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Abstract. We study residues on a complete toric variety X , which are defined in terms of the
homogeneous coordinate ring of X . We first prove a global transformation law for toric residues.
When the fan of the toric variety has a simplicial cone of maximal dimension, we can produce
an element with toric residue equal to 1. We also show that in certain situations, the toric residue
is an isomorphism on an appropriate graded piece of the quotient ring. When X is simplicial, we
prove that the toric residue is a sum of local residues. In the case of equal degrees, we also show
how to represent X as a quotient (Y nf0g)=C� such that the toric residue becomes the local residue
at 0 in Y .
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Introduction

Toric residues provide a tool for the study of certain homogeneous ideals of the
homogeneous coordinate ring of a toric variety – such as those appearing in the
description of the Hodge structure of their hypersurfaces [BC]. They were intro-
duced in [C2], where some of their properties were described in the special case
when all of the divisors involved were linearly equivalent. The main results of
this paper are: an extension of the Isomorphism Theorem of [C2] to the case of
non-equivalent ample divisors, a global transformation law for toric residues, and
a theorem expressing the toric residue as a sum of local (Grothendieck) residues.

Let us first establish the notation we will use. We will assume that X is a
complete toric variety of dimension n. As such, X is determined by a fan � in an
n-dimensional real vector space NR. There is a distinguished lattice of maximal
rank N � NR and we let M denote the dual lattice. The N -generators of the
1-dimensional cones in � will be denoted �1; : : : ; �n+r. This means that r is the
rank of the Chow groupAn�1(X). We will make frequent use of the homogeneous
coordinate ring S of X , which is the polynomial ring S = C[x1; : : : ; xn+r]. Here,
each variable xi corresponds to the generator �i and hence to a torus-invariant
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36 EDUARDO CATTANI ET AL.

irreducible divisorDi ofX . As in [C1], we grade S by declaring that the monomial
�n+r
i=1 x

ai
i has degree [�n+r

i=1 aiDi] 2 An�1(X).
We will let � = �n+r

i=1 deg(xi) 2 An�1(X) denote the sum of the degrees of
the variables. As is well known, � is the anticanonical class on X . Then, given
homogeneous polynomials Fi 2 S�i for i = 0; : : : ; n, we define their critical
degree to be

� =

 
nX
i=0

�i

!
� � 2 An�1(X):

As in [C2], each H 2 S� determines a meromorphic n-form on X

!F (H) =
H 


F0 : : : Fn
;

where F stands for the vector (F0; : : : ; Fn) and 
 is a choice of an Euler form
in X [BC]. If the Fi don’t vanish simultaneously on X , then relative to the open
cover Ui = fx 2 X : Fi(x) 6= 0g of X , this gives a Čech cohomology class
[!F (H)] 2 Hn(X; b
n

X). Here, b
n
X is the sheaf of Zariski n-forms on X , i.e.,b
n

X = j�

n
X0

, where X0 is the smooth part of X and j:X0 ,! X is the natural
inclusion.

It is not hard to see that [!F (H)] is alternating on the order of F0; : : : ; Fn and
that if H is in the ideal hF0; : : : ; Fni, then !F (H) is a Čech coboundary. Thus,
[!F (H)] depends only on the equivalence class of H modulo the ideal generated
by F0; : : : ; Fn. Then the toric residue

ResF : S�=hF0; : : : ; Fni� ! C

is given by the formula

ResF (H) = TrX([!F (H)]);

where TrX : Hn(X; b
n
X) ! C is the trace map. When there is no danger of

confusion, we will write Res(H) instead of ResF (H).

Our first main result is the following Global Transformation Law.

THEOREM 0.1. Let Fi 2 S�i and Gi 2 S�i for i = 0; : : : ; n. Suppose

Gj =
nX
i=0

Aij Fi;

where Aij is homogeneous of degree �j � �i, and assume the Gi don’t vanish
simultaneously on X . Let � be the critical degree for F0; : : : ; Fn. Then, for each
H 2 S�, H det(Aij) is of the critical degree for G0; : : : ; Gn, and

ResF (H) = ResG(H det(Aij)):
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RESIDUES IN TORIC VARIETIES 37

The proof uses a Čech cochain argument. One application of this transformation
law is that in certain cases, we can describe explicit elements of S� with nonzero
residue. For this purpose, assume X is complete and its fan � contains a n-
dimensional simplicial cone �. Then denote the variables of the coordinate ring
as x1; : : : ; xn; z1; : : : ; zr , where x1; : : : ; xn correspond to the 1-dimensional cones
of �. Also suppose that �0; : : : ; �n are Q-ample classes, which means that some
multiple is Cartier and ample. In this situation, we will show that each Fj 2 S�j
can be written in the form

Fj = A0j z1 : : : zr +
nX
i=1

Aij xi:

Then the (n + 1) � (n + 1)-determinant �� = det(Aij) is in S� and has the
following important property.

THEOREM 0.2. AssumeX is complete and� 2 � is simplicial andn-dimensional.
Suppose that Fi 2 S�i for i = 0; : : : ; n, where �i is Q-ample and the Fi don’t
vanish simultaneously on X . Then

ResF (��) = �1:

The Global Transformation Law allows us to reduce the proof of this theorem
to the special case when F0 = z1 : : : zr and Fi = xi, i = 1; : : : ; n. This is done in
Section 2. An alternate proof for simplicial toric varieties is given in Section 4 as
an application of Theorem 0.4.

In Section 3 we prove the following Residue Isomorphism Theorem.

THEOREM 0.3. Let X be complete and simplicial, and assume that Fi 2 S�i for
i = 0; : : : ; n, where �i is ample and the Fi don’t vanish simultaneously on X .
Then

(i) The toric residue map ResF : S�=hF0; : : : ; Fni� ! C is an isomorphism.
(ii) For each variable xi, 0 6 i 6 n+ r, we have xi � S� � hF0; : : : ; Fni.

In the case when all the �i are equal to a fixed ample divisor �, this theorem
follows from the fact thatF0; : : : ; Fn are a regular sequence in the Cohen-Macaulay
ring S�� = �k>0Sk� [C2, Sect. 3]. In the general case, the proof relies on the use of
the Cayley trick and results of Batyrev and Cox [BC] concerning the cohomology
of projective hypersurfaces in toric varieties, to show that

dimC(S�=hF0; : : : ; Fni�) = 1

when X is simplicial and the divisors Fi = 0 are ample with empty intersection.
Then, the first (and main) part of the Residue Isomorphism Theorem follows
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38 EDUARDO CATTANI ET AL.

immediately from Theorem 0.2, and the second part is a consequence of the first
using Theorem 0.2 and Cramer’s Rule.

As a corollary of Theorems 0.2 and 0.3, we get a simple algorithm (see Remark
3.11) for computing toric residues in terms of normal forms. In Section 3, we will
also conjecture a more general form of Theorem 0.3 and give some examples in
support.

The main result of Section 4 is a theorem stating that for simplicial toric varieties,
the toric residue may be computed as a sum of local Grothendieck residues. The
toric setting is not essential here and, in fact, it is convenient to work with the more
general notion of a V -manifold or orbifold. The proof of the following local/global
theorem is based on the theory of residual currents ([CH]).

THEOREM 0.4. Let X be a complete simplicial toric variety of dimension n, and
let F0; : : : ; Fn be homogeneous polynomials which don’t vanish simultaneously on
X . If H is a polynomial in S�, where � is the critical degree, and D

k̂
= fx 2 X:

Fi(x) = 0; i 6= kg is finite, then the toric residue is given by

ResF (H) = (�1)k
X
x2D

k̂

Resk;x

�
H 


F0 : : : Fn

�
:

Here, as we will explain in Section 4, Resk;x(H 
=F0 : : : Fn) denotes the local
Grothendieck residue

Resx

 
(H=Fk)


F0 : : : cFk : : : Fn
!
:

Note that the finiteness condition holds automatically whenever the divisor
fFk = 0g is Q-ample. Under appropriate conditions, Theorem 0.4 gives a frame-
work for the study of sums of local residues–both in the affine and toric cases–as a
global residue defined in a suitable toric compactification. It is possible, for exam-
ple, to interpret in this light the results of [CDS] which correspond to the case when
the toric variety under consideration is a weighted projective space.

Finally, in Section 5, we show that, in the equal degree case, the toric residue
equals a single local residue at the origin of the affine cone of X . This generalizes
the observation in [PS] that toric residues on Pn can be written as a residue at the
origin in Cn+1.

1. The global transformation law

This section will prove the Global Transformation Law (Theorem 0.1) for toric
residues on an arbitrary n-dimensional complete toric variety X . Given Fi and
Gj = �n

i=0Aij Fi as in the statement of the theorem, first observe that ifG0; : : : ; Gn

have no common zeroes in X , then the same holds for F0; : : : ; Fn. Thus we get
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RESIDUES IN TORIC VARIETIES 39

open covers Ui = fx 2 X : Fi(x) 6= 0g and Vj = fx 2 X : Gj(x) 6= 0g of X ,
which we denote U and V respectively.

If the critical degrees of the Fi and Gj are �(F ) and �(G) respectively, then

�(G) = �(F ) + deg
�
det(Aij)

�
follows easily since Aij is homogeneous and degAij = deg Gj � deg Fi. Thus,
if H is homogeneous of degree �(F ), then we get Čech cohomology classes
[!F (H)] 2 Hn(U ; b
n

X) and [!G(H det(Aij))] 2 Hn(V; b
n
X). To prove Theo-

rem 0.1, it suffices to show that these cohomology classes have the same image in
Hn(X; b
n

X).
Consider the open covering W = U [ V . Since U and V can be regarded as

refinements of W with obvious refinement maps, we get a commutative diagram

Hn(U ; b
n
X)

�
�
�
�
�� @

@
@
@
@R

Hn(W; b
n
X) Hn(X; b
n

X):

@
@
@
@
@R �

�
�
�
��

Hn(V; b
n
X)

Then Theorem 0.1 is an immediate consequence of the following proposition.

PROPOSITION 1.1. There is a cohomology class [�] 2 Hn(W; b
n
X) which maps

to both [!F (H)] 2 Hn(U ; b
n
X) and [!G(H det(Aij))] 2 H

n(V; b
n
X) in the above

diagram.
Proof. We first introduce some notation for the Čech complex of W = U [ V .

Given index sets I = f0 6 i1 < � � � < ip 6 ng and J = f0 6 j1 < � � � < jq 6 ng
with p = jIj and q = jJ j, let WIJ =

T
i2I Ui \

T
j2J Vj . Also, let I 0 denote the

complement of I in f0; : : : ; ng, ordered increasingly.
We define a Čech cochain � 2 Cn(W; b
n

X) by the assignment

WIJ 7! �IJ = "(I)
H det(MI0J)


FI GJ
2 b
n

X(WIJ):

Here, I and J are index sets with p + q = n + 1, MI0J is the I 0J-minor of the
matrix (Aij), "(I) is the sign of the permutation (I; I 0), FI = Fi1 � � �Fip , and
GJ = Gj1 � � �Gjq .
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40 EDUARDO CATTANI ET AL.

When I = f0; : : : ; ng, both I 0 and J are empty and � assigns to the open set
U0\� � �\Un the formH 
=(F0 : : : Fn). Thus, the refinement map Cn(W; b
n

X)!

