subextensions of abelian extensionsk[[z]] of k[[t]], for the liftability of
automorphisms ofk[[z]] to R[[Z]]. In the sequel given a finite groupG and a
G-coverk[[z]]=k[[z]]G = k[[t]], by a lifting of this cover overR we mean aG-cover
R[[Z]]=R[[Z]]G = R[[T ]] such that specializing modulo�R one obtainsk[[z]]=k[[t]].
We shall use the same notation for the automorphisms acting onR[[Z]] and those
acting modulo�R onk[[z]].

THEOREM 5.1.LetG be an abelian group isomorphic to(Z=pZ)2. LetGi; 16 i 6
p+1;be thep+1subgroups of orderp:Assume thatG is a group of automorphisms
of k[[z]] and arrange theGi in such a way that the extensionsk[[z]]Gi=k[[z]]G have
conductorsmi + 1, with m1 6 m2 6 � � � 6 mp+1. Denote the conductor of the
extensionk[[z]]=k[[z]]Gi by m0

i + 1. Then if there is a lifting ofG to a group of
automorphisms ofR[[Z]] the following two cases can occur

1st Case:Supposem1 < m2. Thenm1 � �1 modp, m0
1 = m2p �m1(p � 1),

mi = m2; andm0
i = m1, for 2 6 i 6 p+ 1.
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2nd Case:Supposem1 = m2. Thenmi = m1 � �1 modp, andm0
i = m1 for

1 6 i 6 p+ 1.

In each case the two coversR[[Z]]Gi=R[[Z]]G for i = 1;2have(p�1)m1+1
p common

geometric branch points.?

Conversely, ifm1 � �1 modp and if one can liftk[[z]]Gi=k[[z]]G for i = 1;2
in such a way that the corresponding covers have(p � 1)(m1 + 1)=p common
geometric branch points, then the normalisation of the compositum of these two
covers liftsk[[z]]=k[[z]]G.

Proof.LetG = h�1; �2i, with o(�i) = p and setGi = h�ii for i = 1;2. We let
m0
i+1 be the conductor of the extensionk[[z]]=k[[z]]Gi and suppose that we can lift

G as a group of automorphisms ofR[[Z]]. Then for eachi;m0
i + 1 is the number of

geometric branch points ofR[[Z]]=R[[Z]]Gi .
Settingk[[t]] := k[[z]]G, for eachi the extensionk((z))h�ii=k((t)) is defined by

an Artin–Schreier equation

xpi � xi = fi

�
1
t

�
:

It is possible to chooset (and soxi) such that

f1

�
1
t

�
=

1
tm1

; (m1; p) = 1;

f2

�
1
t

�
=
cm2

tm2
+
cm2�1

tm2�1 + � � �+
c1

t
;

where for 16 l 6 m2, cl = 0 if p j l, (m2; p) = 1 and we assumem1 6 m2.

1st Case: Supposem1 < m2. Thenm1 � �1 modp,m0
1 = m2p�m1(p� 1), and

mi = m2; respectivelym0
i = m1, for 26 i 6 p+ 1.

We begin by expressing the conductorm0
1+1 of the extensionk((z))=k((z))G1

in terms ofm1 andm2. One hask((z)) = k((z))G1[x2] and asz1 := x
�1=m1
1 2

k((z))G1 is a uniformizing parameter

1
t
= z�p1 (1� z

m1(p�1)
1 )1=m1:

Therefore

xp2 � x2

=
X

16i6m2

ci

zpi1

(1� z
m1(p�1)
1 )i=m1 with (i; p) = 1

=
X

16i6m2

ci

zpi1

�
X

16i6m2

ci
i

m1

 
1

z
pi�m1(p�1)
1

+ smaller terms

!
:

? Note that by geometric branch points we mean the set of points defined by the branch points in
the geometric generic fibre.
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By assumptionm1 < m2; so it follows that the final expression on the right is
equivalent (after an Artin–Schreier translation) to a

z
pm2�m1(p�1)
1

+ smaller terms.

Hence we obtainm0
1 = pm2 � (p� 1)m1.

Letd be the number of common geometric branch points inR[[Z]]Gi=R[[Z]]G =
R[[T ]] for i = 1;2. Now the degree of the generic different forR[[Z]]=R[[Z]]G1

is (m2 + 1� d)(p � 1)p (the points ofR[[Z]]G1 corresponding to thed set are
completely decomposed.) It follows from the equality of the degrees of the generic
and special differents (Claim 3.2) that

(m2 + 1� d)(p� 1)p = (m0
1 + 1)(p� 1):

This together with the identity form0
1 gives

(p� 1)(m1 + 1) = pd; i:e: m1 � �1 modp:

Now we remark that thep-cyclic extensions ofk((z))G insidek((z)) are gen-
erated by the elementsw1x1 + w2x2, for (w1; w2) 2 F2

p n f(0;0)g. Moreover, one
can choose an Artin–Schreier generator, sayx2 orx1+w2x2 for eachw2 2 Fp . As

(x1 + w2x2)
p � (x1 + w2x2) =

1
tm1

+ w2

X
16i6m2

ci
ti
;

it follows that the set of conductors of thesep+ 1 cyclic extensions is

m1 + 1;m2 + 1;m2 + 1; : : : ;m2 + 1

providedm1 < m2.
The degree of the different of the extensionk((z))=k((z))G is

ds = (m1 + 1)(p� 1)p+ (m0
1 + 1)(p� 1)

= (mi + 1)(p� 1)p+ (m0
i + 1)(p� 1) for i = 2; : : : ; p+ 1:

Sincem0
1 = pm2�(p�1)m1 andmi = m2, i = 2; : : : ; p+1; it followsm0

i = m1.
This finishes the proof of the first case.

2nd Case: Supposem1 = m2. Thenmi = m1 � �1 modp, andm0
i = m1 for

1 6 i 6 p+ 1.
We first observe that in this casem1 = mi for all i = 2; : : : ; p+1, for otherwise

we can argue as in case 1, so obtainingm2 6= m1. To simplify the notation we set
m = mi for all i. The equations for the extensions admit the writing

xp1 � x1 =
1
tm
;

xp2 � x2 =
up

tm
+
a

tl
+ � � � ;
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whereu; a 2 k, l < m and (l; p) = 1. First observe thatup is distinct from
u; for otherwise aFp-linear combination ofx1 andx2 would generate ap-cyclic
sub-extension ofk((z)) overk((t)) having conductor strictly less thanm+1. This

contradicts the observation at the beginning of this case. Settingz1 = x
�1=m
1 , the

first equation givest�1 = z�p1 (1� z
m(p�1)
1 )1=m. The second equation becomes

xp2 � x2 = up(z�mp1 � z�m1 ) +
a

zlp1

�
1�

l

m
z
m(p�1)
1 + � � �

�
+ � � �

where the dots indicate terms having increasingz1 powers. By making the usual
Artin–Schreier translation the right side of the equation above becomes

u� up

zm1
+
a

zl
�
al

m
z
m(p�1)�lp
1 + � � � :

Observe thatm(p� 1)� lp > �l > �m; so the conductorm0
1+ 1 ism+ 1. Thus

mi = m0
i = m for i = 1; : : : ; p+ 1.

