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Abstract. We study residues on a complete toric variety X, which are defined in terms of the
homogeneous coordinate ring of X. We first prove a globa transformation law for toric residues.
When the fan of the toric variety has a simplicia cone of maximal dimension, we can produce
an element with toric residue equal to 1. We also show that in certain situations, the toric residue
is an isomorphism on an appropriate graded piece of the quotient ring. When X is simplicial, we
prove that the toric residue is a sum of local residues. In the case of equal degrees, we aso show
how to represent X asaquotient (Y"\{0})/Cx= such that the toric residue becomes the local residue
aoiny.
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I ntroduction

Toric residues provide a tool for the study of certain homogeneous ideals of the
homogeneous coordinate ring of a toric variety — such as those appearing in the
description of the Hodge structure of their hypersurfaces [BC]. They were intro-
duced in [C2], where some of their properties were described in the special case
when all of the divisors involved were linearly equivalent. The main results of
this paper are: an extension of the Isomorphism Theorem of [C2] to the case of
non-equivalent ample divisors, a global transformation law for toric residues, and
atheorem expressing the toric residue as a sum of local (Grothendieck) residues.
Let us first establish the notation we will use. We will assume that X is a
complete toric variety of dimension n. Assuch, X isdetermined by afan 3 inan
n-dimensional real vector space Nr. There is a distinguished lattice of maximal
rank N C Ngr and we let M denote the dual lattice. The N-generators of the
1-dimensional conesin X will be denoted 71, .. ., 75 4. This means that r is the
rank of the Chow group A4,,_1(X). We will make frequent use of the homogeneous
coordinatering S of X, which isthe polynomia ring S = Clz1, ..., z,+,]. Here,
each variable x; corresponds to the generator »; and hence to a torus-invariant
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irreducibledivisor D; of X. Asin[C1], wegrade S by declaring that the monomial
174 28 has degree [Y11 a; D;] € Ay—1(X).

We will let 8 = X! deg(z;) € A,—1(X) denote the sum of the degrees of
the variables. As is well known, 3 is the anticanonical class on X. Then, given
homogeneous polynomials F; € S,, for i = 0,...,n, we define their critical
degreeto be

p= (i Oéi) —pe An,]_(X).
=0

Asin[C2], each H € S, determines ameromorphic n-formon X

HQ

H) = 2"
wr(H) Fo.. F,’

where F' stands for the vector (Fy,..., F,) and €2 is a choice of an Euler form
in X [BC]. If the F; don’t vanish simultaneously on X, then relative to the open
cover U; = {z € X: Fi(z) # 0} of X, this gives a Cech cohomology class
lwr(H)] € H*(X,0%). Here, Q7 is the sheaf of Zariski n-forms on X, i.e,
Q”X = 7:Q%,, where X is the smooth part of X and j: Xo < X is the natural
inclusion.

It is not hard to see that [wr(H)] is alternating on the order of Fp,. .., F, and
that if H isintheidea (Fy,...,F),), then wp(H) is a Cech coboundary. Thus,
[wr(H )] depends only on the equivalence class of H modulo the ideal generated
by Fy,..., F,. Thenthetoric residue

Resy: S,/(Fo, ..., Fp), = C
is given by the formula
Resp(H) = Trx ((wr(H)]),

where Try: H"(X,Q%) — C is the trace map. When there is no danger of
confusion, we will write Res(H ) instead of Resy(H).

Our first main result is the following Global Transformation Law.
THEOREM 0.1. Let F; € S, and G; € Sg, fori = 0,...,n. Suppose
Gj= Z A;j F;,
i=0

where A;; is homogeneous of degree 3; — «;, and assume the G; don’t vanish
simultaneously on X . Let p be the critical degree for Fo, ..., F,,. Then, for each
H € S,, H det(A;;) isof the critical degreefor Go,...,G ), and
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The proof usesa Cech cochain argument. One application of this transformation
law is that in certain cases, we can describe explicit elements of S, with nonzero
residue. For this purpose, assume X is complete and its fan X contains a n-
dimensional simplicial cone o. Then denote the variables of the coordinate ring
asz1,...,Tn,21,--.,2, Wherezs, ..., x, correspond to the 1-dimensional cones
of o. Also suppose that «y, . .., a, are Q-ample classes, which means that some
multiple is Cartier and ample. In this situation, we will show that each F; € S,
can be written in the form

n
Fj :Aojzl...z,n +2Aij$i-
=1

Then the (n + 1) x (n + 1)-determinant A, = det(4;;) isin S, and has the
following important property.

THEOREM 0.2. Assume X iscompleteand o € Y issimplicial andn-dimensional.
Suppose that F; € Sy, for « = 0,...,n, where «; is Q-ample and the F; don’t
vanish simultaneously on X'. Then

Resy (A,) = +1.

The Global Transformation Law allows us to reduce the proof of this theorem
to the special casewhen Fp = z1...z. and F; = z;,i = 1,...,n. Thisisdonein
Section 2. An alternate proof for simplicial toric varietiesis given in Section 4 as
an application of Theorem 0.4.

In Section 3 we prove the following Residue | somor phism Theorem.

THEOREM 0.3. Let X be complete and simplicial, and assumethat F; € S,, for
i = 0,...,n, where o; is ample and the F; don’t vanish simultaneously on X.
Then

(i) Thetoric residue map Resy: S,/ (Fo, ..., F,), — Cisanisomorphism.
(ii) For eachvariablez;, 0 <i < n+r,wehavez;- S, C (Fo,...,Fy).

In the case when all the «; are equal to a fixed ample divisor «, this theorem
followsfromthefactthat Fy, . . . , F;, arearegular sequencein the Cohen-Macaulay
rng S.a = ®r>05ka [C2, Sect. 3]. Inthe general case, the proof relies on the use of
the Cayley trick and results of Batyrev and Cox [BC] concerning the cohomol ogy
of projective hypersurfacesin toric varieties, to show that

dime(S,/(Fo, ..., F,),) =1

when X is simplicia and the divisors F; = 0 are ample with empty intersection.
Then, the first (and main) part of the Residue Isomorphism Theorem follows
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immediately from Theorem 0.2, and the second part is a consequence of the first
using Theorem 0.2 and Cramer's Rule.

Asacorollary of Theorems0.2 and 0.3, we get asimple algorithm (see Remark
3.11) for computing toric residuesin terms of normal forms. In Section 3, we will
aso conjecture a more general form of Theorem 0.3 and give some examplesin
support.

Themain result of Section 4 isatheorem stating that for ssimplicial toric varieties,
the toric residue may be computed as a sum of local Grothendieck residues. The
toric setting is not essential here and, in fact, it is convenient to work with the more
general notion of aV'-manifold or orbifold. The proof of the following local/global
theorem is based on the theory of residual currents ([CH]).

THEOREM 0.4. Let X be a complete simplicial toric variety of dimension n, and

let Fo, . .., F,, behomogeneous polynomialswhich don’t vanish simultaneously on

X. If H isapolynomial in S,,, where p is the critical degree, and D;, = {z € X:
Fi(z) =0, 7 # k} isfinite, then the toric residueis given by

HQ

Resp(H) = (_1)k Z Resy (ﬁ)
a:eD,%

Here, aswe will explainin Section 4, Res;, ,(H Q/Fy. .. F},) denotesthe local
Grothendieck residue

(H/Fy)Q
Res]”(Fo...ﬁk...Fn)

Note that the finiteness condition holds automatically whenever the divisor
{F, = 0} is Q-ample. Under appropriate conditions, Theorem 0.4 gives a frame-
work for the study of sums of local residues-both in the affine and toric cases-asa
global residue defined in a suitabl e toric compactification. It is possible, for exam-
ple, tointerpret in thislight the resultsof [CDS] which correspond to the case when
thetoric variety under consideration is aweighted projective space.

Finally, in Section 5, we show that, in the equal degree case, the toric residue
equalsasingle local residue at the origin of the affine cone of X. Thisgeneralizes
the observation in [PS] that toric residues on P™ can be written as aresidue at the
originin C"t1,

1. Theglobal transformation law

This section will prove the Global Transformation Law (Theorem 0.1) for toric
residues on an arbitrary n-dimensional complete toric variety X. Given F; and
G = X} oA;j F; asinthestatement of thetheorem, first observethat if Go, ..., G,
have no common zeroes in X, then the same holds for Fy, ..., F,,. Thus we get
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opencoversU; = {zr € X: Fiy(z) # 0} and V; = {z € X: Gj(z) # O} of X,
which we denotel/ and V respectively.
If the critical degrees of the F; and G; are p(F') and p(G) respectively, then

p(G) = p(F) + deg(det(A;;))

follows easily since A;; is homogeneous and deg A;; = deg G; — deg F;. Thus,
if H is homogeneous of degree p(F'), then we get Cech cohomology classes
wr(H)] € H”(u,ﬁ}) and [wg (H det(A4;5))] € H”(V,Q}). To prove Theo-
remO0.1, it sufficesto show that these conomology classes have the same image in
H™(X,Q7%).

Consider the open covering W = U/ U V. Sinced and V can be regarded as
refinements of WV with obvious refinement maps, we get a commutative diagram

(U, Q%)

i

H”XQ”

N

Y, %)
Then Theorem 0.1 is an immediate consequence of the following proposition.

PROPOSITION 1.1. Thereis a cohomology class [#] € H™ (W, %) which maps
to both [wr(H)] € H™(U, Q%) and [we(H det(A;;))] € H™(V, Q%) in the above
diagram. 5

Proof. We first introduce some notation for the Cech complex of W =1/ U V.
Givenindexsets/ = {0< i1 < - <g, <nfadJ ={0<j1 <--- <j, <n}
withp = |I| and g = |J|, let Wi; = N;c; Ui N Njes V- Also, let I' denote the
complement of 7 in{0,...,n}, ordered increasingly.

We define a Cech cochain 6 € C™ (W, Q%) by the assignment

H det(Mp,) Q

W[]'—)@IJZE(I) F[GJ

€ Q}(W[])

Here, I and J are index setswithp + ¢ = n + 1, M5 isthe I' J-minor of the
matrix (A;;), e(I) is the sign of the permutation (I,1'), F; = F;, --- F;,, and
Gy =Gj -Gy,
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When I = {0,...,n}, both I" and J are empty and # assigns to the open set
UoN---NU, theform H Q/(Fy. .. F,,). Thus, the refinement map C" (W, %) —
C”(U,Q}) maps 6 to the cocycle wr(H). Similarly, when J = {0,...,n}, the
cochain§ assignstotheopenset VoN---NV,, theform H det(A;;) 2/ (Go--- Gp)
and, hence, the refinement map ™ (W, Q%) — C"(V, ) maps 6 to the cocycle
wg(H det(A;;)). Consequently, the proposition will follow once we show that 6 is
asoacocycle, i.e, 4(#) = 0, where 6: C"(W, Q%) — C**1(W, Q%) isthe Cech
coboundary.