Cn(U ; b
n
X) maps � to the cocycle !F (H). Similarly, when J = f0; : : : ; ng, the

cochain � assigns to the open set V0\� � � \Vn the formH det(Aij)
=(G0 � � �Gn)

and, hence, the refinement map Cn(W; b
n
X) ! Cn(V; b
n

X) maps � to the cocycle
!G(H det(Aij)). Consequently, the proposition will follow once we show that � is
also a cocycle, i.e., �(�) = 0, where �: Cn(W; b
n

X)! Cn+1(W; b
n
X) is the Čech

coboundary.
To prove that �(�) = 0, let I and J be index sets with p+ q = n+ 2. Then set

Ik = I � fikg, 1 6 k 6 p, I 0k = I 0 [ fikg, and J` = J � fj`g, 1 6 ` 6 q, so that

(��)IJ =

pX
k=1

(�1)k�1 �IkJ + (�1)p
qX

`=1

(�1)`�1 �IJ`

=

pX
k=1

(�1)k�1 "(Ik) det(MI0
k
J)H


FIk GJ

+

qX
`=1

(�1)p+`�1 "(I) det(MI0J`)H


FI GJ`

:

Writing the last expression with common denominator FI GJ , it suffices to show
that

pX
k=1

(�1)k�1 "(Ik)Fik det(MI0
k
J)

+

qX
`=1

(�1)p+`�1 "(I)Gj` det(MI0J`) = 0:

If we substitute Gj` by �p
k=1Aikj` Fik + �u2I0 Auj` Fu, then the above equation

becomes
pX

k=1

"
(�1)k�1"(Ik) det(MI0

k
J) +

qX
`=1

(�1)p+`�1"(I)Aikj` det(MI0J`)

#
Fik

+"(I)(�1)p
X
u2I0

"
qX

`=1

(�1)`�1Auj` det(MI0J`)

#
Fu = 0:

We will show that the expressions inside the two sets of brackets are identically
zero.

First, for u 2 I 0, note that �q
`=1 (�1)`�1 Auj` det(MI0J`) is the determinant of

the matrix whose first row consists of Auj` , ` = 1; : : : ; q and whose remaining
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RESIDUES IN TORIC VARIETIES 41

rows are the same as those of the matrix MI0J . But, since u 2 I 0, such a matrix has
two identical rows and its determinant vanishes. Hence the sum inside the second
set of brackets is zero.

Turning to the first set of brackets, note that expanding the determinant of the
q � q-matrix MI0

k
J along the row corresponding to ik gives

det(MI0
k
J) = (�1)m

qX
`=1

(�1)`�1Aikj` det(MI0J`);

where m denotes the number of elements of I 0 which precede ik. However, since
going from (I; I 0) to (Ik; I 0k) requires (m� k + p) transpositions, we see that

"(Ik) = (�1)m�k+p "(I);

and it follows that the desired expression is zero. 2

2. Elements with nonzero residue

The goal of this section is to prove Theorem 0.2. We begin with Fj 2 S�j ,
0 6 j 6 n, which don’t vanish simultaneously on the complete toric varietyX . As
in the introduction, we have the coordinate ring S = C[x1; : : : ; xn+r] of X , where
the variables xi correspond to the Z-generators �i of the 1-dimensional cones of
�. For each n-dimensional cone � 2 �, set x̂� = ��i 62� xi and let B(�) � S be
the ideal generated by the monomials x̂�, � 2 �.

We also assume that �j is Q-ample. This means that d�j is ample for some
positive integer d, so that Sd�j � B(�) by Lemma 9.15 of [BC]. Then (S�j )

d �

Sd�j � B(�), and since B(�) is radical, we conclude that

S�j � B(�); (2.1)

when �j is Q-ample.
To see the relevance of (2.1), fix a n-dimensional cone � 2 � and, as in

Theorem 0.2, assume that � is simplicial. Then we can arrange for �1; : : : ; �n to be
the generators of �, and we make a slight notational change replacing the variable
xn+a by za, a = 1; : : : ; r. Then each Fj can be written

Fj = Bj +
nX
i=1

Aij xi;

where Bj depends only on z1; : : : ; zr . But Fj 2 B(�) by (2.1) and, since B(�)
is a monomial ideal, it follows easily that Bj must be divisible by x̂� = z1 : : : zr .
Thus Bj = A0j z1 : : : zr, so that

Fj = A0j z1 : : : zr +
nX
i=1

Aij xi; (2.2)
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42 EDUARDO CATTANI ET AL.

as claimed in the introduction. Then we define

�� = det(Aij); 0 6 i; j 6 n: (2.3)

Note that

deg(��) =
nX
j=0

�i �
nX
i=1

deg(xi)�
rX

a=1

deg(za) = �(F ) :

A direct application of the Global Transformation Law to (2.2) and (2.3) yields

Res
�

�� 


F0 : : : Fn

�
= Res

�



(z1 : : : zr) � x1 : : : xn

�
:

Thus, to prove Theorem 0.2, we need only prove the following proposition.

PROPOSITION 2.4. With assumptions and notations as above,

Res
�




(z1 : : : zr) � x1 : : : xn

�
= �1:

Proof. We first study the restriction of

! =



(z1 : : : zr) � x1 : : : xn
(2.5)

to the affine open set X� � X determined by �. To apply the construction of [C1]
to the simplicial toric variety X� , we start with the exact sequence

0 !M

�! Zn

! D(�)! 0;

where (m) = (hm; �1i; : : : ; hm; �ni). Then D(�) is finite since � is simplicial,
and G(�) = HomZ(D(�);C�) is isomorphic to N=N 0, where N 0 is the sublattice
of N generated by �1; : : : ; �n. The map Zn

!D(�) induces an action of G(�)
on Cn, and it follows from [C1] that the quotient is X� . In particular, we have a
quotient map p�: Cn

! X� .
To relate this construction to S = C[x1; : : : ; xn+r] = C[x1; : : : ; xn; z1; : : : ; zr],

note that S is the coordinate ring of the affine space Cn+r. Then let Z(�) � Cn+r

be the subvariety defined by B(�). In [C1], a natural map p : Cn+r � Z(�)! X
is constructed. Now consider the inclusion Cn ! Cn+r defined by

(x1; : : : ; xn) 7! (x1; : : : ; xn; 1; : : : ; 1): (2.6)
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RESIDUES IN TORIC VARIETIES 43

One easily sees that the image of this map lies in Cn+r
� Z(�), and the argument

of Theorem 1.9 of [BC] shows that we have a commutative diagram

Cn p� - X�

Cn+r
� Z(�)

?
p - X:

?

(2.7)

We now recall the Euler form 
 from [BC]. Fix an integer basis m1; : : : ;mn

for the lattice M . Then, given a subset I = f`1; : : : ; `ng � f1; : : : ; n+ rg with n
elements, define

det(�I) = det(hmi; �`j i16i;j6n):

Also set dxI = dx`1 ^� � �^dx`n and x̂I = �`=2Ix`. Then
 is given by the formula


 =
X
jIj=n

det(�I) x̂I dxI ; (2.8)

where the sum is over all n-element subsets I � f1; : : : ; n + rg. Note that 
 is
well-defined up to �1.

From (2.6) and (2.7), we see that p��(!) is computed by setting z1 = � � � = zr =
1 in the above formula for 
. Thus

p��(!) = �
jN=N 0j dx1 ^ � � � ^ dxn

x1 : : : xn
: (2.9)

The next step in the proof is to study what happens when we changeX slightly.
Suppose that �0 is a refinement of the fan � such that � is still a cone of �0. Then
we get a birational morphism �: X 0 ! X of toric varieties which is the identity on
the affine piece X 0

� = X� . For X 0, we have an Euler form 
0, and the analog of !
in (2.5) is denoted !0. Note that x1; : : : ; xn have the same meaning for both ! and
!0. Then, since � is a cone for both fans and we haven’t changedN , it follows from
(2.9) that ��(!) = !0. We also have open covers U of X and U 0 of X 0, and we
leave it to the reader to verify that these covers are compatible under �. It follows
that

��([!]) = [!0];

as elements of Hn(X 0; b
n
X0). Since

TrX0 � �� = TrX ;
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when � is birational, ! and !0 have the same toric residue. In particular,

Res(!) = �1 () Res(!0) = �1: (2.10)

Next, instead of changing the fan, suppose we change the lattice. If N1 is a
sublattice of N , then as explained in [O, Corollary 1.16], we get a toric variety X1

such that N=N1 acts on X1 with X as quotient. Let �1: X1 ! X be the quotient
map. The toric varieties X and X1 have the same coordinate ring S (though the
gradings differ). Now assume that �1; : : : ; �n+r lie inN1. Then one easily sees that
the Euler forms 
 and 
1 are related by the formula


 = �jN=N1j
1;

so that if !1 is the analog of ! for X1, we have

��1(!) = �jN=N1j!1:

However, since �1: X1 ! X is a finite map of degree jN=N1j, we also have

TrX1 � �
�
1 = jN=N1jTrX :

From here, it follows that ! and !1 have the same toric residue (up to �1), and
hence

Res(!) = �1 () Res(!1) = �1: (2.11)

We can now prove the proposition. Define �0 = ��n
i=1�i, where �1; : : : ; �n are

the generators of �, and let �0 be the fan whose cones are generated by proper
subsets of f�0; : : : ; �ng. This gives a toric variety X 0, and note that � is a cone of
�0. Now let �00 be the fan consisting of all intersections �1 \ �2 for �1 2 � and
�2 2 �0. Hence �00 is a common refinement of � and �0, and � is a cone in all
three fans. The corresponding toric variety X 00 maps to both X and X 0. Finally,
let N 0 � N be the sublattice generated by �1; : : : ; �n. Then �0 2 N

0, and the toric
variety determined by N 0 and �0 is Pn. Putting this all together, we get a diagram
of toric varieties

X 00 Pn

	�
�
�
�
� @

@
@
@
@R 	�

�
�
�
�

;

X X 0

where the first two maps come from refinements which preserve � and the third
comes from a change of lattice which preserves the generators �i. It follows from
(2.10) and (2.11) that

Res(!) = �1;
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if and only if the corresponding statement is true for Pn. The latter is well known;
for example, it follows from the Trace Property for Pn stated in the introduction to
[C2]. 2

Remarks 2.12 (i) In Section 4, we will use the relation between toric residues
and local residues to give a second proof of Proposition 2.4 in the special case
when X is simplicial.

(ii) If we replace the hypothesis that the �i are Q-ample with the weaker
assumption (2.1), then the conclusion of Theorem 0.2 is still true. In fact, all we
need to assume is that Fi 2 B(�) for all i. This will be useful in Section 3.

(iii) The element �� depends on the choice of simplicial cone � of dimension
n and on the choice of coefficients Aij in (2.2). Once Theorem 0.3 is established,
it will follow from Theorem 0.2 that when X is simplicial and the �i are ample,
the class of �� is unique up to sign modulo the ideal hF0; : : : ; Fni. Moreover,
if we pick a basis of M such that det(hmi; �ji) > 0, then one can check that
ResF (��) = 1.

(iv) Given any decomposition

Fj = A0j z1 : : : zr +
nX
i=1

Aij xi;

the polynomial �� = det(Aij) satisfies ResF (��) = �1.
(v) The definition of �� given by (2.3) generalizes a well-known construction

in the algebraic setting corresponding to projective space [KK]. Regarding Pn as a
toric variety, we get the usual graded ring S = C[x0; : : : ; xn], and the ideal B(�)
is the maximal ideal hx0; : : : ; xni. Given homogeneous polynomials F0; : : : ; Fn,
deg(Fj) = dj > 0, whose only common zero is the origin, let � be the cone whose
generators correspond to the variables x1; : : : ; xn. Then

Fj =
1
dj

@Fj

@x0
x0 +

nX
i=1

1
dj

@Fj

@xi
xi

and, consequently, a choice of �� is given by

�� =
1

d0 : : : dn
det
�
@Fi

@xj

�
:

3. The codimension one and residue isomorphism theorems

Before we can prove the main results of this section, we need to discuss a toric
version of the Cayley trick. Let X be a complete toric variety, and let L0; : : : ;Ln
be ample line bundles on X . Then consider

Y = P(L0 � � � � � Ln):
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This variety has a canonical line bundle OY (1), which is ample since the Lj are
ample (see Section 1 of Chapter III of [H]). Note that Y is a Pn-bundle overX , so
that Y has dimension 2n.