Comparing the degrees of the generic and special differents for the covers
R[[Z]]Gi=R[[T ]] andk[[z]]Gi=k[[t]] we obtain

d� = (m+ 1� d)(p� 1)p = (m+ 1)(p� 1) = ds;

whered is the number of common geometric branch points inR[[Z]]Gi=R[[T ]] for
2 different values ofi. It follows that

(p� 1)(m+ 1) = dp; i:e: m � �1 modp:

This finishes the second case, and also shows that for both cases the number
of common geometric branch points inR[[Z]]Gi=R[[T ]], for i = 1;2, is d =
(p� 1)(m1 + 1)=p.

For the converse, supposem1 � �1 modp and that one can liftk[[z]]Gi=k[[z]]G

to G=Gi-coversR[[Zi]]=R[[T ]] for i = 1;2 in such a way that these have(p �
1)(m1+1)=p common geometric branch points. We examine the normalisation of
their compositum. The degree of the generic different of the normalisation of the
compositum(R[[Z1]]
R R[[Z2]])

� is

d� =

�
m1 +m2 + 2� (p� 1)

m1 + 1
p

�
(p� 1)p:

The specialisation of the compositum generically gives the coverk[[z]]=k[[z]]G

whose degree of different is

ds = (m1 + 1)(p� 1)p+ (m0
1 + 1)(p� 1):
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The direct part of the theorem shows thatm0
1 = pm2 � (p � 1)m1 in both cases

sod� = ds; therefore applying criterion 3.4 from this section, we conclude that
(R[[Z1]]
R R[[Z2]])

� ' R[[Z]],R[[Z]]Gi ' R[[Zi]],R[[Z]]G ' R[[T ]] and the cover
R[[Z]]=R[[Z]]G lifts k[[z]]=k[[z]]G.

EXAMPLES. Below we give two examples of covers with group(Z=pZ)2 where
the theorem above is applied. The first is an example of a cover with group(Z=2Z)2

for which the conditions of the theorem are satisfied and one is able to lift the cover.
The second is for a cover which cannot be lifted over anyR dominatingW (k).

5.2. Suppose char(k) = 2 and setG = (Z=2Z)2. Let u 2 k with u2 6= u and
consider the covers ofk((t)) defined by

x2
1 � x1 =

1
t

and x2
2 � x2 =

u2

t
:

These covers are lifted to covers overR =W (k) by the equations

(�2X1 + 1)2 � 1
4

=
1
T

and
(�2X2 + 1)2 � 1

4
=
U2

T
;

whereU 2 R lifts u. The equation for the compositum of these two covers is
X2

2 �X2 = U2(X2
1 �X1) and settingZ := X2 � UX1; this becomes

Z2 + (2UX1 � 1)Z = (U � U2)X1: (�)

Remark that Fr(R[T;X1; Z]) = Fr(R[Z]) = K(Z); i.e., the projective lineP1
K.

From the equationX2
1 �X1 = 1=T we see that

jT j < 1, jX1j > 1

and from(�) that

jX1j 6 1) jZj 6 1:

Now assumejX1j > 1 andjZj 6 1; then jX1j = jZ2 � Z + 2UX1Zj and so
jX1j = j2UX1Zj; i.e. jZj = 1=j2U j which is a contradiction. Hence

jT j < 1, jZj > 1:

The groupG is realized as the group of automorphisms of the discjZj > 1; i.e., of
R[[Z�1]], by

�1(Z) = (4� U)
Z + U

2Z � 1+ U
;
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�2(Z) = (1� U)
Z � 1

2Z � 1+ U
:

One checks that each of these automorphisms has order 2. Notice that this cover
gives rise to a globalG-lifting overP1

R.

5.3. Consider the covers ofk((t)) defined by the equations

xp1 � x1 =
1
tm1

; with m1 6� 0;�1 modp

and

xp2 � x2 =
cm2

tm2
+ � � �+

c1

t
; with (m2; p) = 1;

cm2 6= 0 andcm2 62 Fp if m1 = m2. Then ifm2 > m1 the compositum of these
covers cannot be lifted over anyR dominatingW (k). Note, we need the condition
cm2 62 Fp if m1 = m2 to ensure that no other subextension ofk((t)) in the
compositum has smaller conductor thanm1+ 1. We know thatx1+wx2,w 2 Fp ;
are Artin–Schreier generators for these extensions and now the above condition
guarantees there is no cancellation which would give smaller conductor.

5.4. OBSERVATION. Suppose we can lift aG-coverk[[z]] =k[[z]]G to aG-cover
R[[Z]]=R[[Z]]G with G = (Z=pZ)2�Z=`Zand(p; `) = 1. We first assume that` is
prime. Then considering the subgroup(Z=pZ)2 � Gand the correspondingp-cyclic
subcovers on the one side and the quotient groupG=(Z=`Z)and the corresponding
p-cyclic subcovers on the other, one can apply the congruence identity of Theorem
5.1, namely ‘m1 � �1 modp’, to deduce that̀ � 1 modp. It follows for general
` that for any primeq j `, q � 1 modp.

The geometry of fixed points of automorphisms of orderp of the open disc
SpecR[[Z]] and the constraint to realise the converse part of Theorem 5.1 leads us
to the following:

5.5. QUESTION. Assumep > 2; what are the abelian non-cyclic automorphism
groups ofk[[z]] that we can lift to automorphism groups ofR[[Z]]? For example, if
G = (Z=pZ)2 then there do exist such automorphism groups which can be lifted
if p = 2 (see 5.2) andp = 3 (see [G-M]). Recently Matignon, [M], has solved the
caseG = (Z=pZ)n for anyp andn > 1 positively.

5.6. LOCAL TO GLOBAL OBSTRUCTIONS. In the literature the method used
to show obstructions to smooth galois liftings of curves is of global nature, by using
‘Hurwitz’ bounds for the number of automorphisms in characteristic 0. Now using
the local obstruction we can give new families of covers which are not liftable.

Indeed, consider any finitep-groupG which occurs as the galois group of an
extensionk[[z]]=k[[t]] and cannot be lifted overR. From Harbater’s theorem, [H]
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2.7, see also [Ka] 2.1.4, one can extend this to aG-galois cover of the projective
line for whichG is the inertia group at1. The extensionk[[z]]=k[[t]] is that induced
by the cover at1, and moreover the cover can be chosenétale outside1. Such
covers cannot be lifted to characteristic 0.

If G is an abelian group, it is known that the bounds for the number of automor-
phisms obtained using the Hurwitz formula are the same in characteristic 0 andp,
[N]. We remark that the equations of Example 5.3 are those of aG ' (Z=pZ)2

galois cover ofP1
k which cannot be lifted over anyR �W (k).

Now supposef : C ! C=G := D is aG-galois cover of proper smooth curves
overk. Lety 2 C,x = f(y)and suppose that thep-part of the corresponding inertia
group, which we denote byIp, is isomorphic to(Z=pZ)2. Assume that it is possible
to lift f as aG-galois coverC=D of smoothR-curves, for some extensionR of
W (k). Then, this lifting induces anIp-galois coverÔC;y=Ô

Ip
C;y which specializes to

ÔC;y=Ô
Ip
C;y mod�R and so Theorem 5.1 implies that the minimal conductor of the

p-cyclic subextensions of̂OC;y=Ô
Ip
C;y is congruent to 0 modulop. We have proved

Theorem 1 from the introduction, namely:

THEOREM 5.7.Let f : C ! C=G := D be aG-galois cover of smooth integral
proper curves overk. Lety 2 C, x = f(y) and suppose that thep-part of corre-
sponding inertia group,Ip, is isomorphic to(Z=pZ)2. Then a necessary condition
for f to be lifted as aG-galois cover of smooth integral properR-curves, for some
extensionR of W (k); is that the minimal conductor of thep-cyclic extensions of
Ô
Ip
C;y in ÔC;y, is congruent to0 modulop.