To provethat §(0) = O, let I and J be index setswith p + ¢ = n + 2. Then set
Iy =1 — {ig}, 1<k<p,I,’€:I’U{ik},andjg:J—{jg},lgégq,sothat

q

= 2’7: (=1 0+ ()P (-1 Loy,

(1)t e(Iy) det(My ;)H

p
- g::l Fy, G,

+Zq: (—1)P+=Le(1) det(Myy,)HQ
=1 Fr G, '

Writing the last expression with common denominator F; G, it suffices to show
that

p

S (-~ te(n) F, det(My )

k=1

q
+3° (—yrttte(nG;, det(Mpyg,) = 0.
=1

If we substitute G, by X _; Ai,j, Fi, + Sucr Auj, Fu, then the above equation
becomes

23

(—1)"e(ly) det(My ) Z 1) 1e(1) Ay, 5, det(My Jz)] F;

+e(I)(-1)P > lzq:(—l)“AujZ det(MM)] F, =0.

uel’ L{=1

We will show that the expressions inside the two sets of brackets are identically
zero.

First, for u € I', notethat ©{_; (—1)¢* A,j, det(M;,) is the determinant of
the matrix whose first row consists of A4,;,, £ = 1,...,¢ and whose remaining
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rows are the same as those of the matrix M/ ;. But, sinceu € I’, such amatrix has
two identical rows and its determinant vanishes. Hence the sum inside the second
set of bracketsis zero.

Turning to the first set of brackets, note that expanding the determinant of the
g X g-matrix M nJ along the row corresponding to 4, gives

q
det(My; ) = (-)™ 3 (-1)“ 45, , det(My1,),
=1
where m denotes the number of elements of I’ which precede i;.. However, since
going from (I,1') to (I, I;,) requires (m — k + p) transpositions, we see that

e(Iy) = (1™ F*P (D),

and it follows that the desired expression is zero. O

2. Elementswith nonzeroresidue

The goal of this section is to prove Theorem 0.2. We begin with F; € S,;,
0 < j < n, which don't vanish simultaneously on the completetoric variety X . As
in theintroduction, we have the coordinatering S = Clz1, . . ., Zp+,] Of X, where
the variables z; correspond to the Z-generators n; of the 1-dimensional cones of
%.. For each n-dimensional coneo € %, set &, = II,,,¢, z; and let B(X) C S be
the ideal generated by the monomials z,, o € X..

We also assume that «; is Q-ample. This means that da; is ample for some
positive integer d, so that Sy, C B(X) by Lemma9.15 of [BC]. Then (Saj)d C
Saa; C B(X), and since B(X) isradical, we conclude that

Sa; C B(X), 2.1)

when «; is Q-ample.

To see the relevance of (2.1), fix a n-dimensional cone ¢ € % and, as in
Theorem 0.2, assumethat o issimplicial. Then we can arrangefor 7, . .., 1, to be
the generators of o, and we make a slight notational change replacing the variable
Tpta Y 24,0 =1,...,r. Theneach F; can be written

Fj = Bj + ZAZ] Ty,
i=1
where B; depends only on zi, ..., 2. But F; € B(X) by (2.1) and, since B(X)
isamonomial ideal, it follows easily that B; must be divisibleby 2, = 21... 2.
ThUSBj = AOj 21 ... Zp, S0 that

n
Fj:Aojzl...z,n—i—ZAijxi, (22)
=1
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as claimed in the introduction. Then we define
Ay, = dEt(Alj)a 0< i,J <n. (23)

Note that

deg(A,) =D a;— > deg(z;) — > deg(zq) = p(F).
j=0 i=1

a=1

A direct application of the Global Transformation Law to (2.2) and (2.3) yields

Ay Q Q
Res<;>:Res< )
Fy...F, (21...27) - Z1... Ty

Thus, to prove Theorem 0.2, we need only prove the following proposition.

PROPOSITION 2.4. Wth assumptions and notations as above,

Res( L ):il.
(21...27) - Z1... Ty

Proof. We first study the restriction of

w = L (2.5)
(21...2p) - T1...2p

to the affine open set X, C X determined by o. To apply the construction of [C1]
to the simplicial toric variety X, we start with the exact sequence

0— M -1 2" = D(o) = 0,

where y(m) = ((m,n1),...,{(m,n,)). Then D(o) isfinite since o is simplicial,
and G(o) = Homz(D(o),C*) isisomorphic to N/N', where N’ is the sublattice
of N generated by 71, ...,n,. The map Z" — D(o) induces an action of G(o)
on C", and it follows from [C1] that the quotient is X,,. In particular, we have a
quotient map p,: C" — X, .

Torelatethisconstructionto S = Clz1, ..., %1, = Clz1, ..., Tpy 21, - -5 21,
note that .S is the coordinate ring of the affine space C**". Thenlet Z(X) c C**"
be the subvariety defined by B(X). In[C1], anatural mapp: C"*" — Z(¥) — X
is constructed. Now consider the inclusion C* — C™*" defined by

(1, xy) = (X1, ..y 2Tp, 1,00, 1), (2.6)
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One easily sees that the image of thismap liesin C"*" — Z(X), and the argument
of Theorem 1.9 of [BC] shows that we have a commutative diagram

C’rL Po Xg-

(2.7

cvtr—Z(3) 22— X.

We now recall the Euler form 2 from [BC]. Fix an integer basis m;, ..., m,
for thelattice M. Then, givenasubset I = {/1,...,4,} C{1,...,n+r}withn
elements, define

det(n;) = det({m;, e, >1<i,j<n)-

Alsosetdz; = dzy A~ - - Adzy, and z; = Il¢ 7. ThenQisgiven by theformula

Q= Z det(77[) f?[ d.’L‘[, (28)
|[I|l=n

where the sum is over al n-element subsets I C {1,...,n + r}. Note that €2 is
well-defined up to 1.

From (2.6) and (2.7), we seethat p’ (w) iscomputed by settingz, = --- = 2z, =
1in the above formulafor Q2. Thus

!
p:;(w):i|N/N|dxl/\---/\d$n. 2.9)

1...Zp

The next step in the proof is to study what happenswhen we change X slightly.

Suppose that ¥/ is arefinement of the fan X such that o is still acone of /. Then
we get abirational morphism 7: X’ — X of toric varieties which istheidentity on
the affine piece X/ = X,,. For X', we have an Euler form ', and the analog of w
in (2.5) isdenoted '. Notethat z1, . . . , z,, have the same meaning for both w and
w'. Then, since o isaconefor both fansand we haven't changed NV, it followsfrom
(2.9) that 7*(w) = . We aso have open coversl{ of X and i/’ of X', and we
leave it to the reader to verify that these covers are compatible under . It follows
that

aselementsof H™(X',Q,). Since

TI'X/ on* = Trx,
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when 7 isbirational, w and w’ have the same toric residue. In particular,
Res(w) = +1 < Res(w') = £1. (2.10)

Next, instead of changing the fan, suppose we change the lattice. If N; is a
sublattice of NV, then asexplained in [O, Corollary 1.16], we get atoric variety X1
such that N/N7 acts on X1 with X as quotient. Let w1: X1 — X be the quotient
map. The toric varieties X and X have the same coordinate ring .S (though the
gradingsdiffer). Now assumethat 7y, . . . , 7,4 liein N1. Then one easily seesthat
the Euler forms 2 and 2; are related by the formula

Q= £|N/N1|Qq,

so that if w; isthe analog of w for X1, we have
71 (w) = £|N/N1| wi.

However, since r1: X1 — X isafinite map of degree |N/Ny|, we also have
Try, omy =|N/Nq| Trx.

From here, it follows that w and w1 have the same toric residue (up to +1), and

hence
Res(w) = +1 <= Res(w1) = £1. (2.11)
We can now prove the proposition. Defineng = —X7_;7;, whereny, ..., n, are

the generators of o, and let X' be the fan whose cones are generated by proper
subsets of {7, ...,n,}. Thisgivesatoric variety X', and note that o is a cone of
Y. Now let X" be the fan consisting of all intersections o1 N o3 for o1 € X and
o, € Y. Hence X" is a common refinement of X and X', and o isa conein all
three fans. The corresponding toric variety X" maps to both X and X’. Finaly,
let N' C N bethe sublattice generated by 71, ..., 7,. Thenny € N’, and the toric
variety determined by N’ and X’ is P". Putting this all together, we get a diagram
of toric varieties

XII Pn
X X'

where the first two maps come from refinements which preserve o and the third
comes from a change of lattice which preserves the generators ;. It follows from
(2.10) and (2.11) that

Res(w) = +1,
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if and only if the corresponding statement is true for P". The latter iswell known;
for example, it follows from the Trace Property for P™ stated in the introduction to
[C2]. O

Remarks 2.12 (i) In Section 4, we will use the relation between toric residues
and local residues to give a second proof of Proposition 2.4 in the special case
when X issimplicial.

(i) If we replace the hypothesis that the «; are Q-ample with the weaker
assumption (2.1), then the conclusion of Theorem 0.2 is still true. In fact, al we
need to assumeisthat F; € B(X) for al i. Thiswill be useful in Section 3.

(iii) The element A, depends on the choice of simplicial cone o of dimension
n and on the choice of coefficients A;; in (2.2). Once Theorem 0.3 is established,
it will follow from Theorem 0.2 that when X is simplicial and the «; are ample,
the class of A, is unique up to sign modulo the idea (Fp, ..., F,). Moreover,
if we pick a basis of M such that det((m;,7;)) > O, then one can check that
ReSF(AU) =1

(iv) Given any decomposition

Fj = Aojzl...z,n —{—ZAijwi,
i=1
the polynomial A, = det(A;;) satisfies Resy (A,) = +1.

(v) The definition of A, given by (2.3) generalizes awell-known construction
in the algebraic setting corresponding to projective space [KK]. Regarding P* asa
toric variety, we get the usual graded ring S' = Clzy, ..., z,], and theidea B(X)
is the maximal idea (zo, ..., z,). Given homogeneous polynomials Fy, ..., F,
deg(F;) = d; > 0, whose only common zero isthe origin, let o be the conewhose
generators correspond to the variables z,, . . . , z,,. Then

1 OF; " 1 0F;
Fi=— —Lag+ — Ly,
J d; Oxo ; d; Ox; ’
and, consequently, achoice of A, isgiven by
1 OF;
Ao = do...d, det((?xj)

3. Thecodimension one and residue isomor phism theorems

Before we can prove the main results of this section, we need to discuss a toric
version of the Cayley trick. Let X be a complete toric variety, and let Lo, ..., L,
be ample line bundles on X . Then consider

Y =P(Lo® - @ Ly).

https://doi.org/10.1023/A:1000180417349 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000180417349

46 EDUARDO CATTANI ET AL.

This variety has a canonical line bundle Oy (1), which is ample since the £; are
ample (see Section 1 of Chapter |11 of [H]). Notethat Y isaP™-bundle over X, so
that Y has dimension 2n.