For our purposes, we need to understand Y as a toric variety. We begin with
the description given in [BB]. The ample line bundle Lj is associated to a n-
dimensional polytope �j �MR of the form

�j = fm 2MR: hm; �ii > �aij; i = 1; : : : ; n+ rg: (3.1)

Since each Lj is ample, the facets of �j (faces of codimension 1) correspond
bijectively to the �i, where �i gives the facet Fij = fm 2 �j: hm; �ii = �aijg �
�j .

Now consider Rn
�MR with the integer lattice Zn

�M . Elements of Rn
�MR

can be uniquely written em = �1e1 + � � �+�nen+m, where �j 2 R andm 2MR.
We also have the dual Rn

�NR with lattice Zn
�N , and elements here are written

similarly. Then define � � Rn
�MR to be the convex hull

� = Conv((f0g ��0) [ (fe1g ��1) [ � � � [ (feng ��n))

=

8<:f�1e1 + � � �+ �nen + �0m0 + � � �+ �nmn: �j > 0;

nX
j=0

�j = 1; mj 2 �j

9=; : (3.2)

This is easily seen to be equivalent to the polytope �� in Section 3 of [BB].
Since OY (1) is ample, Proposition 3.2 of [BB] implies that Y is the toric variety
determined by the polytope �. The corresponding fan in Rn

� NR is called the
normal fan of �.

We next show that the generators of the 1-dimensional cones in the normal fan
are given by

~�i =
nX
j=0

(aij � ai0)ej + �i; i = 1; : : : ; n+ r;

~�0 = �e1 � � � � � en;

~�j = ej ; j = 1; : : : ; n:

The first step is to prove that � is defined by the inequalities

h em; ~�ii > �ai0; i = 1; : : : ; n+ r;

h em; ~�0i > �1;

h em; ~�ji > 0; j = 1; : : : ; n:

(3.3)
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Write em = �1e1 + � � � + �nen +m, where m 2 MR, and let �0 = 1 � �n
j=1�j .

Then the above inequalities are equivalent to

hm; �ii > �
nX
j=0

�jaij ; i = 1; : : : ; n+ r;

�j > 0; j = 0; : : : ; n;
nX
j=0

�j = 1:

If em 2 �, then (3.2) shows that m = �n
j=0�jmj , where mj 2 �j , and it

follows easily from (3.1) that the above conditions are satisfied. Conversely, if em =
�1e1 + � � �+�nen+m satisfies (3.3), consider the linear mapsB(m0; : : : ;mn) =
(�hmj; �ii) and D(m0; : : : ;mn) = �n

j=0�jmj . Then the above inequalities and
the Farkas Lemma (as stated in Exercise 1.6 of [Z] with A = C = 0) imply that
there exists (m0; : : : ;mn)withB(m0; : : : ;mn) 6 (aij) andD(m0; : : : ;mn) = m.
This shows that m = �n

j=0�jmj , where mj 2 �j by (3.1), and em 2 � follows
immediately.

From the inequalities defining �, we can read off the facets of � as follows.
First, one easily shows that

f em 2 � : h em; ~�ii = �ai0g

is the convex hull

Conv
�
(f0g � Fi0) [ (fe1g � Fi1) [ � � � [ (feng � Fin)

�
;

where Fij � �j is the facet defined by �i. Since this set has dimension 2n � 1,
it is a facet of �. Similarly, if one looks at the subsets of � defined by the
equations h em; ~�0i = �1 or h em; ~�ji = 0, 1 6 j 6 n, then one gets the (2n � 1)-
dimensional polytopes obtained by taking the convex hulls of n of the n+ 1 sets
f0g ��0; fe1g ��1; : : : ; feng ��n. Hence these are also facets.

It follows ~�i and ~�j define facets of �, and these are all of the facets since � is
given by (3.3). This proves that we have found the generators of the 1-dimensional
cones of the fan of Y .

We next turn our attention to the coordinate ring of Y , which is the polynomial
ring

R = C[x1; : : : ; xn+r; y0; : : : ; yn];

where xi corresponds to ~�i and yj corresponds to ~�j . To determine the grading on
R, note that the Pn-fibration p : Y ! X gives an exact sequence

0 ! An�1(X)
p�

�! A2n�1(Y )! Z ! 0: (3.4)
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In terms of p : Y ! X , we can think of the xi as variables coming from the base
and the yj as variables on the fiber. To make this more precise, let the torus invariant
divisors on Y corresponding to ~�i and ~�j be eDi and eD0

j respectively. Then eDi is

the pullback of the torus invariant divisor Di on X corresponding to �i, and eD0
j

induces the hyperplane class on each fiber. In particular, deg(xi) = [ eDi] 7! 0 and
deg(yj) = [ eD0

j ] 7! 1 in (3.4).
We next have the following important lemma.

LEMMA 3.5. For each j = 0; : : : ; n, we have OY

� eD0
j

�

 p�(Lj) ' OY (1).

Proof. The integers aij in (3.1) mean that Lj ' OX

�
�n+r
i=1 aijDi

�
on X . It

follows that on Y , we have

OY

� eD0
j

�

 p�(Lj) ' OY

 eD0
j +

n+rX
i=1

aij eDi

!
:

When j = 0, the polytope corresponding to this divisor is precisely � by (3.3),
which proves the lemma in this case. If j > 0, we have ej 2 Zn

�M , and the
divisor of the corresponding character �ej is

div(�ej ) =
n+rX
i=1

hej ; ~�ii eDi +
nX

k=0

hej ; ~�ki eD0
k

=
n+rX
i=1

(aij � ai0) eDi �
eD0

0 +
eD0
j

=

 eD0
j +

n+rX
i=1

aij eDi

!
�

 eD0
0 +

n+rX
i=1

ai0 eDi

!
;

and the lemma follows immediately. 2

To see what this lemma says about coordinate rings, let �j = [Lj] 2 An�1(X)
and pick polynomials Fj 2 S�j . The Fj may have different degrees in S (since
the �j need not be equal), but Lemma 3.5 implies that the polynomials yjFj all
have the same degree inR. Thus we can form the single homogeneous polynomial
�n
j=0yjFj 2 R which contains all the Fj simultaneously. This is the essence of the

Cayley trick.
We can now prove the first main result of this section, which gives a sufficient

condition for hF0; : : : ; Fni � S to have codimension one in the critical degree �.

THEOREM 3.6. Let X be a complete simplicial toric variety of dimension n, and
assume Fj 2 S�j , for j = 0; : : : ; n, where �j is ample and the Fj don’t vanish
simultaneously on X . If � = �(F ) is the critical degree of the Fj , then

dimC(S�=hF0; : : : ; Fni�) = 1:
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Proof. If we pick ample line bundlesLj onX such that �j = [Lj ] 2 An�1(X),
then we get the toric variety Y = P(L0 � � � � �Ln) described above. As remarked
after the proof of Lemma 3.5, the polynomials yjFj all have the same degree in
the coordinate ring R of Y . This degree is the ample class [OY (1)] 2 A2n�1(Y ),
which we will denote by . Thus we can define the homogeneous polynomial

F = y0F0 + � � �+ ynFn 2 R :

Let W � Y be the hypersurface defined by F = 0. The idea of the Cayley trick
is that this hypersurface should be closely related to the complete intersection
F0 = � � � = Fn = 0 on X . Since the intersection is empty in our situation, we
expectW to be especially simple.

We next check that all of the relevant hypotheses of [BC] are satisfied. We know
that  is ample, and Y is simplicial since it is a Pn-bundle over the simplicial toric
variety X . To show that W is quasi-smooth (as defined in Section 3 of [BC]), note
that among the partial derivatives of F , we have

@F

@yj
= Fj : (3.7)

Since the Fj don’t vanish simultaneously on X , these partials of F can’t vanish
simultaneously on Y , which proves that W is quasi-smooth.

The primitive cohomology of W is defined by the exact sequence

H2n�1(Y )! H2n�1(W )! PH2n�1(W )! 0;

(with coefficients in C). To prove Theorem 3.6, we will compute PH2n�1(W )
topologically, using W ,! Y ! X , and algebraically, using the Jacobian ideal of
F .

In the compositionW ,! Y ! X , the fiber over a point ofX with coordinates
t1; : : : ; tn+r is the subset of Pn defined by �n

j=0yjFj(t1; : : : ; tn+r) = 0. Since
the Fj don’t vanish simultaneously on X , it follows that the fiber is a hyperplane
Pn�1

� Pn. Topologically, this means we have a map of fibrations

Pn�1
� - Pn

W
?

� - Y
?

X
?

== X:
?
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For each fibration, we get the usual spectral sequence, and the map between the
spectral sequences is surjective at E2 because Hq(Pn) ! Hq(Pn�1) is surjective
for all q. It follows thatH2n�1(Y )! H2n�1(W ) is surjective, so thatPH2n�1(W )
vanishes.

We can also compute the Hodge components of PH2n�1(W ) using [BC]. In
particular, the exact sequence from Theorem 10.13 of [BC] gives an exact sequence

0 ! H2n�2(Y )! H2n(Y )! (R=J(F ))(n+1)�~�

! PHn�1;n(W ) (= 0)! 0; (3.8)

where J(F ) = h@F=@xi; @F=@yji is the Jacobian ideal of F and ~� =
�n+r
i=1 deg(xi) + �n

j=0 deg(yj). However,  = deg(yj) + �j for all j by Lemma
3.5, so that

(n+ 1) � ~� =
nX
j=0

(deg(yj) + �j)�
n+rX
i=1

deg(xi)�
nX
j=0

deg(yj)

=
nX
j=0

�j �
n+rX
i=1

deg(xi) = �:

In the map A2n�1(Y ) ! Z of (3.4), we know that � 7! 0 and deg(yj) 7! 1.
This implies R� = S�. Furthermore, by (3.7), the Jacobian ideal is J(F ) =
hFj ; @F=@xii, and J(F )� = hF0; : : : ; Fni� follows since @F=@xi =
�n
j=0yj@Fj=@xi. Then (3.8) tells us that

dimC(S�=hF0; : : : ; Fni�) = h2n(Y )� h2n�2(Y ):

However, since the spectral sequence for the fibration Pn! Y !X degenerates
at E2 (both base and fiber have cohomology only in even degrees), we see that if
q 6 n, then

h2q(Y ) =

qX
k=0

h2k(X)h2(q�k)(Pn)

= h0(X) + h2(X) + � � �+ h2q(X):

This easily implies dimC(S�=hF0; : : : ; Fni�) = h2n(X) = 1, and the theorem is
proved. 2

We can now prove Theorem 0.3 from the Introduction. The first part of the theorem
claims that the toric residue map

ResF : S�=hF0; : : : ; Fni� ! C (3.9)
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is an isomorphism. SinceX is simplicial, every n-dimensional � 2 � is simplicial,
so that by Theorem 0.2, we have �� 2 S� such that ResF (��) = �1. Then
Theorem 3.6 immediately implies that (3.9) is an isomorphism.