6. Ramification in pn-cyclic covers of the disc – the Hasse–Arf Theorem

Let k[[z]]=k[[t]] be aG-galois extension withG = h�i cyclic of orderpn: Assume
thatG can be lifted as aG galois cover of the discX ! X=G. Let Fl be the
geometric fixed points of�p

l
andNl := jFlj, 0 6 l < n. The p-cyclic cover

X=h�p
l+1
i ! X=h�p

l
i is unramified over the image ofFl+1 � Fl; this means that

�p
l
defines a partition ofFl+1�Fl in orbits of lengthp, hencepj(Nl+1�Nl). Note

that the conductor for thisp-cyclic extension isNl, soNl > 0.
This congruence above is the classical Hasse–Arf congruences forpn-cyclic

covers (see [S], p. 84) and following Serre’s notation one hasN0 = 1+i0; : : : ; Nl =
1+ i0 + pi1 + � � �+ plil. The fact that at each stageNl+1 �Nl 6= 0 (which gives
the full Hasse–Arf Theorem) follows as the conductors are distinct from 1.

We remark that the method of thickening Speck[[z]] in SpecR[[Z]] was recently
successfully exploited by Lubin, [L], in order to give a new proof of Sen’s Theorem
on formal power series (this is an extension of Hasse–Arf congruences). In fact he
only needs to lift the series�(z) 2 k[[z]] to �(Z) such that�(Z) � Z has only
simple zeros (but may have infinite order). For automorphism� of finite order this
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is clearly a less stringent condition than what we intend to do, i.e., to lift in an
automorphism� of finite order.

II. LOCAL LIFTING IN THE pae-CYCLIC CASE WITHa 6 2

In this section we begin by recalling certain results from Oort–Sekiguchi–Suwa,
[O-S-S] and Sekiguchi–Suwa, [S-S1]. In [O-S-S] thepe-cyclic case,(e; p) = 1, is
studied and in [S-S1] the genericpn-cyclic case. Our aim here is to treat the local
lifting of G galoispae-cyclic covers witha 6 2. Here we follow the Sekiguchi–
Suwa exposition from [S-S1].

1. Kummer theory

Let ` be an integer with̀ > 2 andK be a field containing�`, the group of̀ th
roots of unity (char(K) - `). LetX aK-scheme, then one has the following exact
sequence of sheaves of groups on theétale site onX (Kummer exact sequence):

1! �`;K ! Gm;K
�-̀ Gm;K ! 1; �` : t 7! t` (1)

and a long exact cohomology sequence

Gm;K (X)! H1(Xet;�`;K)! H1(Xet; Gm;K )! H1(Xet; Gm;K ):

Here H1(Xet;�`;K) is identified with the set of isomorphy classes ofZ=`Z-
torsors overX. Now let X be the spectrum of a localK-algebraB, then as
H1(SpecB; Gm;K ) = 0 (Hilbert Theorem 90) it follows that the map

Gm (SpecB)! H1(SpecB;�`)

is surjective. This means that for any`-cyclic étale extensionC of B, there exists
a morphismf : SpecB ! Gm;K and SpecC is given by the fibre product:

SpecC - Gm;K

SpecB
?

- Gm;K

?

�` : (2)

2. Artin–Schreier–Witt theory

Let k be a field of characteristicp > 0 andWn;k be the Witt-group scheme of
dimensionn (the truncated Witt-vectors). LetX be ak-scheme. This time one has
the following exact sequence (for theétale site)

Wn;k(X)! H1(Xet;Z=p
nZ)! H1(Xet;Wn;k)! H1(Xet;Wn;k): (3)
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In particular, ifX is affine, thenH1(X;Wn;k) = 0. Therefore, we get the surjec-
tivity of the map

Wn;k(X)! H1(Xet;Z=p
nZ):

We shall use the following facts:Wn;k is the extension ofG a;k byWn�1;k and one
has the commutative diagram

0 - Z=pZ - Z=pnZ - Z=pn�1Z - 0

\ \ \

0 - G a;k - Wn;k
- Wn�1;k

- 0

(4)

3. Sekiguchi–Suwa theory

ASSERTION 1 ([S-S1] Theorem 7.1). There exists a smooth group schemeWn

over the discrete valuation ringR := Z(p)[�pn ], containing the constant group
scheme(Z=pnZ)R, such that the exact sequence

0! (Z=pnZ)R!Wn
 n- Wn=(Z=p

nZ)R! 0 (5)

has the Artin–Schreier–Witt exact sequence as special fibre and an exact sequence
of Kummer type

1! �pn ! G nm ! G nm ! 1

as the generic fibre. Moreover, for eachn with n > 2, there exists a commutative
diagram consisting of horizontal exact sequences

0 - (Z=pZ)R - (Z=pnZ)R - (Z=pn�1Z)R - 0

\ \ \

0 - W1;R - Wn;R
- Wn�1;R - 0

(6)

which gives a deformation of (4) to a commutative diagram consisting of exact
sequences of multiplicative groups

1 - �p
- �pn

- �pn�1 - 1

\ \ \

1 - Gm - (Gm )
n - (Gm)

n�1 - 1

(7)
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Now this exact sequence is universal forétalepn-cyclic coverings of local rings
dominatingR. Namely one has the following

ASSERTION 2 ([S-S1], Theorem 3.8). LetB be a localR-algebra which is flat
overR. Then

H1(SpecB;Wn) = 0;

i.e. the canonical map

(Wn=(Z=p
nZ)R)(B)! H1(SpecB; (�pn)R)

is surjective.
Moreover, ifC is a flat localR-algebra which is an unramifiedpn-cyclic covering

of B then there exists anR-morphism

f : SpecB !Wn=(Z=p
nZ)R;

and the covering

SpecC ! SpecB

is given by the fibre product

SpecC - Wn

SpecB
?

f- Wn=(Z=p
nZ)R

?
 n :

We shall apply this last theorem to the case whereB = R[[T ]](�) (here� is
the uniformizing parameter ofR); this solves the local lifting forpn-cyclic groups
generically. This lifting is therefore of the same nature as Garuti’s, but in [G] the
method is valid for general groups (see the Introduction).