For our purposes, we need to understand Y as a toric variety. We begin with
the description given in [BB]. The ample line bundle £; is associated to a n-
dimensional polytope A; C MR of theform

Aj={m € Mg: (m,m;) > —a;;, i =1,...,n+r}. (3.2

Since each £; is ample, the facets of A; (faces of codimension 1) correspond
bijectively to the n;, where n; givesthefacet F;; = {m € A;: (m,n;) = —a;;} C
Aj.

! Now consider R" @ Mg with theinteger lattice 2™ & M . Elementsof R"” @ Mg
can be uniquely writtenm = Aie1 +-- - + A\pe, +m, where \; € Randm € Mg.
Wealso havethe dual R" @& Ng with lattice Z" & N, and elements here are written
similarly. Then define A C R™ & MR to be the convex hull

A = Conv(({0} x Ag) U ({e1} x AD)U---U ({en} x Ap))

= {{Alel—i----—i—)\nen+)\omo+---+)\nmn: \j 20,

dA=1mje Aj} : (3:2)

§=0

This is easily seen to be equivalent to the polytope A, in Section 3 of [BB].
Since Oy (1) isample, Proposition 3.2 of [BB] impliesthat Y is the toric variety
determined by the polytope A. The corresponding fan in R” & Nr is called the
normal fan of A.

We next show that the generators of the 1-dimensional conesin the normal fan
are given by

n
771':2%7 al06j+77la izl,...,n—{—r,
o = —e1— -+ —ep,

ﬁj:ej, j:].,...,’n

Thefirst step isto provethat A is defined by the inequalities

(m,n;) > —ap, 1=1...,n+r,
(m, ) > —1, (3.3)
(m,7;) > 0, j=1,...,n.
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Writem = Aey +--- + \pep, + m, wherem € Mg, andlet \g = 1 — B4
Then the above inequalities are equivalent to

(m,n;) > Z)\am, i=1....n+m

n
Aj>0, j=0,...,n, YA =1
=0

If i € A, then (3.2) shows that m = X7 _oA;m;, where m; € Aj, and it
follows easily from (3.1) that the above conditions are satisfied. Conversely, if m =
Ate1+ - -+ Ape, +m satisfies (3.3), consider thelinear maps B(mo, . .. ,my,) =
(—=(mj,m:)) and D(mo, ..., my) = LJ_gA;m;. Then the above inequalities and
the Farkas Lemma (as stated in Exercise 1.6 of [Z] with A = C = 0) imply that
thereexists (mo, . . . ,my) With B(mao, ..., my,) < (ai;) and D(mo, ..., my) = m.
This shows that m = X7_g\;m;, wherem; € A; by (3.1), and m € A follows
immediately.

From the inequalities defining A, we can read off the facets of A as follows.
First, one easily shows that

{m e A: (m,n;) = —apo}
isthe convex hull

Conv(({0} x Fio) U ({er} x Fin) U--- U ({en} x Fin)),

where F;; C A, isthe facet defined by ;. Since this set has dimension 2n — 1,
it is a facet of A. Similarly, if one looks at the subsets of A defined by the
equations (m, o) = —1or (m,7;) = 0,1 < j < n, then one gets the (2n — 1)-
dimensional polytopes obtained by taking the convex hulls of n of the n + 1 sets
{0} x Ag,{e1} x A1,...,{en} x A,. Hencethese are aso facets.

It follows 7); and 7; define facets of A, and these are all of the facetssince A is
given by (3.3). This provesthat we have found the generators of the 1-dimensional
cones of thefan of Y.

We next turn our attention to the coordinate ring of Y, which is the polynomial
ring

R = C[‘le" yLn+r, Yo, - - - 7yn]7

where z; correspondsto 7j; and y; correspondsto ;. To determine the grading on
R, note that the P"-fibration p: Y — X gives an exact sequence

0 Ap_1(X) 25 Apy 1(Y) = Z — 0. (3.4)
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Intermsof p: Y — X, we can think of the x; as variables coming from the base
andthey; asvariableson thefiber. To make this more precise, let thetorusinvariant
divisors on Y corresponding to 7j; and 7; be D; and D/; respectively. Then D; is
the pullback of the torus invariant divisor D; on X corresponding to »;, and ﬁ;

induces the hyperplane class on each fiber. In particular, deg(z;) = [D;] — 0 and
deg(y;) = [Dj] — 1in(3.4).
We next have the following important lemma.

LEMMA 35. For eachj = 0,...,n, wehave Oy (D)) ® p*(L;) ~ Oy (1).
Proof. The integers a;; in (3.1) mean that £, ~ Ox (X! a;;D;) on X. It
followsthat on 'Y, we have

n+r
Oy (D;) ®p*(£j) ~ Oy (D; + Z aijDi> .
i=1
When j = 0, the polytope corresponding to this divisor is precisely A by (3.3),
which proves the lemma in this case. If j > 0, we havee; € Z" © M, and the
divisor of the corresponding character x is

n+r n

div(x%) = > (ej, ) Di + > _(ej, ) Dy,
i=1 k=0

n—+r " _ _
= Z(aij —a0)D; — Dy + D;-
=1

. n+r . . n+r .
= (D; + Z aijDi> — (D6 + Z aioDZ’> ,
and the lemma follows immediately. O

To see what this lemma says about coordinate rings, let «; = [£;] € A,—1(X)
and pick polynomials F; € S,;. The F; may have different degreesin S (since
the «; need not be equal), but Lemma 3.5 implies that the polynomials y; F; all
have the same degreein R. Thuswe can form the single homogeneous polynomial
Y% oy;F; € R whichcontainsall the F; simultaneously. Thisisthe essenceof the
Cayley trick.

We can now prove the first main result of this section, which gives a sufficient
condition for (Fp,. .., F,) C S to have codimension onein the critical degree p.

THEOREM 3.6. Let X be a complete simplicial toric variety of dimension n, and
assume F; € S,;, for j = 0,...,n, where «; is ample and the F; don’t vanish
simultaneously on X. If p = p(F') isthe critical degree of the F;, then

dime(S,/(Fo, ..., F,),) = 1.
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Proof. If wepick amplelinebundles £; on X suchthat a; = [£;] € A,—1(X),
then we get thetoric variety Y = P(Lo @ - - - @ L,,) described above. As remarked
after the proof of Lemma 3.5, the polynomials y; F; al have the same degree in
the coordinate ring R of Y. This degree is the ample class [Oy (1)] € Az,—1(Y),
which we will denote by . Thus we can define the homogeneous polynomial

F =yoFp+ -+ ynFy € R,.

Let W C Y be the hypersurface defined by ' = 0. The idea of the Cayley trick
is that this hypersurface should be closely related to the complete intersection
Fy=--- = F, = 0o0n X. Since the intersection is empty in our situation, we
expect W to be especially simple.

We next check that all of the relevant hypotheses of [BC] are satisfied. We know
that v isample, and Y issimplicia sinceit isaP"-bundle over the smplicial toric
variety X . To show that W is quasi-smooth (as defined in Section 3 of [BC]), note
that among the partial derivatives of F', we have

oF
— =F;. 3.7
8yj J ( )
Since the F; don't vanish simultaneously on X, these partials of F’' can’'t vanish
simultaneously on Y, which provesthat W' is quasi-smooth.

The primitive conomology of IV is defined by the exact sequence

H> YY) = H* YW) - PH* (W) - 0,

(with coefficients in C). To prove Theorem 3.6, we will compute PH?" (W)
topologicaly, usng W — Y — X, and algebraically, using the Jacobian ideal of
F.

In the composition W — Y — X, thefiber over apoint of X with coordinates
t1,...,th+r IS the subset of P" defined by E}T;Oijj(tl, e ostper) = 0. Since
the F; don’t vanish simultaneously on X, it follows that the fiber is a hyperplane
P*~1 ¢ P". Topologically, this means we have a map of fibrations

Pnfl c pr

We———Y

X = X.
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For each fibration, we get the usual spectral sequence, and the map between the
spectral sequencesis surjective at £, because H?(P") — HY(P"~1) is surjective
forall ¢.Itfollowsthat H?"~1(Y') — H?*~1(W)issurjective, sothat PH?"~1(W)
vanishes.

We can also compute the Hodge components of PH?*~1(W) using [BC]. In
particular, the exact sequencefrom Theorem 10.13 of [BC] givesan exact sequence

0— H*2(Y) — H*(Y) = (R/J(F)) 11—

— PH" Y"(W) (= 0) — 0, (3.8)

where J(F) = (0F/0x;,0F/dy;) is the Jacobian ideal of F and 3 =
S deg(ai) + ¥_odeg(y;). However, v = deg(y;) + a; for al j by Lemma
3.5, so that

n+r n

(n+1)y =8 = Y _(deg(y;) + ;) — ) deg(a;) — > deg(y;)
j=0 i=1

In the map A,_1(Y) — Z of (3.4), we know that p — O and deg(y;) — 1.
This implies R, = S,. Furthermore, by (3.7), the Jacobian idea is J(F')
(Fj,0F/0z;), and J(F), = (Fo,...,F,), follows since 0F/0x; =
X% oyjOF;/0z;. Then (3.8) tells us that

dime(S,/(Fo, ..., F.),) = h*(Y) — k2" 2(Y).

However, since the spectral sequence for the fibration P* — Y — X degenerates
at E> (both base and fiber have cohomology only in even degrees), we see that if
g < n,then

h2q(y) — Zth h2q k) (Pn)

= hO(X) + h3(X) + --- + h®(X).

This easily implies dimc(S,/(Fo, ..., F,),) = h?*(X) = 1, and the theorem is
proved. O

We can now prove Theorem 0.3 from the Introduction. Thefirst part of the theorem
claimsthat the toric residue map

Resp: S,/(Fo, ..., Fn), = C 3.9
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isanisomorphism. Since X issimplicial, every n-dimensiona o € X issimplicial,
so that by Theorem 0.2, we have A, € S, such that Resp(A,) = £1. Then
Theorem 3.6 immediately impliesthat (3.9) is an isomorphism.