Turning to the second part of Theorem 0.3, we need to show that

xi � S� � hF0; : : : ; Fni; i = 1; : : : ; n+ r: (3.10)

To prove this, let � be a n-dimensional cone of � containing �i, and renumbering
as in Section 2, we can assume that i 6 n. Then Cramer’s Rule, applied to the
equations (2.2), shows that xi � �� � hF0; : : : ; Fni. But the previous paragraph
implies S� = C ��� + hF0; : : : ; Fni�, and then (3.10) follows immediately. This
completes the proof of Theorem 0.3.

Remark 3.11. As a consequence of these results, we can describe an algorithm
for computing toric residues when X is complete and simplicial and Fj 2 S�j
for �j ample. First, pick a Gröbner basis for hF0; : : : ; Fni (using a convenient
monomial order onS). Given a polynomialH 2 S, we can then compute its normal
form, denoted normalform(H). Since hF0; : : : ; Fni� � S� has codimension 1, an
easy argument shows that the normal forms of elements of S� are multiples of the
monomial x� which is the least (relative to the chosen monomial order) among the
monomials of degree � not in hF0; : : : ; Fni�.

Then choose a n-dimensional cone �, say with generators �ij , and pick a
basis mi of M such that det(hmi; �ij i) > 0. If we use this basis to construct the
Euler form 
, then by the remarks made at the end of Section 2, the determinant
�� 2 S� satisfies ResF (��) = 1. Finally, let c� be the nonzero constant such that
normalform(��) = c�x

�.
Given these ‘preprocessing’ steps, we can now describe the algorithm: given

H 2 S�, its toric residue is given by the quotient

ResF (H) =
c

c�
;

where normalform(H) = c x�. This follows becauseH � c x� modhF0; : : : ; Fni
and �� � c� x

� modhF0; : : : ; Fni imply H � (c=c�)�� modhF0; : : : ; Fni.
We should point out that the use of the Residue Isomorphism Theorem together

with the existence of an element such as �� to compute residues is at the heart of
the algebraic approach to the study of residues. In this setting one needs to work
with a regular sequence in an appropriate ring. We refer to [SS1] for the classical
homogeneous case, and to [KK] and [SS2] for the case when Pic(X) has rank one.
However, as pointed out in [Sta, Sect. 5 of Ch. I], regular sequences of homogeneous
elements are not well behaved when the group grading the ring has rank greater
than one. Hence, whenever rankAn�1(X) > 1, the algebraic approach doesn’t
apply directly to the coordinate ring of X . In the case of polynomials of equal
ample degree in an arbitrary complete toric variety, one can avoid this difficulty by
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reducing to a subring of the coordinate ring which has a rank one grading. This is
done in [C2] (based on earlier work of Batyrev [Ba]).

In the final part of this section, we will discuss the hypotheses of the Codi-
mension One Theorem (Theorem 3.6) and the Residue Isomorphism Theorem
(Theorem 0.3). In proving both of these results, we assumed that the varietyX was
simplicial; this appears to be an essential ingredient in the proof of the results of
[BC] which we are using in our argument. It is not clear to us whether one should
expect the Codimension One Theorem to hold for arbitrary complete toric varieties.
For the same reason we also made the assumption that the degrees of F0; : : : ; Fn
were ample classes in An�1(X). Although some assumption of this type is needed
(see Example (iv) in (3.14)), we suspect that these theorems should hold under the
weaker hypothesis that the degrees are Q-ample. In fact, there is an even weaker
hypothesis which leads to the following conjecture generalizing the Codimension
One Theorem.

CONJECTURE 3.12. If X is a complete simplicial toric variety and F0; : : : ; Fn 2
B(�) are homogeneous polynomials which don’t vanish simultaneously on X ,
then

dimC(S�=hF0; : : : ; Fni�) = 1;

where as usual � is the critical degree of F0; : : : ; Fn.

Recall from Section 2 that B(�) is the ideal generated by the monomials
x̂� = ��i =2�xi for all � 2 � and that S�j � B(�) when �j is Q-ample (see (2.1)).
Thus Theorem 3.6 is a special case of Conjecture 3.12.

One useful observation is that Conjecture 3.12 implies the conclusions of the
Residue Isomorphism Theorem remain true.

PROPOSITION 3.13. LetX be a complete simplicial toric variety, and let F0; : : : ;
Fn 2 B(�) be homogeneous polynomials which don’t vanish simultaneously on
X . If Conjecture 3.12 is true for X (i.e., if dimC(S�=hF0; : : : ; Fni�) = 1), then

(i) The toric residue map ResF : S�=hF0; : : : ; Fni� ! C is an isomorphism.
(ii) For each variable xi, 0 6 i 6 n+ r, we have xi � S� � hF0; : : : ; Fni.

Proof. The argument is identical to what we used to derive Theorem 0.3 from
Theorem 3.6. This is because, as we observed in Remark 2.12 (ii), Theorem 0.2
still applies under the assumption Fi 2 B(�). 2

As evidence for Conjecture 3.12, we present the following examples.

EXAMPLE 3.14. (i) If X = P(q0; : : : ; qn) is a weighted projective space with
coordinate ring S = C[x0; : : : ; xn], then B(�) is the ideal hx0; : : : ; xni, so that
Fi 2 B(�)means thatFi has positive degree. Hence Conjecture 3.12 follows easily
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by standard commutative algebra because F0; : : : ; Fn form a regular sequence in
S (since they don’t vanish simultaneously on X).

For a specific example, consider X = P(1; 1; 1; 1; 3; 3; 5) and suppose that
F0; : : : ; F6 have degrees 3, 6, 6, 6, 6, 5, 4 respectively. The critical degree is � = 21,
so thatS21=hF0; : : : ; F6i21 ' C in this case. Note that the Fi are not Cartier, though
they are certainly Q-ample. This is an example from mirror symmetry which arises
in connection with certain (0; 2) string theories – see [DK] for more details.

(ii) For another example where the degrees of the Fi are Q-ample but not
Cartier, consider the toric surfaceX corresponding to the fan in R2 determined by
the vectors

�1 = (1; 0); �2 = (0; 1); �3 = (�1; 1);

�4 = (�1;�1); �5 = (1;�1):

Note that X is singular since �3, �4 and �4, �5 don’t span all of Z2, though X is
certainly simplicial.

If we let the variables x; y; z; t; u correspond to �1; : : : ; �5, then the exceptional
set Z � C5 is defined by the ideal B(�) = hztu; xtu; xyu; xyz; yzti, that is,

Z = fx = z = 0g [ fz = u = 0g [ fy = u = 0g

[fx = t = 0g [ fy = t = 0g:

Thus, X ' (C5
� Z)=(C�)3. Furthermore, one can show that A1(X) ' Z3 and

that we get a grading in the polynomial ring S = C[x; y; z; t; u] with

deg(x) = (1; 1;�1); deg(y) = (�1; 1; 1); deg(z) = (1; 0; 0);

deg(t) = (0; 1; 0); deg(u) = (0; 0; 1):

Thus, the sum of the degrees of the variables is � = (1; 3; 1).
We next characterize ample divisors on X . First, one checks that a class

(a; b; c) 2 Z3
' A1(X) lies in Pic(X) � A1(X) (i.e., the divisor aD3 + bD4 +

cD5 is Cartier) if and only if a � b � c mod 2. Then it is straightforward to verify
(using [F, Sect. 3.3-4]) that a Cartier class (a; b; c) is ample if and only if

b > a > 0 and b > c > 0: (3.15)

For an arbitrary (a; b; c), these inequalities tell us when the corresponding class is
Q-ample.

Now consider the polynomials

F0 = xy2z3; F1 = x2yu3 + yz2t2u+ xt2u3 + y2z3t;

F2 = zt3u2 + xt2u3 + y2z3t:
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They are homogeneous and degF0 = (2; 3; 1), degF1 = degF2 = (1; 3; 2). One
can check that the common zeros of F0, F1 and F2 in C5 are contained in the set
Z and therefore the corresponding divisors onX have empty intersection. None of
these divisors are Cartier, but they are clearly Q-ample by (3.15), and their critical
degree is given by

� = (2; 3; 1) + (1; 3; 2) + (1; 3; 2)� (1; 3; 1) = (3; 6; 4):

There are 22 monomials of degree �, and computing the normalform of each
monomial (as in Remark 3.11), we find that the normalforms are all multiples of the
same monomial (for example, if we use graded reverse lex withx > y > z > t > u,
the normalforms are all multiples of x3t3u7). Thus hF0; F1; F2i� has codimension
one in S�.

(iii) We next give an example where Fi 2 B(�) for all i but their degrees are
not Q-ample classes. We use the same singular toric surface X as in (ii), but this
time we consider the polynomials

F0 = ztu; F1 = yzt+ xyu; F2 = xyz + xtu:

These are homogeneous with degrees degF0 = (1; 1; 1), degF1 = (0; 2; 1), and
degF2 = (1; 2; 0). One can check that F0, F1 and F2 don’t vanish simultaneously
on X , and by the ampleness criterion (3.15), none of their degrees are Q-ample,
although F0; F1; F2 all lie in B(�). The critical degree is

� = (1; 1; 1) + (0; 2; 1) + (1; 2; 0)� (1; 3; 1) = (1; 2; 1):

Computing normalforms of the four monomials of degree� reveals that hF0; F1; F2i�

has codimension one in S�.
(iv) Finally, we give an example to show what can go wrong if not all of the

Fi are contained in B(�). Let X = P1
� P1. Here, it is well known that the

homogeneous coordinate ring of X is S = C[x; y; z; t], with the usual bigrading

deg(x) = deg(y) = (1; 0); deg(z) = deg(t) = (0; 1):

Also, B(�) = hxz; xt; yz; yti.
We now let

F0 = (x+ y)2; F1 = xz; F3 = yt:

Thus deg(F0) = (2; 0) and deg(F1) = deg(F2) = (1; 1). It is easy to check that
F0; F1; F2 don’t vanish simultaneously on X . Moreover, the divisors defined by
F1; F2 are ample (a polynomial of degree (a; b) defines an ample divisor if and
only if a > 0 and b > 0), while F0 =2 B(�).

The critical degree in this case is � = (2; 0) since the sum of the degrees of the
variables is � = (2; 2). There are three monomials of degree (2; 0): x2, y2 and xy,
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and any two of them are linearly independent modulo the ideal hF0; F1; F2i. Thus
hF0; F1; F2i� does not have codimension one in S�. Note also that no monomial
of degree (3; 0) is in the ideal, which shows that x � S� 6� hF0; F1; F2i. Hence the
second part of Proposition 3.13 fails as well.

Remark 3.16. (i) Notice that if the Fi don’t all lie in B(�), then we can no
longer express the Fi as in (2.2), so that the definition of�� makes no sense. Thus,
even if hF0; : : : ; Fni� has codimension one in S�, the second part of Proposition
3.13 could fail. For an example of how this can happen, consider the toric variety
X of Example 3.14 (ii), this time using the polynomials

F0 = ztu; F1 = yzt+ xyu; F2 = xyz + xtu+ zt2:

These are very similar to what we used in Example 3.14 (iii)—the only difference
is that F2 has an extra zt2 term. As in that example, degF0 = (1; 1; 1), degF1 =
(0; 2; 1), and degF2 = (1; 2; 0), and they don’t vanish simultaneously on X . Note
also that F0; F1 2 B(�) but F2 62 B(�) because of the zt2 term. The critical
degree is still (1; 2; 1), and an easy computation shows that hF0; F1; F2i� still has
codimension one in S�. However, in this case, one can also compute that

x � xyzu =2 hF0; F1; F2i:

Since xyzu 2 S�, we have x � S� 6� hF0; F1; F2i, so that the second part of
Proposition 3.13 fails in this case.