In order to smoothen the singularities of [G], we need to give the map n below
explicitly:

 n : Wn !Wn=(Z=p
nZ)R:

We shall do this in thep2-cyclic case, i.e.n = 2: Following [S-S1], Theorem 7.1,
one can take

W2 = SpecR[X1;X2; (�X1 + 1)�1; (�X2 + F1(X1))
�1]

where

F1(X1) = 1+ �X1 +
1
2!
�2X2

1 + � � �+
1

(p� 1)!
�p�1Xp�1

1 =: Expp(�X1)
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is the Artin–Hasse exponential truncated at degreep,

� = � � �2=2+ � � �+ (�1)p�p�1=(p� 1)

and� = �(2) � 1. Here�(2) is a primitivep2th root of unity.
As explained in [S-S1], proof of Theorem 8.4, the group schemeV2 :=

W2=(Z=p
2Z)R is given by a polynomialG1(X1) such that:

V2 = SpecR[X1;X2; (�
pX1 + 1)�1; (�pX2 +G1(X1))

�1]

andG1 satisfies the congruence equation

G1( 1(X1)) � F1(X1)
p(�X1 + 1)�1 mod�p:

Here 1(X1) = ((�X1 + 1)p � 1)=�p and the isogeny 2 is then
 2(X1;X2) = ( 1(X1);X

0
2) with

X 0
2 = (1=�p)[(�X2 + F1(X1))

p

�(�X1 + 1)G1( 1(X1))](�X1 + 1)�1:

In Lemma 5.2 we shall prove that forF1 as above, the polynomialG1(Z) =
Expp(�

pZ) works and then

X 0
2 = (1=�p)[(�X2 + F1(X1))

p

�(�X1 + 1)Expp(�
p( 1(X1))](�X1 + 1)�1:

4. Local lifting of p-cyclic covers

Let �(1) be a primitivepth root of unity and set� := �(1) � 1. LetR be a discrete
valuation ring of characteristic 0, with uniformizing parameter�, and algebraically
closed residue fieldk of characteristicp as before, and assume that�(1) 2 R.

THEOREM 4.1 (Compare [O-S-S], Theorem 2.2).The equation

((�X1 + 1)p � 1)=�p = T�m1 (�)

defines ap-cyclic coverC of P1
R which after normalisation iśetale outside the disc

jT j < 1 (i.e., outsidefx 2 P1
K : jT (x)j < 1g). The special fiber is smooth and

induces the extension ofk[[t]] defined by the equation

xp1 � x1 = t�m1: (��)

In this way we cover allp-cyclic extensions ofk[[t]]. Moreover the setfa 2

C�: jT (a)j < 1g is an open disc andX�1=m1
1 is a parameter.
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Proof. By the criterion 3.4, Section I, to prove the smoothness of the lifting
overP1

R determined by(�), we must show that the degrees of generic and special
differents are equal. From the Artin–Schreier equation(��) it follows immediately
that the special different isds = (m1 + 1)(p� 1).

The degree of the generic different of the extension ofR[[T ]] defined by(�)
is determined by the roots ofTm1 + �p = 0 andT = 0: Hence we obtain
d� = (m1+1)(p�1) = ds. Note, the Artin–Schreier equations(��) for (p;m1) = 1
determine allp-cyclic extensions ofk((t)).

It remains to show thatX�1=m1
1 is a parameter for the disc

fa 2 C� : jT (a)j < 1g:

From the equation

Xp
1 +

p

�
Xp�1

1 + � � � +
p

�p�1X1 = T�m1

it follows that supp(X�1
1 )0 � supp(T )0 and thatX�1

1 is integral overR[[T ]]. As
the coverC=P1

R is smooth, ifx 2 P1
K corresponds toT = 0 andx its specialisation

to (P1
R)k; then bO

P
1
R
;x ' R[[T ]]. This point is completely ramified inC and the disc

above SpecR[[T ]] is of the form bOC;y ' R[[Z]] (Z = 0 at x), where residually

z = x
�1=m1
1 is a uniformizing parameter fork((t))[x1]. We get(X�1=m1

1 )0 = (Z)0
and applying the Weierstrass Preparation Theorem we see thatX�1=m1 = ZU , for
some unit inR[[Z]]. This completes the proof.

5. Local lifting of p2-cyclic covers

In the following section we give explicit equations forp2-cyclic extensions of
k((t)) from which one can immediately read the different. We call them Artin–
Schreier–Witt, representants of the extension and we use them to parametrize all
p2-cyclic covers ofk((t)), for suitable choice of parametert.

LEMMA 5.1. Let aj 2 k andpj;p�i 2 k[x]; 0 6 j < m1; 0 < i < p, be poly-
nomials of respective degreesdj;p�i and assume that(m1; p) = 1. The equations

xp1 � x1 = t�m1

and

xp2 � x2 = c(xp1;�x1) +
X

06s<m1(p�1)

ast
�s

+
X

06j<m1

t�jp
X

0<i<p

(xp1 � x1)
ipj;p�i(x

p
1 � x1)

p
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define ap2-cyclic extension ofk((t)) whose degree of different is

(m1 + 1)(p� 1)p+ (m2 + 1)(p� 1);

where

m2 := max
06j<m1
0<i<p

(p2m1; p(jp+ (i+ pdj;p�i)m1))� (p� 1)m1

andc(x; y) = ((x+ y)p� xp+ (�y)p)=p. Moreover, as the semigrouppN +m1N

covers the integers greater than(m1 � 1)(p � 1), it follows that everyp2-cyclic
extension ofk((t)) has such a representation, for suitable choice of parametert.

Proof. Because(m1; p) = 1 it follows that z := x
�1=m1
1 is a uniformizing

parameter ofk((t))[x1]. We need to calculate the conductor of the extension
k((t))[x1; x2]=k((t))[x1]. One can easily express 1=t = z�p(1� zm1(p�1))�1=m1

(up to a multiplicative constant), and then

c(xp1;�x1) = �z�p
2m1+(p�1)m1 + � � �

gives a smaller contribution in thez-valuation than anyt�j; 0 < j < m1(p� 1).
The other terms can be arranged as polynomials int�1 and restricting our attention
to the nonp-powers, the term of highest degree inz�1 comes from only one
polynomial

t�jp(xp1 � x1)
i(pj;p�i(x

p
1 � x1))

p:

After the standard transformation to eliminatep-powers, the nonp-power of highest
order inz�1 gives the conductor for the extension as claimed.

We need to justify that the expressions on the right of the second equation
give Artin–Schreier–Witt representants for allp2-cyclic extensions. This follows
as writing in terms oft�1; each monomialt�l; with l > m1(p� 1) and prime top,
does occur in expressions of the type given. The monomials occuring asp-powers
can be removed by making a transformation to the variablex2 for the extension,
so give no new covers. This completes the proof of the lemma.

REMARK. Note thatx2�
P

06j<m1
t�j

P
0<i<p(x1)

ipj;p�i(x
p
1� x1) is an Artin–

Schreier representant for thep-cyclic extensionk((t))[x1; x2]=k((t))[x1].

NOTATIONS. In the sequel�(2) is a primitivep2-root of unity,� := �(2) � 1 is a
uniformizing parameter inR and� := �p(2) � 1; a uniformizing parameter for the
intermediatep-cyclic extension. Let� = Logp(1+ �), where forF (X) 2 R[[X]]
we denote the truncation by terms of degree bigger thanp � 1 by Fp(X). The
following congruence identities will be used several times in the lemmas that
follow
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(i) One has�=� � 1 mod�, p=�p�1 � �1 mod� and�=�p � 1 mod�. Further-
more we often use the identityp�p=�p

2
� �1 mod�.

(ii) We shall also need the binomial congruence identity
�p
i

�
� p(�1)i�1=imodp2

for 1 6 i 6 p.