Turning to the second part of Theorem 0.3, we need to show that

$i'SpC<F0,...,Fn>, 1=1,...,n+r. (310)

To provethis, let o be an-dimensional cone of ¥ containing 7;, and renumbering
asin Section 2, we can assume that ; < n. Then Cramer’s Rule, applied to the
equations (2.2), shows that z; - A, C (Fo,..., F,). But the previous paragraph
implies S, = C- A, + (Fo, . .., Fy),, and then (3.10) follows immediately. This
completes the proof of Theorem 0.3.

Remark 3.11. As aconsequence of these results, we can describe an algorithm
for computing toric residues when X is complete and simplicial and F; € Sq;
for o; ample. First, pick a Grobner basis for (Fy,..., Fy,) (using a convenient
monomial order on S). Givenapolynomial H € S, we canthen computeits normal
form, denoted normalform (H). Since (Fy, . .., Fy,), C S, hascodimension 1, an
easy argument shows that the normal forms of elements of .S, are multiples of the
monomia ¢ whichistheleast (relative to the chosen monomial order) among the
monomials of degree p notin (Fy, ..., Fy),.

Then choose a n-dimensional cone o, say with generators 7;,, and pick a
basis m; of M such that det({m;,n;;)) > 0. If we use this basis to construct the
Euler form €2, then by the remarks made at the end of Section 2, the determinant
A, € S, satisfiesResp(A,) = 1. Finally, let ¢, be the nonzero constant such that
normalform(Ay) = coz®.

Given these ‘preprocessing’ steps, we can now describe the algorithm: given
H € S,, itstoric residueis given by the quotient

Resp(H) = —,

g

where normalform (H) = cx®. Thisfollowsbecause H = cx® mod(Fy, ..., F},)
and A, = ¢, 2 mod(Fo, ..., F,)imply H = (¢/c,) A, mod(Fy, ..., F,).

We should point out that the use of the Residue | somorphism Theorem together
with the existence of an element such as A, to compute residuesis at the heart of
the algebraic approach to the study of residues. In this setting one needs to work
with aregular sequencein an appropriate ring. We refer to [SS1] for the classical
homogeneous case, and to [KK] and [SS2] for the case when Pic(X') hasrank one.
However, aspointed out in[Sta, Sect. 5 of Ch. 1], regular sequences of homogeneous
elements are not well behaved when the group grading the ring has rank greater
than one. Hence, whenever rank A,,_1(X) > 1, the algebraic approach doesn’t
apply directly to the coordinate ring of X. In the case of polynomials of equal
ample degreein an arbitrary completetoric variety, one can avoid this difficulty by
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reducing to a subring of the coordinate ring which has arank one grading. Thisis
donein [C2] (based on earlier work of Batyrev [Ba]).

In the final part of this section, we will discuss the hypotheses of the Codi-
mension One Theorem (Theorem 3.6) and the Residue Isomorphism Theorem
(Theorem 0.3). In proving both of these results, we assumed that the variety X was
simplicial; this appears to be an essential ingredient in the proof of the results of
[BC] which we are using in our argument. It is not clear to us whether one should
expect the Codimension One Theoremto hold for arbitrary completetoric varieties.
For the same reason we also made the assumption that the degrees of Fy, ..., F),
were ampleclassesin A,,_1(X). Although some assumption of this typeis needed
(see Example (iv) in (3.14)), we suspect that these theorems should hold under the
weaker hypothesis that the degrees are Q-ample. In fact, there is an even weaker
hypothesis which leads to the following conjecture generalizing the Codimension
One Theorem.

CONJECTURE 3.12. If X isacompletesimplicia toric variety and Fy, ..., F,, €
B(X) are homogeneous polynomials which don’t vanish simultaneously on X,
then

dimc(S,/(Fo, ..., Fn)p) =1,
where as usual p isthe critical degreeof Fy, ..., F),.

Recall from Section 2 that B(X) is the ideal generated by the monomials
Ty =, ¢,x;foral o € Y andthat S,; C B(X) when «; isQ-ample (see (2.1)).
Thus Theorem 3.6 is a special case of Conjecture 3.12.

One useful observation is that Conjecture 3.12 implies the conclusions of the
Residue Isomorphism Theorem remain true.

PROPOSITION 3.13. Let X beacompletesimplicial toric variety, and let Fp, . . .,
F, € B(X) be homogeneous polynomials which don’t vanish simultaneously on
X. If Conjecture 3.12istruefor X (i.e, if dimc(S,/(Fo, ..., Fy),) = 1), then

(i) Thetoric residue map Resy: S,/ (Fo, ..., Fy), — Cisanisomorphism.
(ii) For eachvariablez;, 0 <i < n+r,wehavez; - S, C (Fo,...,Fy).

Proof. The argument is identical to what we used to derive Theorem 0.3 from
Theorem 3.6. This is because, as we observed in Remark 2.12 (ii), Theorem 0.2
still applies under the assumption F; € B(X). O

Asevidence for Conjecture 3.12, we present the following examples.
EXAMPLE 3.14. (i) If X = P(qo,-..,qy) is a weighted projective space with

coordinate ring S = Clzy, ..., zy], then B(X) istheidea (xo,...,z,), so that
F; € B(X) meansthat F; has positivedegree. Hence Conjecture 3.12 followseasily
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by standard commutative algebra because Fy, .. ., F;, form aregular sequencein
S (since they don’t vanish simultaneously on X).

For a specific example, consider X = P(1,1,1,1,3,3,5) and suppose that
Fy, ..., Fghavedegrees3, 6, 6, 6, 6, 5, 4 respectively. Thecritical degreeisp = 21,
sothat Sp;1/(Fp, ..., Fs)21 ~ Cinthiscase. Notethat the F; are not Cartier, though
they are certainly Q-ample. Thisisan examplefrom mirror symmetry which arises
in connection with certain (0, 2) string theories — see [DK] for more details.

(ii) For another example where the degrees of the F; are Q-ample but not
Cartier, consider the toric surface X corresponding to the fan in R? determined by
the vectors

m = (17 0)1 2 = (Ov 1); N3 = (_17 1);
na = (=1,-1);  ns=(1,-1).

Note that X is singular since 73, 14 and 74, ns don’t span all of Z2, though X is
certainly simplicial.

If welet thevariablesz, y, z, ¢, u correspondto 7, . . . , 5, then the exceptional
set Z C CPisdefined by theideal B(X) = (ztu, ztu, zyu, xyz, yzt), that is,

Z ={r=2=0U{z=u=0U{y=u=0}
U{z =t=0}uU{y=t=0}.

Thus, X ~ (C® — Z)/(C*)3. Furthermore, one can show that A;(X) ~ Z* and
that we get a grading in the polynomial ring S = C[z, y, z, t, u] with

deg(z) = (1,1,-1); degyly) = (~1.1.2); dey(z) = (1,0,0)
deg(t) = (0,1,0); deg(u) = (0,0,1).
Thus, the sum of the degrees of the variablesis 8 = (1, 3,1).
We next characterize ample divisors on X. First, one checks that a class
(a,b,c) € Z° ~ A1(X) liesin Pic(X) C A1(X) (i.e., thedivisor a D3 + b D4 +

¢ DsisCartier) if andonly if a = b = ¢ mod 2. Then it is straightforward to verify
(using [F, Sect. 3.3-4]) that a Cartier class (a, b, ¢) isampleif and only if

b>a>0 and b>c>0. (3.15)

For an arbitrary (a, b, c), these inequalities tell us when the corresponding classis
Q-ample.
Now consider the polynomials

Fy = :vy223; F = xzyu3 + yzztzu + zt?u® + y223t;

Py = zt3u® + zt?u® + y?23t.
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They are homogeneous and deg Fp = (2,3,1), deg F1 = deg F»> = (1, 3,2). One
can check that the common zeros of Fy, F; and F, in C® are contained in the set
Z and therefore the corresponding divisors on X have empty intersection. None of
these divisors are Cartier, but they are clearly Q-ample by (3.15), and their critical
degreeis given by

p=(231)+(1,32) + (1,32 — (1,3,1) = (3,6,4).

There are 22 monomials of degree p, and computing the normalform of each
monomial (asin Remark 3.11), we find that the normalformsare all multiples of the
samemonomial (for example, if weusegradedreverselexwithz > y > z > ¢ > u,
the normalforms are all multiples of z3t3u”). Thus (Fy, F1, F»), has codimension
onein sS,.

(iii) We next give an example where F; € B(X) for all 7 but their degrees are
not Q-ample classes. We use the same singular toric surface X asin (ii), but this
time we consider the polynomials

Fy = ztu; F1 = yzt + xyu; Fr = zyz + xtu.

These are homogeneous with degrees deg Fp = (1,1,1), deg F1 = (0,2, 1), and
deg F> = (1,2,0). One can check that Fp, F; and F5 don’t vanish simultaneously
on X, and by the ampleness criterion (3.15), none of their degrees are Q-ample,
although Fp, F1, F al liein B(X). The critical degreeis

p=(111)+(0,21) +(1,20) — (1,3,1) = (1,2,1).

Computing normalformsof thefour monomialsof degreep revealsthat ( Fo, F1, F»),
has codimension onein S,,.

(iv) Finally, we give an example to show what can go wrong if not all of the
F; are contained in B(X). Let X = P! x PL Here, it is well known that the
homogeneous coordinate ring of X is.S = Clz, vy, z, t], with the usual bigrading

deg(z) = deg(y) = (1,0);  deg(z) = deg(t) = (0,1).

Also, B(X) = (zz, xt,yz, yt).
We now |et

Fo=(z+ y)z; F=zz F3 = yt.

Thus deg(Fp) = (2,0) and deg(F1) = deg(F>) = (1,1). It is easy to check that
Fo, Fy1, F> don't vanish simultaneously on X. Moreover, the divisors defined by
Fy, F, are ample (a polynomial of degree (a,b) defines an ample divisor if and
only if « > 0and b > 0), while Fy ¢ B(X).

The critical degreein thiscaseis p = (2,0) since the sum of the degrees of the
variablesis 8 = (2, 2). There are three monomials of degree (2, 0): 22, y? and zy,
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and any two of them are linearly independent modulo the ideal (Fp, F1, F»). Thus
(Fo, F1, I2), does not have codimension one in S,,. Note also that no monomial
of degree (3,0) isin theideal, which showsthat = - S, ¢ (Fo, F1, F»). Hence the
second part of Proposition 3.13 fails aswell.