(ii) One question we have not investigated is whether the simplicial hypothesis
is needed in Conjecture 3.12 and Proposition 3.13. For example, ifX is an arbitrary
complete toric variety, then Conjecture 3.12 and the first part of Proposition 3.13
are true when the degrees of the Fi are the same ample class—this is Theorem 5.1
of [C2].

4. Global residues as sums of local residues

In this section we will show that for simplicial toric varieties, the toric residue
may be computed as a sum of local Grothendieck residues. The toric setting is not
essential here and, in fact, it is convenient to work with the more general notion of
a V -manifold or orbifold (see [B], [S]). We begin with a review of the theory of
residual currents.

Residual currents on V -manifolds.

We recall that, by results of Prill [P], if an n-dimensional complex variety X is a
V -manifold, then for every x 2 X there exists a finite subgroup G � GL(n;C)
such that for some neighborhoodW of x 2 X , we have (W;x) ' (U=G; 0), where
U is a G-invariant neighborhood of 0 2 Cn. Furthermore, G is small (no g 2 G
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has 1 as an eigenvalue of multiplicity n� 1) and is unique up to conjugacy. Such
a local presentation (W;x) ' (U=G; 0) is called a standard model.

A simplicial toric variety X is an example of a V -manifold. Indeed, with the
notation of Section 2, we may cover X with open sets X� ' Cn=G(�) and it is
easy to verify that G(�) is a small subgroup (see [BC, 3.5]).

It is shown in [Ste, 1.8] that if X is a V -manifold and (W;x) ' (U=G; 0) is a
standard model, then

�(W; b
p
X) ' �(U;


p

Cn)G; (4.1)

where, as before, b
p
X denotes the sheaf of Zariski p-forms onX , and the superscript

G indicates the subspace of G-invariant forms. Similarly (see [S] and [B]), we
consider the sheaves Ep;qX ofC1 forms onX of bidegree (p; q). They are associated
with the presheaves which assign to an open setW � X , which is part of a standard
model (W;x) ' (U=G; 0), the group E

p;q
X (W ) = �(U; Ep;q)G, where Ep;q is

the sheaf of C1 (p; q)-forms on Cn. The restriction maps for these presheaves
are defined as follows: if (W 0; x) ' (U 0=G0; 0) is another standard model and
W 0 �W then by [P, Theorem 2], there exists a linear map h 2 GL(n;C) such that
h(U 0) � U and G0 = h�1Gh. We then set rWW 0 = h�: Ep;qX (W )! E

p;q
X (W 0). Note

also that any element in GL(n;C) commutes with the differential operator �@ acting
on �(U; Ep;q), which means that we can define an operator �@: Ep;qX ! E

p;q+1
X .

We denote by �c(W; E
p;q
X ) the space of sections of Ep;qX with compact sup-

port in W . For a standard model (W;x) ' (U=G; 0), we have �c(W; E
p;q
X ) '

�c(U; E
p;q)G, and it carries a natural Fréchet topology as a subspace of �c(U; Ep;q).

We will denote by 0D
p;q
X the sheaf of (p; q)-currents onX , i.e., the sheaf which asso-

ciates to any open setW of X , the space 0D
p;q
X (W ) of continuous linear funcionals

on �c(W; E
n�p;n�q
X ).

LEMMA 4.2. If (W;x) ' (U=G; 0) is a standard model, then
0
D
p;q
X (W ) ' 0

D
p;q(U)G;

where 0Dp;q is the sheaf of (p; q)-currents on Cn and the action ofG on 0Dp;q(U) is
the natural one:

(gT )(�) = T (g��); T 2 0
D
p;q(U) and � 2 �c(U; E

n�p;n�q):

Proof. The space 0D
p;q
X (W ) is by definition the continuous dual of �c(W;

E
n�p;n�q
X ) = �c(U; E

n�p;n�q)G, and any continuous linear map

T : �c(U; E
n�p;n�q)G ! C;

extends to a G-invariant continuous linear map defined on all of �c(U; En�p;n�q)
by the formula

T (�) = T (�G); where �G =
1
jGj

X
g2G

g��: (4.3)

comp3964.tex; 17/06/1997; 13:15; v.7; p.22

https://doi.org/10.1023/A:1000180417349 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000180417349


RESIDUES IN TORIC VARIETIES 57

Conversely, every G-invariant linear functional T on �c(U; En�p;n�q) satisfies

T (�) =
1
jGj

X
g2G

(gT )(�) =
1
jGj

X
g2G

T (g��) = T (�G) (4.4)

and, thus, is in the image of (4.3). 2

It will be convenient to assign to T 2 0Dp;q(U)G the element (1=jGj)T 2 0D
p;q
X (W ).

With this convention, the G-invariant continous linear operator defined by inte-
gration

R
U : �c(U; En;n) ! C gives rise, when (W;x) ' (U=G; 0) is a standard

model, to the usual definition of integration for sections � 2 �c(W; E
n;n
X )Z

W
� =

1
jGj

Z
U
�:

It is clear that this definition is independent of the choice of standard model.
Moreover, the existence of C1 partitions of unity on X (see [B]) implies that we
can define the integral for compactly supported sections of En;nX over any open set
of X .

Similarly, given a G-invariant form � 2 �(U; Ep;q)G, integration against �
defines a G-invariant current I(�) 2 0Dp;q(U)G. Thus

I(�)(�) =

Z
U
� ^ � for � 2 �c(U; E

n�p;n�q):

The corresponding current in 0D
p;q
X (W ) will also be denoted by I(�) and we have

I(�)(�) = (1=jGj)
R
U � ^ � =

R
W � ^ �.

We extend the definition of �@ to the space of currents by the formula

(�@T )(�) := (�1)p+q T (�@�); T 2 0
D
p;q
X (W ) and

� 2 �c(W; E
n�p;n�q�1
X ):

PROPOSITION 4.5. Let X be a compact, connected V -manifold. Then

(i) The diagram

0 - b
p
X

- E
p;0
X

�@ - � � �
�@ - E

p;n
X

- 0

jj

0 - b
p
X

I - 0
D
p;0
X

?

I

�@ - � � �
�@ - 0

D
p;n
X

?

I

- 0

commutes and its rows are exact.
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(ii) The following diagram commutes and all maps are isomorphisms
H

n;n
�@

(X)

�
�
�
�
�

�

� @
@
@
@
@

R
X

R
Hn(X; b
n

X) C:

@
@
@
@
@

0�

R �
�
�
�
�

Ev1

�

Hn
�@
(�(X; 0D

n;�
X ))

?

I

Proof. The commutativity of the first diagram is a consequence of the sign con-
vention in the definition of �@. Exactness follows from the corresponding statements
in the smooth case. We illustrate this for the bottom row.

Let � 2 b
p
X;x be such that I(�) = 0. We represent � by a G-invariant holo-

morphic p-form ~� onU where (U=G; 0) ' (W;x) is a standard model. By Lemma
4.2, I(~�) = 0 as an element in 0Dp;0(U)G� 0Dp;0(U). Consequently, by exactness
in the smooth case, ~� = 0 and, a fortiori, � = 0.

Suppose now that T 2 0D
p;q
X;x is �@-closed. Again, we represent T by aG-invariant

current ~T 2 0Dp;q(U)G satisfying �@ ~T = 0. We may replace U by a smaller G-
invariant neighborhoodU 0 of 02Cn where ~T = �@ ~S, ~S 2 0Dp;q�1(U 0). As in (4.4),
since �@ is a G-invariant operator, ~T = �@ ~SG ; where ~SG is the G-invariant current
~SG = (1=jGj)�g2Gg ~S. Thus T = �@SG, for the induced element in 0D

p;q�1
X;x .

To prove (ii) we note that the sheaves Ep;qX and 0D
p;q
X are fine and, consequently,

the rows in the diagram in (i) give fine resolutions of the sheaf b
p
X . Now, taking

p = n, the usual proof of Dolbeault’s Theorem gives the isomorphisms � and
0�. The isomorphism I is deduced from the map at the level of sheaves and the
commutativity follows from (i). Clearly I maps the cohomology class of a �@-
closed (n; n)-form � to the (n; n)-current defined by integration of compactly
supported C1 functions against �.

Stokes’ Theorem for V -manifolds [B] implies that integration over X defines
an isomorphism

R
X :Hn;n

�@
(X) ! C and the map Ev1 : Hn

�@
(�(X; 0Dn;�

X )) ! C is
defined by evaluation of a (global) current on the constant function 1X . The com-
mutativity of the right triangle then follows from the relation

R
X � = I([�])(1X ),

[�] 2 Hn;n
�@

(X). 2

We now bring into the picture multiple residue and principal value currents (as
in [CH] and [Di]). Let D1; : : : ;Dk be reduced Weil divisors on the V -manifoldX .
For each Dj , some multiple is a Cartier divisor (since X is a V -manifold), so that
Dj may be given locally as the support of the zero set of a holomorphic function.

comp3964.tex; 17/06/1997; 13:15; v.7; p.24

https://doi.org/10.1023/A:1000180417349 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000180417349


RESIDUES IN TORIC VARIETIES 59

Let ! be a semimeromorphic (p; q)-form on X with poles on D =
Sk
i=1Di. This

means that ! can be locally written as !0=f with !0 a C1 (p; q)-form and f a
holomorphic function such that ff = 0g � D.

Suppose for a moment that X is smooth and we are given (not necessarily
minimal) equations fi 2 �(U;OX) for each hypersurface Di, i = 1; : : : ; k, on
some open subsetU . For anyC1 form � (resp. �) with compact support contained
in U and bidegree (n� p; n� q � k) (resp. (n� p; n� q � (k � 1))), we define

RD[!](�) = RD1;:::;Dk
[!](�) = lim

�!0

Z
T�(f)

! ^ �

and

RPD[!](�) = RD1;:::;Dk�1PDk
[!](�) = lim

�!0

Z
D�(f)

! ^ �;

where

T�(f) = fx 2 U: jfi(x)j = "i(�) ; 1 6 i 6 kg;

D�(f) = fx 2 U: jfi(x)j = "i(�) ; 1 6 i 6 k � 1; jfk(x)j > "k(�)g;

are conveniently oriented semianalytic tubes and the k functions "i: (0; 1)!R+

are analytic and satisfy lim�!0("j(�)="
q
j+1(�)) = 0 for all 1 6 j 6 k � 1 and all

positive integers q. We call ("1; : : : ; "k) an admissible path.
In [CH], Coleff and Herrera show that the above limits exist for any �; �.

Moreover, these limits are independent of the admissible path and the particular
equations f1; : : : ; fk. Thus, on U , we get the multiple residue current RD[!] of
bidegree (p; q+k) and the principal value currentRPD[!] of bidegree (p; q+k�1).
By means of a C1 partition of unity, these local definitions can be collected to
obtain global currents on X , also denoted RD[!] and RPD[!], whose supports
verify

supp(RD[!]) �

 
k\
i=1

D1

!
\ supp(!);

supp(RPD[!]) �

 
k�1\
i=1

Di

!
\ supp(!):

Suppose now that X is a V -manifold, D1; : : : ;Dk reduced Weil divisors as above,
and W ' U=G is a standard model. We denote by ~D1; : : : ; ~Dk the lifted hyper-
surfaces in U . For any G-invariant, semimeromorphic form ~! on U , with polar set
contained in ~D =

Sk
i=1

~Di, the currents R ~D[~!] and RP ~D[~!] are also G-invariant.
Thus, given a semimeromorphic form ! onW , we denote by ~! its lifting to U and
then define:

RD[!] =
1
jGj

R ~D[~!] and RPD[!] =
1
jGj

RP ~D[~!]:
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These definitions may again be globalized using a partition of unity on X . The
definition of RPD and support property stated above imply that

RPD[!]j
X�Dj

= 0 for j < k; and

RPD[!]j
X�Dk

= RD1;:::;Dk�1 [!]j
X�Dk

: (4.6)

The mappings RD and RPD associating to any germ of meromorphic p-form !
with poles contained in D, the germ of the residual currents RD[!] and RPD[!],
define sheaf morphisms making the following diagram commutative

b
p
X(�D)

RPD - 0
D
p;k�1
X

@
@
@
@
@

RD

R 	�
�
�
�
�

�@

0
D
p;k
X

(4.7)

In particular, �@RD[!] = 0 for every meromorphic form ! 2 b
p
X(�D).