In the lemmas below, Lemma 5.3 will be an amelioration of Lemma 5.2; this
explains why in the proof of 5.2 we prove estimates which are better than necessary.

LEMMA 5.2. LetY := ((�X + 1)p � 1)=�p. Then

Expp(�X)p � (�X + 1)Expp(�
pY ) � 0 mod�p

2
:

Proof. The idea is to prove that the expression on the left of the congruence
satisfies a linear differential equation of first order modp�p. This enables us to
handle monomials of degree prime top, and then a direct calculation handles the
other monomials. One can easily see the non-triviality of estimates by looking at
the coefficient ofX which isp�� �� p�p=�p�1.

SUBLEMMA. h1 := p�� �� p�p=�p�1 � 0 mod�p
2+1.

Proof.As
�p
i

�
� (p(�1)i�1=i) modp2, 16 i 6 p, consequently

� = (1+ �)p � 1� �p + p�modp2:

Now

h1 � ��p � p�p=�p�1 = �p=�p�1((�p�1=p)�p + �p)modp2:

From the identity(�+ 1)p � 1 = 0 it follows that

�p�1=p = �
X

16i6p�1

�p
i

�
p
�i�1 � �

X
16i6p�1

(�1)i�1

i
(�p + p�)i�1 modp�

and so

(�p�1=p)�p �
X

16i6p�1

(�1)i

i
(�p)i modp�p+1:

Remarking that�p�1=p � �1 mod� we obtain

h1 �
X

16i6p�1

(�1)i

i
(�p)i

�
X

16i6p�1

 
(�1)i

i
�i
!p

modp�p+1 � 0 mod�p
2+1:
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Now we return to Lemmas 5.2 and 5.3
We definef := Expp(�X)p, g := (�X + 1)Expp(�

pY ) and set

h := f � g =
X

16i6p(p�1)+1

hiX
i:

First claim: f 0 � p�f + p�pXp�1 modp�p+1. This is left to the reader.

Second claim: g0 � p�g � �p
2
(Xp �X)p�1 modp�p+1. This is a straightforward

calculation using the previous sublemma.
Now we remark that ifC(X;Y ) := ((X + Y )p �Xp � Y p)=p then

C(Xp;�X)0 = (Xp �X)p�1(pXp�1 � 1)� pXp2�1 +Xp�1

� �(Xp �X)p�1 +Xp�1 modp:

From these observations it follows that

h0 � p�h+ p�pC(Xp;�X)0 modp�p+1; (�)

which here will only be used in the weak form

ihi = p�hi�1 + p�pri�1; ri�1 2 R: (��)

Using (��) we first note thatvp(i) 6 1 for i 6 p(p � 1) + 1; then an induction
argument shows thatihi � 0 modp�p; which is Lemma 5.2 for monomials ofh
of degree prime top.

Now one can have a look at the other monomials. In fact there is no problem
for them because one can easily locate them inf andg:

For those inf �
P

06i6p�1((�X)i=i!)p: to see them we remark that developing
(1+X1 +X2 + � � �Xp�1)

p; where theXi are commuting indeterminates, gives

a coefficient in 1i0Xi1
1 : : : X

ip�1
p�1 divisible by p iff this is not ap power (viewed

modp). Now inside one can replaceXi by (�X)i; this shows that the coefficient
of Xjp in

f �
X

06i6p�1

 
(�X)i

i!

!p

is a multiple ofp�i1+2i2+���+(p�1)ip�1 = p�jp.
For those ing�

P
06i6p�1(�X)pi=i!: one has to look at the coefficients ofXpj

andXpj�1 in Y i. An easy calculation shows that the coefficients ofV pj andV pj�1

in ((1 + V )p � 1)i are divisible at least bypi�j+1 for i > j. It follows that the
coefficient ofXpj in

g �
X

06i6p�1

(�X)pi

i!
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coming from (�pY )i=i! is divisible by pi�j+1�pi�pj=�pi. This shows that the
contribution ofg �

P
06i6p�1(�X)pi=i! is what we expect. Lemma 5.2 is proved.

LEMMA 5.3. One has

(Expp(�X)p � (�X + 1)Expp(�
pY ))=(p�p) � C(Xp;�X)mod�;

whereC(Xp;�X) = ((Xp �X)p � (Xp2
�Xp))=p.

Proof. Consider the expressionH := h + �p
2
C(Xp;�X). Then (�) shows

thatH 0 � p�h modp�p+1. Now we remark thatC(Xp;�X) has no monomials
which arep-powers. Hence the result follows as in Lemma 2 if we can perform the
estimates forp-powers inh.

Following the estimates in the preceding proof we note that the onlyp-power
which can occur with a non-trivial coefficient mod�p

2+1 isXp.
We first work withf . The idea is that the coefficient ofXp in f is ‘close’ to that

of Exp(p�X). In fact in this way you add only one contribution which is that of
(�X)p=p! times powers of 1; so this isp(�X)p=p!. Hence the coefficient ofXp in
f is (p�)p=p! � p�p=p! and so the coefficient ofXp in f �

P
06i<p((�X)i=i!)p is

(p�)p=p! � p�p=p! � �p � (�1=(p� 1)! � 1)�p mod�p
2+1:

Now we work withg and compute the contribution ofXp in

g �
X

06i6p�1

(�X)pi=i! = (�X + 1)Expp(�
pY )�

X
06i6p�1

(�X)pi=i!:

By using the expansion

�pY = (�=�)p((�X + 1)p � 1) = (�=�)p
X

16k6p

 
p

k

!
(�X)k

and the binomial congruence identity
�p
k

�
� (�1)k�1p

k modp2, for k 6= p, we see

that mod�p
2+1 the coefficient ofXp in Expp(�

pY ) is that ofXp in

X
16i6p�1

�pi

i!�pi

0@(�X)p +
X

16k6p�1

(�1)k�1p

k
(�X)k

1Ai :
Now mod�p

2+1 the coefficient ofXp in Expp(�
pY )� �pXp is that ofXp in

�p
X

16i6p�1

�pipi

i!�pi

0@ X
16k6p�1

(�1)k�1

k
Xk

1Ai :
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This is the same as the coefficient ofXp in

�p

0@ X
16i6p�1

�pipi

i!�pi
(Log(1+X))i �

�pp

�p
(�1)p�1

p
Xp

1A :
Now this is the same as the coefficient ofXp in

�p
 

Exp
�
�pp

�p
Log(1+X)

�
�
�pp

�p
(�1)p�1

p
Xp �

�p
2

p!�p2 p
pXp

!
: (���)

Observing that(�p=�p)p = (�p=�)(p=�p�1 � �1) mod �, and substituting in
(���), mod�p

2+1 we obtain

�p
 

Exp(�Log(1+X)) +
(�1)p�1

p
Xp �

(�1)p

p!
Xp

!

= �p
 

1
1+X

+
(�1)p�1

p
Xp �

(�1)p

p!
Xp

!
:

Therefore the coefficient ofXp here is

�p(�1)p
�

1�
1
p
�

1
p!

�
:

Finally in order to accommodate the contribution to the coefficient ofXp in (1+
�X)Expp(�

pY ) �
P

06i6p�1(�X)pi=i! coming from the factor(1 + �X); we
compute the coefficient of(�X)p�1 in Expp(�Y ):One checks, in the same way as

before, that mod�p
2+1 this is that of 1=(1+X), i.e. (�1)p�1. In conclusion we

deduce that mod�p
2+1 the coefficient ofXp in f � g is

�p
�

1
p!