Remark 3.16. (i) Notice that if the F; don't al lie in B(X), then we can no
longer expressthe F; asin (2.2), so that the definition of A, makesno sense. Thus,
evenif (Fy,..., Fy), has codimension onein S,, the second part of Proposition
3.13 could fail. For an example of how this can happen, consider the toric variety
X of Example 3.14 (ii), thistime using the polynomials

Fo = ztu; 1 =yzt + zyu; F =xyz + xtu + 2t2.

These are very similar to what we used in Example 3.14 (iii)—the only difference
isthat F» has an extra zt? term. As in that example, deg Fp = (1,1,1), deg Fy =
(0,2,1), and deg F» = (1, 2,0), and they don’t vanish simultaneously on X . Note
dso that Fo, F1 € B(X) but F> ¢ B(X) because of the zt? term. The critical
degreeisstill (1,2, 1), and an easy computation shows that (Fy, F1, F>), still has
codimension onein S,,. However, in this case, one can also compute that

x - zyzu ¢ (Fo, F1, Fy).

Since zyzu € S,, we have = - S, ¢ (Fo, I1, F>), so that the second part of
Proposition 3.13 fails in this case.

(ii) One question we have not investigated is whether the simplicial hypothesis
isneeded in Conjecture 3.12 and Proposition 3.13. For example, if X isan arbitrary
complete toric variety, then Conjecture 3.12 and the first part of Proposition 3.13
are true when the degrees of the F; are the same ample class—thisis Theorem 5.1
of [C2].

4. Global residues assumsof local residues

In this section we will show that for simplicial toric varieties, the toric residue
may be computed as a sum of local Grothendieck residues. The toric setting is not
essential here and, in fact, it is convenient to work with the more general notion of
a V-manifold or orbifold (see [B], [S]). We begin with a review of the theory of
residual currents.

Residual currentson V-manifolds.

We recall that, by results of Prill [P], if an n-dimensional complex variety X isa
V-manifold, then for every = € X there exists a finite subgroup G C GL(n,C)
such that for some neighborhood W of = € X, wehave (W, z) ~ (U/G, 0), where
U isa G-invariant neighborhood of 0 € C™. Furthermore, G issmall (nog € G
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has 1 as an eigenvalue of multiplicity n — 1) and is unique up to conjugacy. Such
alocal presentation (W, z) ~ (U/G, 0) is called a standard model.

A simplicial toric variety X is an example of a V-manifold. Indeed, with the
notation of Section 2, we may cover X with open sets X, ~ C"/G(o) and it is
easy to verify that G(o) isasmall subgroup (see [BC, 3.5]).

Itisshownin [Ste, 1.8] that if X isaV-manifold and (W, z) ~ (U/G,0) isa
standard model, then

T(W, Q%) ~ T(U, %), (4.1)

where, asbefore, Q’)’( denotesthe sheaf of Zariski p-formson X', and the superscript
G indicates the subspace of G-invariant forms. Similarly (see [S] and [B]), we
consider the sheaves£X:Y of C>° formson X of bidegree (p, ¢). They are associated
with the presheaveswhich assigntoanopenset W C X, whichispart of astandard
model (W,z) ~ (U/G,0), the group ERI(W) = T'(U,&EP9)Y, where P4 is
the sheaf of C*° (p, ¢)-forms on C™. The restriction maps for these presheaves
are defined as follows: if (W', z) ~ (U'/G’,0) is another standard model and
W' C W thenby [P, Theorem 2], there existsalinear map h € GL(n, C) such that
h(U') C U and G’ = h~1Gh. Wethenset riV, = h*: ERI(W) — ERY(W'). Note
also that any element in GL (n, C) commutes with the differential operator 9 acting
on I'(U, £7+), which means that we can define an operator d: £2:7 — 0111,

We denote by T'.(W, EL?) the space of sections of 87 with compact sup-
port in W. For a standard model (W,z) ~ (U/G,0), we have T';(W,EL?) ~
I'.(U, &P andit carriesanatural Fréchet topology asasubspaceof I'.(U, £9).
Wewill denoteby ‘DX the sheaf of (p, ¢)-currentson X, i.e., the sheaf which asso-
ciatesto any open set W of X, the space’DX?(W') of continuous linear funcionals

onT (W, P"71).
LEMMA 4.2 If (W,z) ~ (U/G, 0) is a standard model, then

DY(W) = DP(U),
where’DP+? is the sheaf of (p, ¢)-currentson C™ and the action of G on’DP4(U) is
the natural one:

(gT) (o) =T(9*«), T €DPIUU) and o € (U,EPM7T),

Proof. The space DY?(W) is by definition the continuous dual of T'.(W,

EYPNTY) =T (U, &P 9)%, and any continuous linear map

T:T.(U,EVPP~)¢ _ C,

extends to a G-invariant continuous linear map defined on all of I'.(U, E"~P"~1)
by the formula

1
T(a) =T(a%), where o = =

=G Z g a. 4.3

gelG
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Conversely, every G-invariant linear functional 7' on ', (U, £ P~ 1) satisfies

T(e) = = 3 (1)) = = ¥ T(g"a) = T(a€) 44
Gl =% Gl /=%
and, thus, isin the image of (4.3). O

It will be convenient to assignto 7' €'DP»4(U) ¢ the element (1/|G|) T € DR (W).
With this convention, the G-invariant continous linear operator defined by inte-
gration [,: I'.(U,€™") — C givesrise, when (W, z) ~ (U/G,0) is a standard
model, to the usual definition of integration for sections« € I'o(W, ™)

o= |
o= — .
W |G| Ju

It is clear that this definition is independent of the choice of standard model.
Moreover, the existence of C'*° partitions of unity on X (see[B]) implies that we
can define the integral for compactly supported sections of £ over any open set
of X.

Similarly, given a G-invariant form o € T'(U,£P9)Y, integration against «
defines a G-invariant current I(«) € DP4(U)%. Thus

I(@)(8) = /U aNf for €T (U,EPn=a).

The corresponding current in DX?(W) will also be denoted by I(«r) and we have
() (B) = (1/|G]) Jya AB = [y aAB.

We extend the definition of O to the space of currents by the formula

07)(B) = ()P T(0p), T eDY(W) and
B el (w,grrnah

PROPOSITION 4.5. Let X be a compact, connected V' -manifold. Then

(i) Thediagram
0 Or g0 ... 0 ,gpn 0
I I I
0 Qp;( I /D;;(,o 0 . a /,Dg(,n 0

commutes and its rows are exact.
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(if) The following diagram commutes and all maps are isomor phisms

HY"(X)

Jx

Proof. Thecommutativity of thefirst diagram is aconsequenceof the sign con-
ventionin the definition of 0. Exactnessfollows from the corresponding statements
in the smooth case. We illustrate this for the bottom row.

Let o € QF  be such that I(«) = 0. We represent « by a G-invariant holo-
morphic p-form & on U where (U/G, 0) ~ (W, z) isastandard model. By Lemma
4.2, I(&) = 0 asan element in 'DPO(U)¢ c'DPO(U'). Consequently, by exactness
in the smooth case, & = 0 and, afortiori, « = 0.

Supposenow that T' € DY, is 0-closed. Again, werepresent T' by a G-invariant
current T € 'DP4(U)C satisfying 0T = 0. We may replace U by a smaller G-
invariant neighborhood U’ of 0 C™ where T = 9, S € 'DP4~Y(U"). Asin (4.4),
since d is a G-invariant operator, T = 95 , where S¢ is the G-invariant current
SG = (1/|G))SgeqgS. ThusT = 9SY, for theinduced element in DR, .

To prove (i) we note that the sheaves £>? and 'DX are fine and, consequently,
the rows in the diagram in (i) give fine resolutions of the sheaf Q’)’(. Now, taking
p = n, the usual proof of Dolbeault's Theorem gives the isomorphisms n and
'n. The isomorphism I is deduced from the map at the level of sheaves and the
commutativity follows from (i). Clearly I maps the cohomology class of a 0-
closed (n,n)-form « to the (n,n)-current defined by integration of compactly
supported C*° functions against a.

Stokes' Theorem for V-manifolds [B] implies that integration over X defines
an isomorphism [yt H>"(X) — C and the map Evy : HZ(I'(X,'DY)) — Ciis
defined by evaluation of a (global) current on the constant function 1. The com-
mutativity of the right triangle then follows from the relation [, « = I([a])(1x),
[a] € H™(X). O

We now bring into the picture multiple residue and principal value currents (as
in[CH] and [Di]). Let Dy, ..., Dy, bereduced Weil divisorson the V-manifold X .
For each D;, some multiple is a Cartier divisor (since X isaV -manifold), so that
D; may be given locally as the support of the zero set of a holomorphic function.
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Let w be asemimeromorphic (p, ¢)-form on X with poleson D = (J*_; D;. This
means that w can be locally written as o'/ f with ' a C* (p,q)-form and f a
holomorphic function such that { f = 0} C D.

Suppose for a moment that X is smooth and we are given (not necessarily
minimal) equations f; € I'(U, Ox) for each hypersurface D;, i = 1,...,k, on
some open subset U . For any C* form « (resp. (3) with compact support contained
in U and bidegree (n — p,n — q — k) (resp. (n — p,n — ¢ — (k — 1))), we define

Rplw](c) = Rp,,... p, [w](a) = lim wA o
0=0JT5(f)
and
RP, =R P = lim A B,
D[w] (6) Dy,...,Dg 14 Dy, [w] (5) 50y () wApB
where

T3(f) = {z € U: |fi(z)| = «:(6), 1<i<kl,
D;s(f)={z € Ut|fi(z)| = ei(d), 1<i<k-1 |[fi(z)]>ek(d)},

are conveniently oriented semianalytic tubes and the & functions gir (0,1) - Ry
are analytic and satisfy Iimgﬁo(aj(é)/agﬂ(é)) Oforall1<j <k—1landall
positiveintegers g. We cal (eq, . .., ex) an admissible path.

In [CH], Coleff and Herrera show that the above limits exist for any «, S.
Moreover, these limits are independent of the admissible path and the particular
equations f, ..., fx. Thus, on U, we get the multiple residue current Rp[w] of
bidegree (p, g-+k) and the principal valuecurrent R Pp|w] of bidegree (p, ¢+k—1).
By means of a C'*® partition of unity, these local definitions can be collected to
obtain global currents on X, also denoted Rp[w] and RPp|w], whose supports
verify

Supp(Rp|w (ﬂ D1> N supp(w),

=1

Supp(RPplw (ﬂD)ﬂsupp ().