We conclude our discussion of residual currents by defining the local Grothen-
dieck residue at a point x on a V -manifold X . Let (W1; x) ' (U1=G; 0) be a
standard model, and let W be a relatively compact neighborhood of x such that
W � W � W1. Finally, let U be a G-invariant neighborhood of 0 such that
W ' U=G and U � U � U1. Suppose that f1; : : : ; fn 2 O(W ) have x as their
only common zero in W . Pulling-back to U , it follows that the hypersurfaces
~Di = f ~fi = 0g intersect only at 0. Given now a meromorphic n-form ! onW with
polar set contained in [ni=1ffi = 0g, we denote by ~! its pull-back to U and define

Resx(!) =
1
jGj

Res0(~!); (4.8)

where, as we recall from [GH] for example, the local Grothendieck residue Res0(~!)
is defined as

Res0(~!) =

�
1

2�i

�n Z
fz2U :j ~fi(z)j="i; 16i6ng

~!:

Here "i > 0 must be chosen so that fw 2 Cn: jwij16i6n = "ig is contained in the
open set ~f(U), ~f = ( ~f1; : : : ; ~fn), and fz 2 U: j ~fi(z)j16i6n = "ig\ @U = ;. Note
that the tube fz 2 U : j ~fi(z)j = "i; 1 6 i 6 ng is compact, of real dimension n,
and we orient it with the form d(arg ~f1) ^ � � � ^ d(arg ~fn).

If ' is a C1 function with compact support in W , which is identically equal to
1 in a neighborhood of x, for its pull-back ~' we have

(2�i)n Res0(~!) = lim
�!0

Z
fj ~fi(z)j="i(�); 16i6ng

~' � ~! = R ~D[~!]( ~');
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from which it follows that

(2�i)n Resx(!) = RD[!]('): (4.9)

Remark 4.10. Given reduced Weil divisors D1; : : : ;Dn with finite intersection
in a compact V -manifold X , and a meromorphic n-form ! whose polar set is
contained in the divisor D1 [ � � � [Dn, it follows from (4.9) and (4.7) that

(2�i)n
X

x2D1\���\Dn

Resx(!) = RD[!](1X) = (�@RPD[!])(1X)

= �RPD[!]( �@1X) = 0:

This is essentially the proof in [CH, p. 48] of the theorem on the vanishing of the
sum of Grothendieck residues due to Griffiths [G].

Global residues.

We will now generalize the notion of toric residue to a global residue defined on
an arbitrary n-dimensional compact V -manifold X .

Given n+ 1 reduced Weil divisors D0; : : : ;Dn on X such that

D0 \ � � � \Dn = ;;

the open setsUi=X�Di constitute an open coverU ofX . A meromorphic n-form
!2�(X; b
n

X(�D)), with polar set contained inD=D0[ � � � [Dn, defines a Čech
cocycle in Cn(U ; b
n

X). After passing to the direct limit we obtain a cohomology
class [!] 2 Hn(X; b
n

X). The Dolbeault isomorphism � from Proposition 4.5 (ii)
assigns to [!] a Dolbeault cohomology class �(!) 2 Hn;n

�@
(X).

DEFINITION 4.11. The global residue of ! relative to the divisors D0; : : : ;Dn is
given by

Res(!) =
�
�1
2�i

�n Z
X
�(!):

For a simplicial toric variety the global residue agrees with the toric residue.
Indeed, we have already noted in (4.1) that for aV -manifold, our notion of holomor-
phic forms agrees with the Zariski differentials and, as shown in [C2, Proposition
A.1]

TrX([!]) =
�
�1
2�i

�n Z
X
�(!):

Our next goal is to show that under very mild hypotheses, we can write the global
residue as a sum of local residues. As above, letD0; : : : ;Dn be n+1 reduced Weil
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divisors in X with empty intersection, and assume that for some k = 0; : : : ; n, the
n-fold intersection

D
k̂
= D0 \ � � � \

cDk \ � � � \Dn

is finite. If ! 2 �(X; b
n
X(�D)) and x 2 D

k̂
we can write, in a neighborhood of x,

! =
!0

f0 : : : fn
;

where, locally,!0 is holomorphic andDi is the support of ffi = 0g, fi holomorphic.
We will denote by Resk;x(!) the local Grothendieck residue

Resk;x(!) = Resx
� !0=fk

f0 : : :cfk : : : fn
�
:

Note that x 2 D
k̂

implies that fk(x) 6= 0.

THEOREM 4.12. IfD0; : : : ;Dn are reduced Weil divisors with empty intersection
on a n-dimensional compact V -manifold X , then for any ! 2 �(X; b
n

X(�D)), we
have

Res(!) = (�1)k
X
x2D

k̂

Resk;x(!);

whenever the intersection D
k̂
= D0 \ � � � \

cDk \ � � � \Dn is finite.
Proof. There is no loss of generality in assuming k = n; the sign dependence

is a consequence of the fact that the global residue is alternating on the order of the
divisors.

The global residue Res(!) = (�1=(2�i))n
R
X �(!) uses the Dolbeault iso-

morphism �. However, by Proposition 4.5 (ii), we can also use the Dolbeault
isomorphism 0� for currents. Thus Res(!) equals (�1=(2�i))n times the value on
the constant function 1X of any current representing the image under 0� of the
Čech cohomology class [!]. Hence, the theorem will follow from the following
two assertions

(i) 0�([!]) is the class of the current RPD[!] = RD0;:::;Dn�1PDn [!].
(ii) RPD[!](1X) = (2�i)n�x2Dn̂

Resn;x(!).

Because of the definition of the Dolbeault isomorphism 0�, to prove (i), it suffices
to construct, for each i = 0; : : : ; n � 1, a Čech cochain �(i) 2 Ci(U ; 0Dn;n�i�1

X )
satisfying

(a) ��(n�1) = I(!) (� is the Čech coboundary).
(b) �@�(i) = ��(i�1) for all i = 1; : : : ; n� 1.
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(c) �@�(0) = RD0;:::;Dn�1PDn [!].

We define

�
(n�1)
J =

(
RPD0 [!] if J = f1; : : : ; ng;

0 otherwise;

and, for any i = 0; : : : ; n� 2 and any J � f0; : : : ; ng with cardinality i+ 1,

�
(i)
J =

(
RD0;:::;Dn�i�2PDn�i�1 [!] if J = fn� i; : : : ; ng;

0 otherwise:

It is understood that the above currents RPD0 [!] andRD0;:::;Dn�i�2PDn�i�1 [!] are
restricted to the appropriate open setsUJ = \j2JUj . We will generally not indicate
the restriction when it is irrelevant or clear from the context.

To verify (a), note that ��(n�1) is the cochain assigning to U0 \ � � � \ Un the
currentRPD0 [!] restricted to this open set. SinceD0 is disjoint fromU0\� � �\Un,
the definition of RPD0 [!] implies that it must agree with I(!).

Suppose now that 1 6 i 6 n� 1, then it follows from (4.7) that

(�@�(i))J =

(
RD0;:::;Dn�i�1 [!] if J = fn� i; : : : ; ng;

0 otherwise:

On the other hand, clearly (��(i�1))J = 0 if J is not an index set of the form
J = Jj = fj; n� i+ 1; : : : ; ng for some j = 1; : : : ; n� i. But, if j < n� i, then
(��(i�1))Jj also vanishes – as a consequence of (4.6) – since it is the restriction to
the open set UJj � Uj of the current RD0;:::;Dn�i�1PDn�i

[!] and j < n� i.
It remains to consider the case J = fn � i; : : : ; ng. Then, (��(i�1))J is the

restriction to UJ of RD0;:::;Dn�i�1PDn�i
[!]. But, since UJ � Un�i, we deduce,

again from (4.6), that

RD0;:::;Dn�i�1PDn�i
[!]jUJ

= RD0;:::;Dn�i�1 [!]jUJ
:

Thus, (b) is satisfied.
The final assertion (c) is proved in a similar way: the cochain �@�0 assigns the

zero current to the open sets Uj , j < n and the residue current RD0;:::;Dn�1 [!] to
Un. But, then, it follows from (4.6) that �@�0 agrees with the global currentRPD[!].

The verification of (ii) now reduces to the local formula (4.9). Indeed, since
the support of the principal value RPD[!] is contained in the finite set Dn̂ =
D0 \ � � � \ Dn�1, its value on the constant function 1X is the same as the value
on any function  which is equal to one on a neighborhood of each of the points
in Dn̂. We may choose such a function  of the form  = �x2Dn̂

 x, where  x is
equal to 1 in a neighborhood of x and the supports of the  x’s are mutually disjoint
and disjoint from Dn as well. Then
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RPD[!](1X) =
X
x2Dn̂

RPD[!]jUn
( x)

=
X
x2Dn̂

RD0;:::;Dn�1 [!]jUn
( x);

where the last equality follows from (4.6). But now, (4.9) yields

RPD[!](1X) = (2�i)n
X
x2Dn̂

Resx(!): 2

Remark 4.13. (i) The V -manifolds setting means that in the case of toric vari-
eties we must restrict ourselves to the simplicial case. It is reasonable to expect,
however, that Theorem 0.4 will hold for arbitrary complete toric varieties. This
is the case, for example, if, with the notation of Theorem 0.4, the (finite) set D

k̂
is contained in the torus T . It is then possible to reduce to the simplicial case by
considering simplicial resolutions (cf. the proof of Theorem 4 in [CD]).

(ii) To understand why we need currents in the proof of Theorem 4.12, we will
sketch a proof for the case n = 2 using forms rather than currents. The argument
will be less than rigorous.

We haveD0 \D1 \D2 = ; inX . Let Tj(") be a fundamental system of (open)
tubular neighborhoods ofDj, and letSj(") = @Tj(") andEj(") = X�Tj("). Also,
for i; j; k distinct indices from 0 to 2, consider the intersectionsCijk(") = Ei(")\
Ej(")\Ek("),Cij(") = Ei(")\Ej(")\Sk(") andCi(") = Ei(")\Sj(")\Sk(").
We will assume that these sets are homology chains of (real) codimension 0; 1, and
2 respectively and that their boundaries behave as one would expect.

Next recall the procedure to define �(!). Let f�0; �1; �2g be a partition of unity
subordinated to the covering U . Then, beginning with ! 2 �(U0 \ U1 \ U2; b
2

X),
define �ij = (�1)k �k ! 2 �(Ui \ Uj ; E

2;0
X ), which implies ! = �(�ij) = �12 �

�02 + �01. Next, define �i = ��j �@�ij � �k �@�ik, with the signs chosen so that
�@�ij = �(�i) = �j � �i. Finally, �(!) is defined to be the global (2; 2)-form �@�i in
Ui.