+
1
p

�
+ (p�p + �p)

�
1�

1
p
�

1
p!
� 1

�
� 0 mod�p

2+1;

finishing the proof of Lemma 5.3.

REMARK. Lemma 5.4 below is a deformation of Lemma 5.3 and will enable us
to find allp2-cyclic extensions residually.

LEMMA 5.4. Let Y := ((�X1 + 1)p � 1)=�p = T�m1 with (p;m1) = 1; and
supposePj;i(Y ) 2 R[Y ], 0 6 j < m1, 0 < i < p, are polynomials of degree
dj;i. We assume that thePj;i which are non-zero are primitive(i.e. have leading
coefficient anR-unit). We write

Expp(�
pY )

0B@1+
X

06j<m1
0<i<p

T�j�i(p� 1)!Pj;i(Y )

1CA
p

= G(T�1) + �p
2
H(T�1);
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whereG andH are polynomials inT�1 defined by

G(T�1) := Expp(�
pY ) +

X
06j<m1
(i1;i2)2T

(�pY )i1

i1!
(�i2T�j(p� i2)!Pj;i2(Y ))

p

+

0B@1+
X

06j<m1
0<i<p

T�j�i(p� i)!Pj;i(Y )

1CA
p

�1�
X

06j<m1
0<i<p

(T�j�i(p� i)!Pj;i(Y ))p

with T = f(i1; i2): 0 6 i1 < p;0< i2 < p; i1 + i2 < pg, and

�p
2
H(T�1) := (Expp(�

pY )� 1)

0B@
0B@1+

X
06j<m1
0<i<p

T�j�i(p� i)!Pj;i(Y )

1CA
p

� 1

�
X

06j<m1
0<i<p

(T�j�i(p� i)!Pj;i(Y ))p

1CA

+
X

06j<p
(i1;i2)2S

(�pY )i1

i1!
(�i2T�j(p� i2)!Pj;i2(Y ))

p

with S = f(i1; i2): 0 6 i1 < p;0< i2 < p; i1 + i2 > pg. Let

d := max
06j<m1
0<i<p

(jp+ (i+ pdj;p�i)m1):

Then

degT�1G =

(
m1(p� 1); if all Pj;i = 0

d�m1; otherwise
;

and 264Expp(�X1)

0B@1+
X

06j<m1
0<i<p

T�j�iPj;i(Y )

1CA
375
p

� (1+ �X1)G(T
�1) = p�pA;

where

A � C(Xp
1 ;�X1)

�
X

06j<m1
0<i<p

T�jp(Xp
1 �X1)

iPj;p�i(X
p
1 �X1)

p mod�:
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Proof. We first remark that Lemma 5.2 corresponds to the case where all
Pj;i = 0.

Next, examining the terms in

Expp(�
pY )

0B@1+
X

06j<m1
0<i<p

T�j�i(p� i)!Pj;i(Y )

1CA
p

;

we remark that the ‘monomials’

(�pY )i(�p�iT�jPj;p�i(Y ))
p

are all of distinct degree inT�1 and the maximum degree attained isd. Suppose
d = j0p+ (i0 + pdj0;p�i0)m1 for somei0 > 0 andj0. Then the ‘monomial’

(�pY )i0�1(�p�i0T j0Pj0;p�i0(Y ))
p

lies inG(T�1) and gives the degree ofG(T�1); namelyd�m1. It is an exercise
to see that the mixed terms inG(T�1) don’t contribute to the degree.

To prove the congruence identity, we deform Lemma 5.3 by multiplying the
congruence there by0B@1+

X
06j<m1

0<i<p

T�j�i(p� i)!Pj;i(Y )

1CA
p

:

Doing this we obtain

Expp(�X1)
p

0B@1+
X

06j<m1
0<i<p

T�j�i(p� i)!Pj;i(Y )

1CA
p

�(�X1 + 1)(G(T�1) + �p
2
H(T�1))

� p�pC(Xp
1 ;�X1)mod�p

2+1:

Simplifying this gives

Expp(�X1)
p

0B@1+
X

06j<m1
0<i<p

T�j�i(p� i)!Pj;i(Y )

1CA
p

� (�X1 + 1)G(T�1)

� �p
2
(�X1 + 1)H(T�1) + p�pC(Xp

1 ;�X1)mod�p
2+1:
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Dividing by p�p and using the identityp�p=�p
2
� �1 mod� we get0B@Expp(�X1)

p

0B@1+
X

06j<m1
0<i<p

T�j�i(p� i)!Pj;i(Y )

1CA
p

�(�X1 + 1)G(T�1)

1CA =(p�p)
� �H(T�1) + C(Xp

1 ;�X1)mod�:

Finally, examining the terms ofH(T�1) mod� we obtain the desired residue of
A mod�.

THEOREM 5.5.We keep the notations from the previous lemma and letAs 2 R,
0< s < m1(p� 1) := r be given. Then the equations

((�X1 + 1)p � 1)=�p = T�m1

and 264�X2 + Expp(�X1)

0B@1+
X

06j<m1
0<i<p

T�j�i(p� i)!Pj;i(T
�m1)

1CA
375
p

=

 
G(T�1) + p�p

X
0<s<r

AsT
�s

!
(�X1 + 1)

define ap2-cyclic cover,C, of P1
R which after normalisation iśetale outside the

discjT j < 1. The special fiber is smooth and induces the extension ofk[[t]] defined
by the equations

xp1 � x1 = t�m1

xp2 � x2 = c(xp1;�x1) +
X

0<s<r

ast
�s

�
X

06j<m1
0<i<p

t�jp(xp1 � x1)
ipj;p�i(x

p
1 � x1)

p;

where the polynomialspj;p�i and coefficientsas are the residues ofPj;p�i andAs;
respectively. In this way we cover allp2-cyclic extensions ofk[[t]].

comp4151.tex; 22/09/1998; 13:47; v.7; p.28

https://doi.org/10.1023/A:1000455506835 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000455506835


LIFTINGS OF GALOIS COVERS OF SMOOTH CURVES 265

Proof.We know from 4.1 thatZ1 := X
�1=m1
1 is a parameter for the open disc

defined by the first equation. On the other hand by Lemma 5.4 theT�1 polynomial

F (T�1) = G(T�1) + p�p
X

0<s<r

AsT
�s

hasT�1-degreeD := m1(p � 1) if all the Pi;j = 0 andd �m1 otherwise. Now
TDF (T�1) 2 R[T ] is a primitive polynomial of degreeD and we can expand it
as a series inR[[Z1]]. Using the Weierstrass Preparation Theorem this series can be
expressed as a distinguished polynomialfpD(Z1) multiplied by a unit fromR[[Z1]].
As degZ1fpD = pD, it follows thatfpD has at mostpD roots in the discjZ1j < 1:
This consideration yields a bound for the degree of the generic different. Namely

d� 6 (m1 + 1)(p2 � 1) + (p� 1)pD:

From Lemma 5.1 it follows thatd� 6 ds and the Theorem now follows from the
criterion 3.4, Section I. Moreover Lemma 5.1 tells us that in this way we lift all
p2-cyclic extensions.