Suppose now that X isaV-manifold, Dy, ..., Dy reduced Weil divisors as above,
and W ~ U/G is astandard model. We denote by D1, . .., Dy the lifted hyper-
surfacesin U. For any G-invariant, semimeromorphic form @ on U, with polar set
contained in D = ¥, D;, the currents R[] and RPj;[@] are also G-invariant.
Thus, given a semimeromorphic form w on W, we denote by @ itslifting to U and
then define:

1 1

RD[(:)] and RPD[(U] = @RPE[@].
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These definitions may again be globalized using a partition of unity on X. The
definition of RPp and support property stated aboveimply that
RPD[w]| =0 forj<k, and
X-Dj

RPD[w]| Dby = RDl ,,,,, Dkfl[w“ . (46)

The mappings R and RP), associating to any germ of meromorphic p-form w
with poles contained in D, the germ of the residua currents Rp|[w] and RPp|w],
define sheaf morphisms making the following diagram commutative

OF (+D) — 2, 1ppk—t

i 5 4.7

D,k
bx

In particular, 0 Rp[w] = O for every meromorphic form w € Q&(*D).

We conclude our discussion of residual currents by defining the local Grothen-
dieck residue at a point z on a V-manifold X. Let (W1,z) ~ (U1/G,0) be a
standard model, and let W be a relatively compact neighborhood of = such that
W C W C Wi. Findly, let U be a G-invariant neighborhood of O such that
W ~U/GandU C U C Uy. Supposethat f1,..., f, € O(W) have z as their
only common zero in W. Pulling-back to U, it follows that the hypersurfaces

= {fz = 0} intersect only at 0. Given now ameromorphic n-formw on W with
polar set contained in U;_1{ f; = 0}, we denote by & its pull-back to U and define

Res, (w) = = Resp(@). (48)

|G|
where, aswerecall from [GH] for example, thelocal Grothendieck residue Resy(w)
is defined as

1 n
Resp(@w) = | =— / 0.
(@) <27TZ> {zEU:\fi(z)|:ei,1<i<n}w

Heree; > 0 must be chosen so that {w € C™: |wl|1<z<n = ¢;} iscontained in the
openset f(U), f = (fl,...,fn) and {z € U: | fi(2)|1ci<n = €} NOU = . Note
that the tube {z € U: |f;(2)| = &, 1 < i < n}iscompact, of real dimension n,
and we orient it with the form d(arg f1) A --- Ad(arg fp).

If ¢ isaC* function with compact supportin W, which isidentically equal to

linaneighborhood of z, for its pull-back ¢ we have

(271)" Resp(w) = lim [ @ - w= Rp[w](p),
0204 fi(2)|=¢:(6), 1<i<n} o]
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from which it follows that
(2mi)"™ Resy(w) = Rp[w]()- (4.9

Remark 4.10. Given reduced Weil divisors D;, . . ., D,, with finite intersection
in a compact V-manifold X, and a meromorphic n-form w whose polar set is
contained in the divisor D1 U - - - U D,,, it follows from (4.9) and (4.7) that

(2m)" Y Resi(w) = Rplw](1x) = (ORPp[w])(1x)
zeD1N---NDy,

= —RPplw](01x) = 0.

Thisis essentially the proof in [CH, p. 48] of the theorem on the vanishing of the
sum of Grothendieck residues due to Griffiths [G].

Global residues.

We will now generalize the notion of toric residue to a global residue defined on
an arbitrary n-dimensiona compact V-manifold X .
Given n + 1 reduced Weil divisors Dy, ..., D, on X such that

Doﬂ---ﬂDn:Q),

theopensetsU; = X — D; constitute an open cover i of X. A meromorphic n-form
wel'(X, Q% (xD)), with polar set containedin D =DgU - - -U D,,, definesaCech
cocyclein C"™(U, Q”X). After passing to the direct limit we obtain a cohomology
class [w] € H"(X, Q}). The Dolbeault isomorphism 1 from Proposition 4.5 (ii)
assignsto [w] a Dolbeault cohomology class(w) € H;"(X).

DEFINITION 4.11. The global residue of w relative to the divisors Dy, ..., D,, is
given by

Resw) = (57) [ @)

For asimplicia toric variety the global residue agrees with the toric residue.
Indeed, wehaveaready notedin (4.1) that for aV -manifold, our notion of holomor-
phic forms agrees with the Zariski differentials and, as shown in [C2, Proposition
Al]

Trx(lol) = () [ (@)

Our next goal isto show that under very mild hypotheses, we can write the global
residue asasum of local residues. Asabove, let Dy, ..., D, ben + 1 reduced Well
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divisorsin X with empty intersection, and assume that for somek =0, ..., n, the
n-fold intersection

D, =DoN---NDLN---ND,

isfinite. If w € I'( X, Q}(*D)) and z € D; we can write, in aneighborhood of z,

wl

W= -7

fo---fn’

where, locally, w' isholomorphic and D; isthe support of { f; = 0}, f; holomorphic.
We will denote by Res;, ,(w) the local Grothendieck residue

e ),
fo-o Ji- - Jn
Notethat = € D impliesthat fi(x) # O.

Resy..(w) = Res,

THEOREM 4.12. If Dy, .. ., D;, arereduced Weil divisorswith empty intersection
on a n-dimensional compact V' -manifold X, then for any w € I'(X, Q% (D)), we
have

Res(w) = (~1)* ) Resyq(w),

IED];

whenever theintersection D; = Do N --- N Dy N -+ N Dy, isfinite.

Proof. Thereisno loss of generality in assuming & = n; the sign dependence
isaconsequence of the fact that the global residueis alternating on the order of the
divisors.

The global residue Res(w) = (—1/(27%))" [ n(w) uses the Dolbeault iso-
morphism 7. However, by Proposition 4.5 (ii), we can aso use the Dolbeault
isomorphism ' for currents. Thus Res(w) equals (—1/(2x))™ times the value on
the constant function 1x of any current representing the image under ) of the
Cech cohomology class [w]. Hence, the theorem will follow from the following
two assertions

(i) ([w)) isthe class of the current RPp|w] = Rp,,.... p,_,Pp, [w].
(i) RPplw](1x) = (2m9)"X4ep, RES, o (w).

Because of the definition of the Dol beaultvi somorphism, to prove (i), it suffices
to construct, for each i = 0,...,n — 1, a Cech cochain ¢() e Ci(u,D%"~"~1)
satisfying

(@ 06" = I(w) (¢ isthe Cech coboundary).
(b) 9¢® =s¢-Vforali=1,...,n— 1.
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(©) 9¢© = Rp,,...p, Pp, [w]-

We define
g(nfl) . RPDO[U)] |f J = {1, e ,n},
7o otherwise,

and,foranyi=0,...,n—2andany J C {0,...,n} with cardinality 7 + 1,

5(i) - Rp,,..D,_; .Pp,_; ,w] if J={n—1,... n},
7700 otherwise.

It is understood that the above currents RPp,[w] and Rp,,... p, , ,Pp, , ,[w] ae
restricted to the appropriateopensetsU; = N;c,;U;. Wewill generally not indicate
therestriction when it isirrelevant or clear from the context.

To verify (a), note that 5¢(™~ is the cochain assigning to Up N - - - N U, the
current R Pp,[w] restricted to this open set. Since Dg isdisjoint fromUpN---NUp,
the definition of RPp,[w] impliesthat it must agree with I (w).

Supposenow that 1 < 7 < n — 1, then it follows from (4.7) that

(3, = Rpy,...Dyialw] if J={n—i,... 5n},
! 0 otherwise.

On the other hand, clearly (6¢(—Y); = 0 if J is not an index set of the form
J=Jj={j,n—i+1,...,n}forsomej =1,...,n —i. But,if j <n—q,then
(6¢(-1)) ;. also vanishes— as a consequence of (4.6) —sinceit is the restriction to
theopenset U, C U; of thecurrent Rp,,..p, , ,Pp,_;[w]and j <n —i.

It remains to consider the case J = {n — i,...,n}. Then, (6¢0—1); is the
restriction to Uy of Rp, ..p Pp, ,[w]. But, since Uy C U,_;, we deduce,
again from (4.6), that

n—i—1

RDOrn;aniflPDn—i[w]|UJ = RD0,~~~,Dn7i71[w]|UJ'

Thus, (b) is satisfied.

The final assertion (c) is proved in a similar way: the cochain 0¢° assigns the
zero current to the open sets Uj, j < n and the residue current Rp, .. p, ,[w] tO
U,. But, then, it follows from (4.6) that 0¢° agreeswith the global current RPp[w].

The verification of (ii) now reduces to the local formula (4.9). Indeed, since
the support of the principal value RPp[w] is contained in the finite set D; =
DgonN---N D,_1, its value on the constant function 1y is the same as the value
on any function +) which is equal to one on a neighborhood of each of the points
in D;. We may choose such afunction ¢ of theform ¢ = X,cp, 45, where ), is
equal to 1 in aneighborhood of z and the supports of the )’ s are mutually digjoint
and disjoint from D,, aswell. Then
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RPplw](1x) = Y RPplw]|, (¢

= Z Rp,,..., Dn—l[w]|Un(d)$)7

where the last equality follows from (4.6). But now, (4.9) yields

RPplw](1x) = (2ri)" 3 Resy(w O
zeDy

Remark 4.13. (i) The V-manifolds setting means that in the case of toric vari-
eties we must restrict ourselves to the simplicia case. It is reasonable to expect,
however, that Theorem 0.4 will hold for arbitrary complete toric varieties. This
is the case, for example, if, with the notation of Theorem 0.4, the (finite) set D;,
is contained in the torus T'. It is then possible to reduce to the simplicial case by
considering simplicial resolutions (cf. the proof of Theorem 4 in [CD]).

(if) Tounderstand why we need currentsin the proof of Theorem 4.12, we will
sketch a proof for the case n = 2 using forms rather than currents. The argument
will be lessthan rigorous.

Wehave DonD1N D, =0 in X. LetT;(e) beafundamental system of (open)
tubular neighborhoodsof D;, andlet Sj(e) = 0T (e) and E;(e) = X —T}(e). Also,
for 4, j, k distinct indicesfrom O to 2, consider the intersections C; . (¢) = E;(g) N
E;(e)NEg(e), Cij(e) = Ei(e)NE;(e)NSk(e) and C;(e) = E;(e)NS;(e) NSk (e).
We will assume that these sets are homology chainsof (real) codimension0, 1, and
2 respectively and that their boundaries behave as one would expect.

Next recall the procedureto define n(w). Let {og, 01, 02} beapartition of unity
subordinated to the covering /. Then, beginning with w € I'(Up N U1 N Uy, ﬁg(),
define¢;; = (—1)* 0w € T(U; N U;, 2°), which implies w = 6(&;;) = €12 —
o2 + Co1. Next, define &; = +o0; 0¢;; + oy, 0, with the signs chosen so that
0&i; = 0(&) = & — &. Finaly, n(w) is defined to be the global (2, 2)-form 9¢; in
Ui.