To compute the global residue (2�i)�2 R
X �(!), we first observeZ

X
�(!) = lim

"!0

Z
C012(")

�(!) = lim
"!0

Z
C012(")

�@�0:

Since �0 has bidegree (2; 1), d�0 = �@�0, so we can apply Stokes’ Theorem to writeZ
C012(")

�@�0 =

Z
C12(")

�0 +

Z
C02(")

�0 +

Z
C01(")

�0:
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On the other hand, �0 = ��1
�@�2 ^!� �2

�@�1^!, and therefore �0 = 0 in S1(")
and S2(") for sufficiently small ". Consequently,Z

X
�(!) = lim

"!0

Z
C12(")

�0 = lim
"!0

Z
C12(")

�1 �
�@�01:

Once again,
R
C12(")

�1vanishes for " sufficiently small and, using Stokes’ Theorem,
we writeZ

X
�(!) = lim

"!0

Z
C2(")

�01 + lim
"!0

Z
C1(")

�01:

Since �01 = �2 ! vanishes on S2(") for " sufficiently small, we haveZ
X
�(!) = lim

"!0

Z
C2(")

�2 !:

Finally, for " sufficiently small, �2 is identically 1 in S0(") \ S1("), so thatZ
X
�(!) = lim

"!0

Z
C2(")

! = (2�i)2
X

x2D0\D1

Resx(!);

which gives the desired formula for the global residue.
The use of residual currents in making the above argument rigorous is twofold:

first of all, the local nature of the residual currents definition obviates the need to
construct global cycles of integration – a step which is not always possible; more-
over, the concept of admissible paths explains the passage to the limit necessary
for the vanishing of the various integrals.

(iii) For an example of howD0; : : : ; cDk; : : : ;Dn can fail to satisfy the finiteness
condition in Theorem 4.12, let X = P1

� P1, and consider the divisors D0 =
f0g� P1, D1 = (f1g� P1)[ (P1

�f1g) andD2 = (f1g� P1)[ (P1
�f0g).

Then D0 \D1 \D2 = ;, yet D1 \D2 is infinite since it contains f1g � P1.
In light of the last remark, it would be useful to know when then-fold intersection

D
k̂
= D0 \ � � � \

cDk \ � � � \Dn is finite. Here is one criterion.

LEMMA 4.14. Let D0; : : : ;Dn be reduced Weil divisors with empty intersection
on a n-dimensional projective variety X . If Dk is the support of an ample divisor,
then D

k̂
is finite.

Proof. This is immediate since D
k̂
\ Dk = ; implies that D

k̂
is a complete

subvariety of the affine variety X �Dk. 2

When applied to toric residues, these results yield Theorem 0.4 which, in turn,
may be used to give new proofs of some basic results concerning toric residues.
We will conclude this section with three such applications of Theorem 0.4:
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Application 1: Res = �1

The first application is an alternate proof of Proposition 2.4 when the toric varietyX
is simplicial. We resume the notation of Section 2, where we have a n-dimensional
cone � and the variables are labelled x1; : : : ; xn (corresponding to the generators
of �) and z1; : : : ; zr (corresponding to the other generators). Our goal is to prove
that

Res
�




(z1 : : : zr) � x1 : : : xn

�
= �1;

using Theorem 0.4. Since the divisors

D0 = fz1 : : : zr = 0g; Di = fxi = 0g; i = 1; : : : ; n;

have empty intersection andD1 \ � � � \Dn = fpg is a single point, the hypotheses
of Theorem 0.4 are satisfied, so that

Res
�




(z1 : : : zr) � x1 : : : xn

�
= Resp(!�);

where !� is the restriction of 
=
�
(z1 : : : zr) � x1 : : : xn

�
to the affine open set

X� � X . But we have seen that X� ' Cn=G(�), and since G(�) is a small
subgroup, this defines a standard model. Moreover, as noted in (2.9), the pullback
to Cn of !� is given by

~!� = �
jG(�)j dx1 ^ � � � ^ dxn

x1 : : : xn
:

Therefore

Resp(!�) =
1

jG(�)j
Res0(~!�)

= �Res0

�
dx1 ^ � � � ^ dxn

x1 : : : xn

�
= �1;

which proves Proposition 2.4 when X is simplicial.

Application 2: Sums of residues in a torus

Let f1; : : : ; fn be n-variate Laurent polynomials with a finite set of common zeroes
Z = Z(f1; : : : ; fn) in the torus T = (C�)n. Given a Laurent polynomial q, we get
the differential form

� =
q

f1 : : : fn

dt1
t1
^ � � � ^

dtn
tn
:
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The operator which assigns to q the sum of local residues �x2ZResx(�) has
interesting applications in a number of different contexts. In certain cases, it is
possible to use Theorem 0.4 to give a global interpretation of this sum.

We assume that there exists a simplicial toric compactificationX of T such that
if Di is the closure in X of the hypersurface ffi = 0g � (C�)n and D0 = X � T
is the ‘divisor at infinity’, then

D0 \D1 \ � � � \Dn = ;:

Such a (smooth) compactification exists, for example, if the polynomials fi are
nondegenerate in the sense of Khovanskii [K1].

In this situation, the meromorphic form � has an extension to X which can be
written as

� =
Q


F0 : : : Fn
;

where Q;F0; : : : ; Fn are homogeneous polynomials in the coordinate ring of X
such that Di = fFi = 0g, and 
 is the Euler form of X . Then it follows from
Theorem 0.4 thatX

x2Z

Resx(�) = ResF (Q):

If we assume, in addition, that the Newton polyhedron of q is contained in
the interior of the Minkowski sum of the Newton polyhedra corresponding to
f1; : : : ; fn, then one may show that Q is a multiple of F0 and hence ResF (Q) = 0
which gives the classical Euler-Jacobi Theorem in this setting [K2]. In fact, as in
this case � has poles only on the union of the n divisors D1 [ � � � [ Dn, whose
intersection is contained in the torus, the vanishing of the sum of the local residues
of � follows directly from the result of Griffiths recalled in Remark 4.10. This
global approach to residues in the torus is the subject of [CD].

Application 3: Toric Jacobians.

For our third application, we use Theorem 0.4 to give an alternate proof of Theorem
5.1 (ii) of [C2] for a simplicial toric variety. This result asserts that the toric
Jacobian J of F0; : : : ; Fn 2 S� (as defined in [C2, Proposition 4.1]) has nonzero
toric residue. More precisely, if � is ample and the Fi don’t vanish simultaneously
on X , then we will show that the equality

ResF (J) = (Dn)

follows from Theorem 0.4. Here, (Dn) is the n-fold intersection number of any
divisor D with [D] = �. Note that J 2 S�, where � = (n+ 1)�� � is the critical
degree for the Fi.
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To prove this, let !F (J) = J 
=(F0 : : : Fn). Then Theorem 0.4 implies

ResF (J) =
X
x2D0̂

Res0;x(!F (J))

=
X

x2D1\���\Dn

Resx

�
(J=F0)


F1 : : : Fn

�
: (4.15)

We will show that each local residue Res0;x(!F (J)) is a local intersection mul-
tiplicity of D1; : : : ;Dn at x, which will prove that ResF (J) is the intersection
number (D1 : : : Dn) = (Dn).

Given x 2 D0̂, let � be a n-dimensional cone such that x lies in the affine open
setX� . Since � is simplicial, we write the variables as x1; : : : ; xn; z1; : : : ; zr . Then
the form !F (J), restricted to X� , may be written in appropriate coordinates as

k(x1; : : : ; xn) dx1 ^ � � � ^ dxn
f0 : : : fn

;

where

k(x1; : : : ; xn) = det

0BBBBBB@
f0 : : : fn

@f0=@x1 : : : @fn=@x1

...
...

@f0=@xn : : : @fn=@xn

1CCCCCCA
and fi(x1; : : : ; xn) is the function obtained from Fi(x1; : : : ; xn; z1; : : : ; zr) by
setting zj = 1 for j = 1; : : : ; r. It follows that

Res0;x(!F (J)) = Resx

�
(k=f0) dx1 ^ � � � ^ dxn

f1 : : : fn

�
:

However, expanding the determinant for k along the first row and using f0(x) 6= 0,
we see that

k=f0 � det(@fi=@xj: 1 6 i; j 6 n) modhf1; : : : ; fni;

in the local ring OX;x. Consequently,

Res0;x(!F (J)) = Resx

�
det(@fi=@xj) dx1 ^ � � � ^ dxn

f1 : : : fn

�
;

and this last residue equals the local intersection multiplicity of D1; : : : ;Dn at x
(this is well-known in the smooth case and is easy to prove for V -manifolds). By
(4.15), it follows that the toric residue of the toric jacobian equals the intersection
number (D1 : : : Dn).
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Remark 4.16. (i) Since all the divisors Di have the same degree, we can write
ResF (J) = (D0 : : : cDk : : : Dn) for any k = 0; : : : ; n.

(ii) The intersection number (D1 : : : Dn) can also be interpreted as the degree
of the map F = (F0; : : : ; Fn) : X ! Pn (see [C2, Theorem 5.1] for a careful
proof). Thus the toric Jacobian has the property that its toric residue is given by
ResF (J) = deg(F ). This will be useful in Section 5.

5. Toric residues as point residues in the equal degree case

WhenX = Pn andF0; : : : ; Fn all have the same degree, the toric residue ResF (H)
equals the classical Grothendieck residue at 0 2 Cn+1, i.e.,

ResF (H) =
1

(2�i)n+1

Z
jFij="

H dx0 ^ � � � ^ dxn
F0 : : : Fn

;

(see [PS, 12.10]). Thus, in the projective case, the toric residue is a point residue
computed on the related space Cn+1. In Theorem 5.8 below, we will generalize
this result to a complete simplicial toric variety X , assuming that the Fi have the
same degree � in the homogeneous coordinate ring S.

We first describe the space we will use for computing toric residues onX . Given
� 2 An�1(X), let S�� = �k>0Sk� and set

X� = Spec(S��):

Note that the natural grading of S�� induces a C� action on X�.

PROPOSITION 5.1. If X is a complete simplicial toric variety and � is ample,
thenX� has the natural structure of an affine toric variety. Furthermore, if 0 2 X�

is the unique fixed point of the torus action, then X� � f0g is simplicial and C�

acts on X� � f0g with finite stabilizers and X as geometric quotient.
Proof. Consider R � NR with the lattice Z � N . Elements of R � NR will

be written �e0 + v, where � 2 R and v 2 NR. Now let D = �iaiDi (where �i

denotes�n+r
i=1 ) be a divisor onX whose class is�, and let : NR ! R be its support

function. This means  (�i) = �ai, where the �i generate the 1-dimensional cones
of the fan of X . Given this data, let e� � R � NR be the cone generated by the
vectors ~�i = aie0+�i. Equivalently, e� is generated by the graph of� in R�NR.
Since  is strictly upper convex (D is ample), we see that e� is a strongly convex
rational polyhedral cone.

We next observe that the semigroup ring C[e�_\(Z�M)] is naturally isomorphic
to S��. To prove this, first note that

ke0 +m 2 e�_ \ (Z�M) () hke0 +m; ~�ii > 0 for all i

() hm; �ii+ k ai > 0 for all i

()
Y
i

x
hm;�ii+k ai
i 2 Sk�;
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(where �i denotes �n+r
i=1 ). Since all monomials in Sk� can be described in this

form (see Sect. 1 of [C1]), the observation follows easily. ThusX� is an affine toric
variety.

The torus action on X� has a unique fixed point which we denote by 0. Fur-
thermore, the complementX��f0g is the toric variety whose fan is the boundary
of e�. This fan is the graph of � , so the strict convexity of  implies that under
the projection � : R �NR ! NR, each cone of the boundary fan maps naturally
to the corresponding cone in the fan of X . Thus the projection � induces a map of
toric varieties X� � f0g ! X . We leave to the reader the straightforward proof
that X� � f0g is simplicial since X is.