COROLLARY 5.6.We keep the notations from the previous theorem. Let

Y2 := X2 +
1
�

X
06j<p

(i1;i2)2S

(�X1)
i1

i1!
�i2T�j(p� i2)!Pj;i2(T

�m1):

Letm2 be as defined in Lemma5:1. ThenY �1
2 is integral overR[[Z1]], moreover

Y
�1=m2

2 is a parameter for the open disc ofC� defined byjZ1j < 1:
Proof. We shall examine the case where at least one of thePi;j 6= 0; and

remark that the other case works in the same way. First note that the transformation
of the variable above is such that the residual image ofY2 is an Artin–Schreier
representant for thep-cyclic extensionk((t))[x1; x2]=k((t))[x1]. One has

�X2 + Expp(�X1)

0B@1+
X

06j<m1
0<i<p

T�j�i(p� i)!Pj;i(T�m1)

1CA = �Y2 +A;

where

A := Expp(�X1) +
X

06j<p
(i1;i2)2T

(�X1)
i1

i1!
�i2T�j(p� i2)!Pj;i2(T

�m1):

ThenY2 satisfies the equation

Y p
2 +

p

�
AY p�1

2 + � � �+
p

�p�1A
p�1Y2 = B; (�)
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where

B =
1
�p

 
�Ap +

 
G(T�1) + p�p

X
0<s<r

AsT
�s

!
(1+ �X1)

!
:

We know from 5.5 thatB 2 R[[Z1]](Z1), whereZ1 = X
�1=m1
1 : The way of

truncating

Expp(�X1)

0B@1+
X

06j<m1
0<i<p

T�j�i(p� i)!Pj;i(T�m1)

1CA
mimics that of truncating

Expp(�
pY )

0B@1+
X

06j<m1
0<i<p

T�j�i(p� i)!Pj;i(Y )

1CA
p

in 5.4. It follows that

B =
U

Z
p(d�m1)+m1
1

for someU 2 R[[Z1]] and asm2 = p(d�m1) +m1; also thatU 2 R[[Z1]]
�.

Multiplying (�) by (Z
p(d�m1)+m1
1 =Y p

2 )U
�1 one gets an integral equation for

Y �1
2 overR[[Z1]]. Since the defining equation ofX2 in 5.5 shows that supp(Y2)1 �

supp(T )0; the result follows from the Weierstrass Preparation Theorem.

6. Local lifting of pae-cyclic covers witha 6 2

6.1. THE a = 1 CASE

Let k[[z]]=k[[t]] be ape-cyclic cover,(e; p) = 1; and suppose� is a generator. One
can assume, after possibly changing the uniformizing parameter, thatk[[z]]h�

ei=k[[t]]
is defined by the equationxp1 � x1 = t�m1 for somem1 with (p;m1) = 1:

Let P1
R = ProjR[T0; T1]; the projective line overR; which we assume contains

thepth roots of unity. We assume thatt is a parameter ofP1
R� k at1 = [0;1] and

setT = T0=T1: Let X0 ! P1
R be the morphism of smoothR-curves defined by

the equationZe = T: This morphism is ramified atT = 0 andT =1:
LetX1=R be the smoothR-curve obtained from Theorem 4.1 andX1k its special

fibre, which is ańetale cover of the affine linet 6= 0:

CLAIM. The normalisation(X0 �R X1)
� is a smoothR-curve and the morphism

(X0 �R X1)
� ! P1

R is aZ=peZcover which liftsk[[z]]=k[[t]].
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Proof.We first remark thatX0k �X1k is smooth outside the point1 asX1k !
P1
k is étale outside1: In order to see the smoothness overR above1 we shall

apply the criterion 3.4 from Section I.
Because(p; e) = 1; the branch locus of(X0�RX1)

� ! P1
R consists of a point

totally ramified (forT = 0) andm1e geometric points with ramification of order
p: This yields the degree of the generic different abovejT j < 1

d� = pe� 1+m1e(p� 1);

which is easily seen to be equal to that of the special different; this shows the
smoothness of(X0 �R X1)

�.

6.2. THE a = 2 CASE

We use the same notation as above, but nowR contains thep2-roots of unity and
k[[z]]h�

ei=k[[t]] is defined by the two equations

xp1 � x1 = t�m1;

xp2 � x2 = c(xp1;�x1) + f(t�1):

Theorem 5.5 gives ap-cyclic coverX2=R of X1=R which defines ap2-cyclic
cover ofP1

R; lifts the extensionk[[z]]h�
ei=k[[t]], and is totally ramified atT = 0:

As previously one knows thatX0k �k X2k is smooth outside1: Now look more
precisely at the branch locus for thep-cyclic cover

(X0 �R X2)
� ! (X0 �R X1)

�

abovejT j < 1: Now we are in the same situation as previously, so this relative
generic different has degree equal to that of the special one; using the criterion we
conclude the smoothness of(X0 �R X2)

� and that(X0 �R X2)
� ! P1

R lifts the
p2e-cyclic coverk[[z]]=k[[t]].

III. GLOBAL LIFTING

The main ingredient of this section is a prolongation lemma which enables us to
extend certain finite morphisms over an open annulus to the open disc. This result
is adapted from a lemma in the unpublished manuscript, [M-Y].

1. Prolongations of automorphisms to the disc

LetR denote a complete discrete valuation ring with fraction fieldK; uniformizing
parameter� and residue fieldk of characteristicp: Let ~R be its integral closure
in the algebraic closure~K which is endowed with the unique prolongation of the
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valuation. Denote the completion of~K with respect to this valuation byL. Let
X := SpecR[[T ]]; the open disc and setX$ := SpecR[[T ]]h$=T i; for $ 2 �R
where

R[[T ]]

�
$

T

�
=

8<:f =
X
n>0

anT
n +

X
n>0

a�n$
n

T n
: ai 2 R anda�n ! 0

9=; :
We shall denote the image of such anf in k[[t]]byf , wheretdenotes the reduction of
T with respect to the Gauss valuation. Then the generic fibre of SpecR[[T ]]h$=T i
identifies with the semi-open annulusfz 2 ~R : j$j 6 jzj < 1g of thicknessj$j
modulo the galois action.

PROLONGATION LEMMA 1.1. Let P (X) = Xn + An�1(T )X
n�1 + � � � +

A0(T ) 2 R[[T ]][X]andQ(X) = Xn+A0
n�1(T;$=T )X

n�1+� � �+A0
0(T;$=T ) 2

R[[T ]]h$=T i[X], such thatP (X) = Q(X) 2 k[[t]][X] are separable Eisenstein
polynomials int. LetZ 2 
 (
 an algebraically closed field containingR[[T ]])
such thatP (Z) = 0: Then

(1) R[[T ]][Z] = R[[Z]]. MoreoverT = D(Z)u(Z) whereD(Z) 2 R[Z] is a
distinguished polynomial of degreen andu(Z) is a unit inR[[Z]].

(2) After a finite extensionR0=R and taking an annulus of smaller thicknessj$0j;
the mapZ 7! T (Z) defines a finite morphism

SpecR0[[Z]]

�
!