To compute the global residue (27i) =2 [ n(w), wefirst observe

/ n(w) = lim n(w) = lim dto.
X

e—0 Corz(e) e—0 Corz(e)

Since &y has bidegree (2, 1), déo = 0o, SO we can apply Stokes' Theorem to write

/0012(5) 9o —/ €o +/ o + oo ¢o-
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Onthe other hand, £o = + 01 002 Aw + 02 001 Aw, and therefore &g = 0in Sy (e)
and Sz (¢e) for sufficiently small . Consequently,

[ a@=tm [ o=lim [ &
X

€=0 JCp(e) Cr2(¢)

Onceagain, fC (e flvanishesfor e sufficiently small and, using Stokes’ Theorem,
we write

/ n(w _I|m 501+I|m éo1-
Ca(e) =0 JCy(e)

Since g1 = o w vanisheson Sy (¢) for e sufficiently small, we have

/ n(w) = lim o2 W.

e—0 Ca(e)

Finally, for ¢ sufficiently small, o isidentically 1in Sp(e) N S1(e), so that

/n = lim (E)wz(zm)2 S Res,(w),

x€DoNDq

which gives the desired formula for the global residue.

The use of residual currentsin making the above argument rigorousis twofold:
first of all, the local nature of the residual currents definition obviates the need to
construct global cycles of integration — a step which is not always possible; more-
over, the concept of admissible paths explains the passage to the limit necessary
for the vanishing of the various integrals.

(iii) Foranexampleof how Dy, ..., @, ..., D, canfail to satisfy thefiniteness
condition in Theorem 4.12, let X = P! x P!, and consider the divisors Dy =
{0} x PL, D1 = ({oo} x PHyU (Pt x {o0}) and Dy = ({o0} x PY) U (P! x {0}).
Then Do N D1 N D, = 0, yet D1 N Dy isinfinite sinceit contains {oo} x P

Inlight of thelast remark, it would be useful to know whenthen-foldintersection
Dy =Don---N DA,C N---N D, isfinite. Hereis one criterion.

LEMMA 4.14. Let Dy, ..., D, be reduced Weil divisors with empty intersection
on an-dimensional projective variety X. If Dy, isthe support of an ample divisor,
then D; isfinite.

Proof. This isimmediate since D; N Dy, = ) implies that D; is a complete
subvariety of the affine variety X — Dy. O

When applied to toric residues, these results yield Theorem 0.4 which, in turn,

may be used to give new proofs of some basic results concerning toric residues.
We will conclude this section with three such applications of Theorem 0.4:
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Application 1: Res= +1

Thefirst applicationisan aternate proof of Proposition 2.4 whenthetoric variety X
issimplicial. We resume the notation of Section 2, where we have an-dimensional
cone ¢ and the variables are labelled x4, . . ., z,, (corresponding to the generators
of o) and z1, . .., 2 (corresponding to the other generators). Our goal is to prove
that

Res( £ ):il,
(21...27) - Z1... Ty

using Theorem 0.4. Since the divisors

Do={z...z =0}, Di={z;=0},i=1,...,n,

have empty intersectionand D1 N ---N D, = {p} isasingle point, the hypotheses
of Theorem 0.4 are satisfied, so that

RS((zl...zr)Q. :len> = Res, (w,),

where w, is the restriction of Q/((z1...2,) - z1...x,) to the affine open set
X, C X. But we have seen that X, ~ C"/G(0), and since G(o) is a small
subgroup, this defines a standard model. Moreover, as noted in (2.9), the pullback
to C" of w, isgiven by

|G(0)|dza A -+ Adzy,

Wy ==
T1...Tp
Therefore
Res,(wy) = ——— Resp(y)
7 |G(0)] 7
_ j:Reso<d:)cl/\.../\daz;n> Y
T1...Tp

which proves Proposition 2.4 when X issimplicial.

Application 2: Sums of residuesin a torus

Let f1,..., f, ben-variate Laurent polynomialswith afinite set of common zeroes
Z =Z(f1,...,fn)inthetorusT = (C*)". Given aLaurent polynomial ¢, we get
the differential form

g di dt,,

flfn 41 7fn‘

¢ =
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The operator which assigns to ¢ the sum of local residues ¥, ,Res,(¢) has
interesting applications in a number of different contexts. In certain cases, it is
possible to use Theorem 0.4 to give a global interpretation of this sum.

We assumethat there existsasimplicial toric compactification X of T such that
if D; istheclosurein X of the hypersurface {f; =0} C (C*)"and Do =X — T
isthe ‘divisor at infinity’, then

DonDiN---ND,, =0.

Such a (smooth) compactification exists, for example, if the polynomials f; are
nondegenerate in the sense of Khovanskii [K1].

In this situation, the meromorphic form ¢ has an extension to X which can be
written as

QQ

="
Fo... Fy

where Q, Fy, . . . , F}, are homogeneous polynomials in the coordinate ring of X
such that D; = {F; = 0}, and 2 is the Euler form of X. Then it follows from
Theorem 0.4 that

> Res;(¢) = Resp(Q).

reZ

If we assume, in addition, that the Newton polyhedron of ¢ is contained in
the interior of the Minkowski sum of the Newton polyhedra corresponding to
f1,- .., fn, then one may show that () isamultiple of Fp and hence Resp(Q) =0
which gives the classical Euler-Jacobi Theorem in this setting [K2]. In fact, asin
this case @ has poles only on the union of the n divisors D; U - - - U D,,, whose
intersection is contained in the torus, the vanishing of the sum of the local residues
of ¢ follows directly from the result of Griffiths recalled in Remark 4.10. This
global approach to residuesin the torusis the subject of [CD].

Application 3: Toric Jacobians.

For our third application, we use Theorem 0.4 to give an alternate proof of Theorem
5.1 (ii) of [C2] for a simplicia toric variety. This result asserts that the toric
Jacobian J of Fy,...,F, € S, (asdefined in [C2, Proposition 4.1]) has nonzero
toric residue. More precisely, if « isample and the F; don’t vanish simultaneously
on X, then we will show that the equality

Resy(J) = (D")
follows from Theorem 0.4. Here, (D™) is the n-fold intersection number of any

divisor D with [D] = «. Notethat J € S,, where p = (n + 1)o — Bisthecritical
degreefor the F;.
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To provethis, let wgp(J) = JQ/(Fy ... F,). Then Theorem 0.4 implies

Resy(J) = Y Respg(wr(J))

IED@
Fp) Q
- ¥ R@(%). (4.15)
zE€D1N--NDy, 1---4n

We will show that each local residue Resy ,(wr(J)) is alocal intersection mul-
tiplicity of D1,...,D,, a z, which will prove that Resp(J) is the intersection
number (D; ... D,) = (D").

Givenz € Dy, let o be an-dimensional cone such that z liesin the affine open
set X,;. Sinceo issimplicial, wewritethevariablesaszs, ..., z,, 21,..., 2. Then
theform wr(J), restricted to X, may be written in appropriate coordinates as

k(z1,...,zp)dz1 A--- Adzy,

fo-o fn ’
where
fo fn
dfo/0x1 ... Ofn/0x1
k(z1,...,z,) = det
dfo/0zn, ... Ofn/0zy
and fi(z1,...,z,) is the function obtained from Fj(z1,...,zy,21,...,2) Dy

setting z; = 1forj = 1,...,r. It follows that

(k/fo)dza A--- A d:vn>
fifn '

However, expanding the determinant for & along thefirst row and using fo(z) # 0,

we see that

inthelocal ring Ox . Consequently,

det(afl/ax]) dzi A --- /\dxn>
fifn ’

and this last residue equals the local intersection multiplicity of D4,...,D, a z
(thisis well-known in the smooth case and is easy to prove for V-manifolds). By
(4.15), it follows that the toric residue of the toric jacobian equals the intersection
number (Dy ... Dy,).

Reso . (wr(J)) = R%(

ReSo.s (wrr(J)) = Reex(
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Remark 4.16. (i) Since all the divisors D; have the same degree, we can write
Resy(J) = (Dg...Dy...D,) forany k =0,...,n.

(ii) Theintersection number (D ... Dy,) can aso be interpreted as the degree
of themap F' = (Fp,...,F,): X — P" (see [C2, Theorem 5.1] for a careful
proof). Thus the toric Jacobian has the property that its toric residue is given by
Resp(J) = deg(F'). Thiswill be useful in Section 5.

5. Toricresiduesaspoint residuesin the equal degree case

When X = P" and Fy, ..., F, al havethe same degree, thetoric residue Resy (H )
equalsthe classical Grothendieck residueat 0 € C**1, i.e,

1 / HdzgA--- ANdz,,
(2mi)" L J iy =e Fy...F, ’

(see [PS, 12.10]). Thus, in the projective case, the toric residue is a point residue
computed on the related space C" 2. In Theorem 5.8 below, we will generalize
this result to a complete simplicial toric variety X, assuming that the F; have the
same degree « in the homogeneous coordinatering S.

Wefirst describethe spacewewill usefor computing toric residueson X . Given
o€ An,]_(X), let Sio = @k;oska and set

Xo = Spec(Sia)-
Note that the natural grading of S, inducesaC* action on X,,.

PROPOSITION 5.1. If X is a complete simplicial toric variety and « is ample,
then X, hasthe natural structure of an affinetoric variety. Furthermore,if 0 € X,
is the unique fixed point of the torus action, then X, — {0} is simplicial and C*
actson X, — {0} with finite stabilizersand X as geometric quotient.

Proof. Consider R @ Nr with the lattice Z @ N. Elements of R & Nr will
be written Aeg + v, where A € R andv € Nr. Now let D = ¥;a;D; (where &3;
denotes X7*") beadivisor on X whoseclassis«, andlet: Nr — R beitssupport
function. Thismeans«(n;) = —a;, wherethe n; generate the 1-dimensional cones
of the fan of X. Given this data, let ¢ C R & Nr be the cone generated by the
vectors7; = a;eo+ ;. Equivalently, & is generated by the graph of —i) inR & Ng.
Since v is strictly upper convex (D is ample), we see that & is a strongly convex
rational polyhedral cone.

We next observethat the semigroupring C[g ¥ N (Z @ M)] isnaturally isomorphic
to S.qo. To provethis, first note that

keo+mea'N(Z®M) < (keg+m,n;) > 0forali

< (m,m)—i—kai > Oforall 4

m,n;)+ka;
— Hx§ i) € Skas

)
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(where IT; denotes IT/"]"). Since all monomials in S, can be described in this
form (see Sect. 1 of [C1]), the observation follows easily. Thus X, isan affinetoric
variety.