Since X is simplicial, we can write

X = (Cn+r
� Z)=G; (5.2)

whereG = HomZ(An�1(X);C�) and the exceptional setZ is a union of coordinate
subspaces determined by the fan ofX (see [BC, Theorem 1.9]). The correspondence
�i $ ~�i implies thatX ,X� andX��f0g have the same homogeneous coordinate
ring (though the gradings may differ), and the mapX� �f0g ! X shows that the
fans of X and X� � f0g are combinatorially equivalent. Thus X and X� � f0g
have the same exceptional set Z . Hence

X� � f0g = (Cn+r
� Z)=H; (5.3)

where H = HomZ(An(X� � f0g);C�). To compare G and H , we use the com-
mutative diagram

0 - M - Zn+r - An�1(X) - 0

jj

0 - Z�M
?

- Zn+r - An(X� � f0g)
?

- 0

to conclude that we have an exact sequence

0 ! Z ! An�1(X)! An(X� � f0g)! 0;

where 1 2 Z maps to � 2 An�1(X). Applying HomZ(�;C�), we can identify
H with the subgroup fg 2 G : g(�) = 1g � G, so that g 7! g(�) induces an
isomorphismG=H ' C�.

Comparing (5.2) and (5.3), X is the quotient of X� � f0g by G=H ' C�.
Furthermore, the proof of Theorem 1.9 of [BC] shows that the G-action in (5.2)
has finite stabilizers, and it follows that the C�-action on X� must also have finite
stabilizers. To describe this action more explicitly, note that G acts on Sk� by
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g � F = g(k�)F = g(�)kF . Since H acts trivially by definition, the action of
G=H ' C� is exactly the action that gives the grading of S��. This completes the
proof of the proposition. 2

Remarks 5.4 (i) When � is very ample (always true when X is smooth), then
X� is the affine cone of X in the projective embedding given by �.

(ii) Besides being a geometric quotient, the map X� �f0g ! X is a combina-
torial quotient in the sense of [KSZ, p. 645].

(iii) If we add the 1-dimensional cone generated by e0 to e� and subdivide
accordingly, we get a toric variety eX� which maps naturally to X . In [R, Sect. 3],
it is proved that eX� ! X is the total space of the line bundle OX(��). ThuseX� ! X� is a blow-up of 0 2 X� with exceptional fiber isomorphic to X .
Conversely, we can view X� as the variety obtained by blowing down the zero
section of OX(��).

(iv) AlthoughX��f0g is simplicial, 0 2 X� can be very singular. For example,
let X = P1

� P1 and � = (1; 1). The coordinate ring for X is S = C[x; y; z; t],
where deg(x) = deg(y) = (1; 0) and deg(z) = deg(t) = (0; 1). Then X� is
the singular affine hypersurface defined by AD � BC = 0 in C4 since this
hypersurface is the affine cone over the Segre embedding P1

�P1 ,! P3. Note that
X� is not simplicial at the origin.

We next discuss differential forms on X and X�. As we saw in the proof of
Proposition 5.1, X and X� have the same homogenous coordinate ring (though
graded differently). By (2.8), X has the Euler form


 =
X
jIj=n

det(�I) x̂I dxI :

Now let �iaiDi be a divisor in the class of � and consider the (n+ 1)-form


� =

 X
i

ai
dxi
xi

!
^ 
:

LEMMA 5.5. Let � = �i deg(xi) 2 An�1(X) and � = (n+ 1)�� �. Then

(i) 
� is the Euler form of X�.
(ii) If � is any Euler vector field for X (which can be regarded as a map � :

An�1(X)! C), we have

� 
� = �(�)
:

(iii) If J 2 S� is the toric Jacobian of F0; : : : ; Fn 2 S� (see [C2, Sect. 4]), then

J 
� = dF0 ^ � � � ^ dFn:
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Proof. To define 
, we used a basis m1; : : : ;mn of M . Then e0 and mj for
j > 0 form a basis of Z�M , and from the proof of Proposition 9.5 of [BC] (which
is easily seen to hold in the non-simplicial case), we see that the Euler form ofX�

is

x1 : : : xn+r

�
dt0
t0
^ � � � ^

dtn
tn

�
; (5.6)

where t0 = �ix
he0;~�ii
i = �ix

ai
i and tj = �ix

hmj ;~�ii
i = �ix

hmj ;�ii
i for j > 0.

Since dt0=t0 = �iaidxi=xi and 
 = x1 : : : xn+r(dt1=t1 ^ � � � ^ dtn=tn) (also by
Proposition 9.5 of [BC]), we see that 
� is the Euler form of X�.

For the second part of the lemma, first note that � 
 = 0 by Lemma 6.2 of
[C2]. Thus

� 
� = �

  X
i

ai
dxi
xi

!
^


!

=

 
�
X
i

ai
dxi
xi

!
� 
:

However, if � = �ibi xi @=@xi, then � �iaidxi=xi = �iaibi = �(�), which gives
the desired formula. (For more background on Euler vector fields, see 3.8–3.10 of
[BC].)

Turning to the final part of the lemma, note that each Fi lies in S� and hence
gives a function on X� = Spec(S��). Further, the functions t0; : : : ; tn introduced
above are coordinates on the torus TX� � X�. Thus, if we restrict Fi to the torus,
we can write Fi = eFi(t0; : : : ; tn). Then

dF0 ^ � � � ^ dFn = det(@ eFi=@tj) dt0 ^ � � � ^ dtn:

Comparing this to the formula (5.6) for 
�, we see that

dF0 ^ � � � ^ dFn = eJ 
�

for some rational function eJ .
It remains to show that eJ is the toric Jacobian J from [C2]. Pick an Euler

formula � such that �(�) 6= 0. We can find such a � since � is ample and hence
has infinite order in An�1(X) (see also Lemma 10.5 of [BC]). Then, by (ii) and
the above equation for eJ ,

�(�) � eJ 
 = � ( eJ 
�)

= � (dF0 ^ � � � ^ dFn)
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=
nX
i=0

(�1)i(� dFi) dF0 ^ � � � ^
ddFi ^ � � � ^ dFn

= �(�) �
nX
i=0

(�1)iFi dF0 ^ � � � ^
ddFi ^ � � � ^ dFn

where the last equality follows because � dF = �(�)F for all F 2 S�. However,
on the bottom row, the expression on the right equals �(�) � J 
 by [C2]. TheneJ = J follows since �(�) 6= 0, and (iii) is proved. 2

Given F0; : : : ; Fn 2 S�, we next consider the integral on X�Z
fjFij=";06i6ng

H 
�

F0 : : : Fn
; (5.7)

where " > 0, the cycle fjFij = "; 0 6 i 6 ng is oriented using d(argF0)
^ � � � ^ d(argFn), andH 2 S� for � = (n+ 1)�� �. To make sense of (5.7), first
note that H 
�=(F0 : : : Fn) is a meromorphic form on the V -manifold X� � f0g.
Furthermore, each Fi is a polynomial function onX� and fjFij = "; 0 6 i 6 ng �
X��f0g. It follows that (5.7) exists whenever (F0; : : : ; Fn): X� ! Cn+1 is finite.
We can now state the main result of this Section.

THEOREM 5.8. Assume that X is complete and simplicial, � is ample, and
F0; : : : ; Fn 2 S� don’t vanish simultaneously on X . Then

(i) The map (F0; : : : ; Fn): X� ! Cn+1 is finite.
(ii) If � = (n+1)��� is the critical degree ofF0; : : : ; Fn, then for everyH 2 S�,

ResF (H) =
1

(2�i)n+1

Z
fjFij=";06i6ng

H 
�

F0 : : : Fn
:

Proof. By [C2, Proposition 3.2], we know that S��=hF0; : : : ; Fni has finite
dimension over C, so that by definition, F0; : : : ; Fn is a homogeneous system of
parameters for S��. It follows from [BH, Theorem 1.5.17] that S�� is finitely
generated as a module over the subring C[F0; : : : ; Fn]. Thus eF = (F0; : : : ; Fn):
X� ! Cn+1 is finite, which proves (i).

To prove (ii), we first observe that each side of the identity in (ii) vanishes
when H 2 hF0; : : : ; Fni. This is obviously true for the toric residue, and for the
integral (5.7), one uses the usual argument (see [GH, pp. 650–651]). Since we
know S�=hF0; : : : ; Fni� is one dimensional and the toric Jacobian J has nonzero
toric residue (see Sect. 4), it suffices to check that (ii) holds for H = J .
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By Remark 4.16, we know that ResF (J) = deg(F ), where F = (F0; : : : ; Fn),
regarded as a map F : X ! Pn. On the other hand, by Lemma 5.5, we have

J 
�

F0 : : : Fn
=

dF0 ^ � � � ^ dFn
F0 : : : Fn

= eF �

�
dz0 ^ � � � ^ dzn

z0 : : : zn

�
;

where z0; : : : ; zn are coordinates on Cn+1 and eF = (F0; : : : ; Fn), now regarded as
a map eF : X� ! Cn+1. It follows that

1
(2�i)n+1

Z
fjFij=";06i6ng

J 
�

F0 : : : Fn

=
deg( eF )
(2�i)n+1

Z
fjzij=";06i6ng

dz0 ^ � � � ^ dzn
z0 : : : zn

= deg( eF );
since eF is finite by (i).

Thus, to prove (ii) for J , we must show that deg(F ) = deg( eF ). However,
as noted in the proof of Proposition 5.1, the C�

' G=H action on X� satisfies
g � Fi = g(�)Fi for g 2 G. It follows that eF : X� � f0g ! Cn+1

� f0g is
equivariant with respect to C�, and since the quotient is F : X ! Pn, one easily
sees thatF and eF have the same degree. This completes the proof of the theorem.2

Remarks 5.9 (i) Notice that in general, the integral (5.7) is slightly different
from the Grothendieck residue defined in (4.8). This is because X� need not be
simplicial at the point 0 2 X�.

(ii) When X = Pn and F0; : : : ; Fn are homogeneous of degree d, note that
the residue of Theorem 5.8 is computed not on Cn+1, but rather on Xd =
Spec(�k>0C[x0; : : : ; xn]k d), which is the quotient of Cn+1 by the diagonal action
of the dth roots of unity �d. Furthermore, one can show that the Euler form of Xd

is 
d = d dx0 ^ � � � ^ dxn.
Since Xd is simplicial at the origin, the local residue Res02Xd

(!F (H)) is
defined, and combining Theorem 5.8 and equation (4.8), we see that

ResF (H) = Res02Xd

�
H 
d

F0 : : : Fn

�

= Res
02Cn+1

�
H dx0 ^ � � � ^ dxn

F0 : : : Fn

�
:

Thus the toric residue equals both of the local residues that can be defined in
this situation, and Theorem 5.8 gives the toric generalization of the first of these
equalities.
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Progress in Math. 143, Birkhäuser, Boston Basel Berlin, 1996, 135–164.

[CH] Coleff, N. and Herrera, M.: Les Courants Residuels Associés à une Forme Meromorphe,
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Boston, Basel, Berlin, 1983.

[Ste] Steenbrink, J.: Mixed Hodge structure on the vanishing cohomology, in Real and Com-
plex Singularities: Proceedings Nordic Summer School, Oslo 1976, Sijthoff and Noordhoff,
Alphen aan den Rijn 1977, pp. 525–563.

[Z] Ziegler, G.: Lectures on Polytopes, Springer-Verlag, Berlin, Heidelberg, New York, 1995.

comp3964.tex; 17/06/1997; 13:15; v.7; p.42

https://doi.org/10.1023/A:1000180417349 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000180417349