Z

�
! SpecR0[[T ]]

�
$0

T

�
for some! 2 R0 with j!jn = j$0j:MoreoverQ has a rootZ 0 inR0[[Z]]h!=Zi,
i.e. the morphisms defined byP andQ are isomorphic over the semi-open
annulusj$0j 6 jT j < 1:

Proof. (1) One hasA0(T ) = (� � T )u0(T ) for some� 2 �R andu0(T )
a unit inR[[T ]], so after changing coordinates for the disc one can assume that
A0(T ) = �T: Then

T = Zn +An�1(T )Z
n�1 + � � � +A1(T )Z

= Zn + P0(Z) + TZ H0(T;Z); (�)

whereP0(Z) =
Pn�1
i=1 Ai(0)Z

i 2 �ZR[Z] andH0(T;Z) 2 R[[T ]][Z]. Iterating
T in (�) one expressesT as an element ofR[[Z]], soR[[T ]][Z] = R[[Z]]. One has
the writing

T =
nY
i=1

(Z � �i)u(Z);

with �1 = 0; �i 2 ~R; j�ij < 1 andu(Z) 2 R[[Z]]�.
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(2) Let$0 2 ~R, j$0j < 1; be chosen such thatj$0j > maxi j�ijn: Then for
z 2 ~R; jzj < 1;

jT (z)j = j$0j , jzj = j$01=nj = j!j

and so for someR0 the injectionR0[[T ]] ,! R0[[Z]] induces a finite morphism

SpecR0[[Z]]

�
!

Z

�
! SpecR0[[T ]]

�
$

T

�
:

Now we can seeQ(X) as a polynomial inAh!=Zi[X]; whereA := R0[[Z]]. For
the rest of the proof we denote theX derivative ofQ(X) byQ0(X): We want to
show that ifj$0j is sufficiently near to 1, thenQ(X) has a rootZ 0 2 Ah!=Zi.

In order to prove this we use Newton’s method, but must overcome some
technical difficulty asAh!=Zi isn’t a field and moreover is endowed with a norm
k:k (the spectral norm onj!j 6 jzj < 1) which isn’t multiplicative. As usual we
build a sequenceZi 2 Ah!=Zi such that

Zi+1 = Zi �
Q(Zi)

Q0(Zi)

and prove that it converges. First we shall work in the affinoid algebrasLhZ=�; !=Zi
for � near to 1; and take the limit as�! 1.

We have

Q(Z) = Q(Z)� P (Z) =
X

06i<n

�
A0
i

�
T;
$

T

�
�Ai(T )

�
Zi;

hencekQ(Z)k < 1 by the hypothesis (P = Q in k[[T ]][X]); moreoverQ
0
(Z) 6= 0,

hencekQ0(Z)k = 1. Changing! we can assume thatQ0(Z) has no zeros in the
semi-open annulusfz 2 ~R : j!j 6 jzj < 1g: HenceQ0(Z) 2 LhZ=�; !=Zi� and
kQ(Z)=Q0(Z)2k < h < 1 (with h independent of�).

SetZ1 = Z �Q(Z)=Q0(Z) 2 LhZ=�; !=Zi, then using the Taylor expansion
one has

Q(Z1) = Q(Z)�
Q(Z)

Q0(Z)
Q0(Z) +

�
Q(Z)

Q0(Z)

�2

r(Z);

wherekr(Z)k 6 1 (remark thatr(X) 2 Ah!=Zi[X]) and consequentlykQ(Z1)=
Q(Z)k 6 h.

Next we show thatQ0(Z1) 2 LhZ=�; !=Zi
�.

One has�Q0(Z)+Q0(Z1) = (Z�Z1)E for someE 2 LhZ=�; !=Zi; kEk 6 1:
Therefore

Q0(Z1)

Q0(Z)
= 1+

Q(Z)

Q0(Z)2
E
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is invertible and soQ0(Z1) 2 LhZ=�; !=Zi
�. Now



Q0(Z1)

Q0(Z)





 = 



 Q0(Z)

Q0(Z1)





 = 1 and




 Q(Z1)

Q0(Z1)2





 6 h 



 Q(Z)

Q0(Z1)2





 6 h2:

It follows kQ(Z2)=Q(Z1)k 6 h
2.

Recurrently this process works in the same way and in the limit yieldsZ 0 =
lim Zi 2 LhZ=�; !=Zi independently of�; such thatQ(Z 0) = 0: Moreover
kZ 0k = kZk = 1 and soZ 0 2 Ah!=Zi:

THEOREM 1.2.Let ! 2 R andA! := fz 2 ~R : j!j 6 jzj < 1g which modulo
the galois action identifies with the generic fibre ofSpecR[[Z]]h!=Zi. LetG be a
pae-cyclic group of automorphisms ofA! with a 6 2. We assume that the inertia
at �R is the identity. Then after enlargingR and diminishing the thickness,G can
be extended to a group of automorphisms of the open discSpecR[[Z 0]] andA! is
identified withfz0 2 ~R : j!j 6 jz0j < 1g.

Proof. This is a consequence of the Prolongation Lemma and paragraph 6,
Section II, where we lift automorphisms ofk[[z0]] of order pae with a 6 2 to
automorphisms ofR[[Z 0]].

THE GLOBAL LIFTING THEOREM 1.3.Letf :C ! C=G := D be aG-galois
cover of smooth integral proper curves overk. Assume that the inertia groups are
pae-cyclic witha 6 2. Thenf can be lifted overR = W (k)[�(2)] as aG-cover of
smoothR-curves.

Proof. Supposef :C ! D = C=G and letD denote a smooth relative curve
overW (k)[�(2)] whose special fiber isD. Denote byDan the generic fibre endowed
with rigid analytic structure and letr:Dan ! D be the reduction map. LetU �
D = C=G be théetale locus, andU � Dan; be the affinoid defined byU = r�1(U):
Then by Grothendieck, up to isomorphism one can lift in a unique diagram

V
~f - U � Dan

V
?

r

f - U � D
?

r

whereV = f�1(U) � C andU = V=G: The aim is to compactify the morphism
~f :V ! U with a morphism of discs in aG-galois way.

We write D = U
`

Branch f , where Branchf is the branch locus. For
x 2 Branchf; choosey 2 f�1(x) and letIy be the inertia group aty: Let �
be a representative system ofGmodIy; thenf�1(x) =

`

2�f
yg. TheG-cover

~f :V ! U extends to aG-cover ~f�0:V�0 ! U�0 ; whereU�0 = U II Ax and
Ax := fz 2 r�1(x)k�0j 6 jzj < 1g. Moreover the germ of prolongation is unique
up to isomorphism, see [Ra], Proposition 3.4.1. Let

~fy:Ay ! Ax
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be the correspondingIy-cover for they 2 f�1(x); then using Lemma 1.1 again
we observe that deminishing the thickness ofAx it follows thatAy is a semi-open
annulus; so the conditions of Theorem 1.2 are satisfied. Following Raynaud, [Ra]
4.1, one can define theG-cover obtained fromAy via induction fromIy toG. Then

~f�0(Ax) ' IndGIy Ay:

Now one can apply the previous theorem in order to extend~fy to anIy-morphism
of open discs

By - Bx

Ay

6

- Ax

6

We can then glue the morphism IndG
Iy
By ! Bx to ~f�0 along ~fy for each

x 2 Branchf: This gives a lifting off as an analytic cover ofDan; which via
rigid GAGA can be algebraized to aG-cover of smooth integral properR-curves
lifting f .
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