The torus action on X, has a unique fixed point which we denote by 0. Fur-
thermore, the complement X, — {0} isthetoric variety whose fan is the boundary
of &. This fan is the graph of —), so the strict convexity of ¢ implies that under
the projection 7 : R & Ngr — NRg, each cone of the boundary fan maps naturally
to the corresponding cone in the fan of X. Thus the projection 7 induces a map of
toric varieties X, — {0} — X. We leave to the reader the straightforward proof
that X, — {0} issimplicial since X is.

Since X issimplicial, we can write

X = (C™" - 2)/G, (5.2)

whereG = Homz (4,,-1(X), C*) and theexceptional set Z isaunion of coordinate
subspacesdetermined by thefan of X (see[BC, Theorem 1.9]). Thecorrespondence
n; <> 7; impliesthat X, X, and X, — {0} have the same homogeneous coordinate
ring (though the gradings may differ), and themap X, — {0} — X showsthat the
fans of X and X, — {0} are combinatorially equivalent. Thus X and X, — {0}
have the same exceptional set Z. Hence

Xa — {O} = (Cn+r - Z)/Hv (53)

where H = Homz (A, (X, — {0}),C"). To compare G and H, we use the com-
mutative diagram

0 M Zntr

Ap_1(X)

0 ZoM 2 A (Xa — {0}) ——— 0

to conclude that we have an exact sequence
0—+7Z— A, 1(X) - A,(X, — {0}) — O,

where 1 € Z mapsto a € A,_1(X). Applying Homz (—, C*), we can identify
H with the subgroup {g € G: g(a) = 1} C G, so that g — g(a) induces an
isomorphism G/H ~ C*.

Comparing (5.2) and (5.3), X is the quotient of X, — {0} by G/H ~ C*.
Furthermore, the proof of Theorem 1.9 of [BC] shows that the G-action in (5.2)
has finite stabilizers, and it follows that the C*-action on X, must also have finite
stabilizers. To describe this action more explicitly, note that G acts on S, by
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g-F = g(ka) F = g(a)*F. Since H acts trivialy by definition, the action of
G/H ~ C* isexactly the action that gives the grading of S.,,. This completesthe
proof of the proposition. O

Remarks 5.4 (i) When « is very ample (always true when X is smooth), then
X, isthe affine cone of X in the projective embedding given by a.

(ii) Besides being a geometric quotient, themap X, — {0} — X isacombina-
torial quotient in the sense of [KSZ, p. 645].

(iii) 1f we add the 1-dimensional cone generated by ep to ¢ and subdivide
accordingly, we get atoric variety X, which maps naturally to X In [R, Sect. 3],
it is proved that X, — X is the total space of the line bundle Ox (—«). Thus
X, — X, isablow-up of 0 € X, with exceptional fiber isomorphic to X.
Conversely, we can view X, as the variety obtained by blowing down the zero
section of Ox (—a).

(iv) Although X, — {0} issimplicial, 0 € X, canbevery singular. For example,
let X = P! x Pt and o = (1,1). The coordinate ring for X is S = C[z,y, z, 1],
where deg(z) = deg(y) = (1,0) and deg(z) = deg(t) = (0,1). Then X, is
the singular affine hypersurface defined by AD — BC = 0 in C* since this
hypersurfaceis the affine cone over the Segre embedding P* x P* — P3. Note that
X, isnot simplicial at the origin.

We next discuss differential forms on X and X,,. As we saw in the proof of
Proposition 5.1, X and X, have the same homogenous coordinate ring (though
graded differently). By (2.8), X hasthe Euler form

Q= Z det(77[) f?[ d{L‘[.
|[I|l=n

Now let 3;a; D; be adivisor in the class of « and consider the (n + 1)-form

Ly

Qo = (Zaidxi> A

LEMMA 55. Let 8 = %; deg(z;) € A,_1(X) and p = (n + 1)a — 8. Then

(i) Q, isthe Euler formof X,.
(ii) If 6 is any Euler vector field for X (which can be regarded as a map 6 :
Ap—1(X) — C), we have

01Q, =0(ax) .
(iii) If J € S, isthetoric Jacobian of Fy, ..., F, € S, (see[C2, Sect. 4]), then
JQq =dEg A --- ANdE,.
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Proof. To define 2, we used a basis my, ..., m,, of M. Then eg and m; for
j > Oformabasisof Z @ M, and from the proof of Proposition 9.5 of [BC] (which
is easily seen to hold in the non-simplicial case), we seethat the Euler form of X,
is

dto/\.../\dﬁ>’

W . (5.6)

.’I)l....’I)n+r<

where to = Lz = z% and t; = z!™™ = ;2" for j > 0.
Since dto/to = Ziaidxi/xi and Q) = zq... xn+r(dt1/t1 VANEERIVAN dtn/tn) (also by
Proposition 9.5 of [BC]), we seethat €, isthe Euler form of X,,.

For the second part of the lemma, first note that 6 1 Q@ = 0 by Lemma 6.2 of

[C2]. Thus
dz;
o ((352) )

= (m Zaidxi> Q.

Ly

01Q,

However,if 0 = X;b; z; 8/81‘1, thend | Ziaidxi/xi = Y;a;b; = 9(04), which gIVES
the desired formula. (For more background on Euler vector fields, see 3.8-3.10 of
[BC].)

Turning to the final part of the lemma, note that each F; liesin S, and hence
givesafunction on X, = Spec(S..). Further, the functions ¢y, . . . , t,, introduced
above are coordinateson the torus 7'x,, C X,,. Thus, if werestrict F; to the torus,
we can write F; = Fy(to, ..., t,). Then

dFp A --- AdF, = det(OF;/dt;) dtg A - - - A dt,.
Comparing this to the formula (5.6) for Q,,, we see that
dFg A--- AdF, = T Q,
for some rational function J.
It remains to show that J is the toric Jacobian J from [C2]. Pick an Euler
formula 6 such that #(«) # 0. We can find such a @ since « is ample and hence

has infinite order in Anzl(X) (see dso Lemma 10.5 of [BC]). Then, by (ii) and
the above equation for J,

0(a) - JQ=01(JQ)
=01 (dFy A --- AdF,)
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=3 (-0 dF;) dFo A --- AdF; A -~ AdEF,
i=0

=0(a)- Y (-1)'FdFoA--- ADE; A -+ AdE,
i=0

wherethelast equality followsbecausef | dF' = 6(«) F foral F' € S,. However,
on the bottom row, the expression on the right equals 6(«) - J 2 by [C2]. Then
J = J followssince f(«) # 0, and (iii) is proved. O

Given Fy, ..., F, € S,, we next consider the integral on X,

/{ A (5.7)

|F;|=¢,0<i<n} Fo...F,

where ¢ > 0, the cycle {|F;| = ¢,0 < 7 < n} is oriented using d(arg Fp)
A---Nd(argF,),and H € S, for p = (n + 1)a — 5. To make sense of (5.7), first
notethat H Q,/(Fo. .. Fy,) isameromorphic form on the V-manifold X, — {0}.
Furthermore, each F; isapolynomial functionon X, and {|F;| = ¢,0<i < n} C
X, —{0}. It followsthat (5.7) existswhenever (Fy, ..., F,): X, — C"*lisfinite.
We can now state the main result of this Section.

THEOREM 5.8. Assume that X is complete and simplicial, « is ample, and
Fy, ..., F, € S, don't vanish smultaneously on X . Then

(i) Themap (Fo, ..., F,): Xo — C*lisfinite.
(i) If p = (n+1)a—Bisthecritical degreeof Fy,. .., F,,, thenforeveryH € S,

1 HQ
Resp(H) = ——— -
- (H) (2mg)nt1 /{|Fi:5,0<i<n} Fo... Iy

Proof. By [C2, Proposition 3.2], we know that S../(Fo,...,Fy,) has finite
dimension over C, so that by definition, Fy, ..., F}, is a homogeneous system of
parameters for S.,. It follows from [BH, Theorem 1.5.17] that S., is finitely
generated as a module over the subring C[Fo, ..., F,]. Thus F = (Fy,. .., F,):
X, — C"*lisfinite, which proves (i).

To prove (ii), we first observe that each side of the identity in (ii) vanishes
when H € (Fy, ..., F,). Thisis obviously true for the toric residue, and for the
integral (5.7), one uses the usual argument (see [GH, pp. 650-651]). Since we
know S,/(Fu, ..., Fy,), isonedimensional and the toric Jacobian J has nonzero
toric residue (see Sect. 4), it sufficesto check that (ii) holdsfor H = J.
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By Remark 4.16, we know that Resy(J) = deg(F'), where F' = (Fo, ..., Fy),
regarded asamap F. X — P™. On the other hand, by Lemma5.5, we have
JQy  dEgA---ANdF, _ﬁ*<dz0/\"'/\dzn>
Fy...F,  Fy...F, ’
where 20, - ., 2n € coordinateson C* 1 and F = (Fo, ..., F,), now regarded as
amap F: X, — C"*1. It follows that

Z20---2n

1 / JQq
(2mi)™ 4 J{|Fy|=< 0<icn} Fo. ..
deg(F) dzg A - -+ Adz, ~
T
(2m) {l2i|=e,0<i<n}  20---Zn
since F isfinite by (i). N
Thus, to prove (ii) for J, we must show that deg(F') = deg(F'). However,

as noted in the proof of Proposition 5.1, the C* ~ G /H action on X, satisfies
g-F; = g(a)F; for g € G. It follows that F: X, — {0} — C"*1 — {0} is
equivariant with respect to C*, and since the quotient is F': X — P", one easily
seesthat F' and F' havethe samedegree. Thiscompletesthe proof of thetheorem. O

Remarks 5.9 (i) Notice that in general, the integral (5.7) is slightly different
from the Grothendieck residue defined in (4.8). This is because X, need not be
simplicial at the point 0 € X,,.

(i) When X = P" and Fy, ..., F, are homogeneous of degree d, note that
the residue of Theorem 5.8 is computed not on C"*!, but rather on X; =
Spec(®,>0Clzo, - - -, Tn]k ¢), Which isthe quotient of C"*1 by the diagonal action
of the dth roots of unity . Furthermore, one can show that the Euler form of X,
isQg =ddxg A --- Adx,.

Since X, is simplicial at the origin, the local residue Resoc x, (wr(H)) is
defined, and combining Theorem 5.8 and equation (4.8), we see that

HQ
Resp(H) = Respex, <FO—C;7>

_ R HdzgA--- Ndz,,

- EBOeC"“< Fo...F, )

Thus the toric residue equals both of the local residues that can be defined in
this situation, and Theorem 5.8 gives the toric generalization of the first of these
equalities.
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