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A NOTE ON DIVISION ALGEBRAS 

I. N. H E R S T E I N AND A. RAMER 

In this note we prove some results on the intersection properties of maximal 
subfields of division algebras which are finite dimensional over their centers. 
These results indicate t h a t we can get very small intersections with any sub-
algebra if we use the appropr ia te maximal subfields. As a consequence of our 
first theorem, we obtain some theorems which are known and some which can 
be obtained from these known theorems (see, for instance, Theorem 3, 
Chapter VI I in [3]). T h e proofs of these known results given here are very 
elementary and are quite different from the ones in the l i terature. 

We begin with 

T H E O R E M 1. Let D be a division algebra finite dimensional over its center and 
let Do ?£ D be a sub-division algebra of D. Then there exists a maximal subfield 
K of D such i,hat K P D0 = F. In fact, if L is any maximal subfield of D which 
is a simple extension of F, then for some x G D, xLx~l P DQ = F. Thus if L 
is a maximal separable subfield of D, xLx~x P D0 = F for some appropriate 
x G D. 

Proof. W e may assume t h a t F is an infinite field, otherwise D itself would be 
a field by Wedderburn ' s theorem. Let L = F(t) be a maximal subfield of D 
which is a simple extension of F. By a well-known theorem (see [1] or [4]) 
there are only a finite number of fields Lt with 

Let CD(Li) = {x G D\xu = ux for all u G L^}. Since Lt (£ F, CD(Lt) is not 
D; CD(Li) is a vector space over F (in fact, a sub-division algebra) . Since F 
is an infinite field and D is a vector space over F, D cannot be the set-theoretic 
union of a finite number of proper subspaces. Hence D0 W t CD(Lt) ^ D. T h u s 
there is an element x G D, x $ D0 which centralizes n o l i ; hence x does not 
commute with any element a G L if a g F. 

Suppose t h a t the theorem is false, t h a t is, t h a t yLy~1 P\ D0 9^ F for every 
y G D. Then , certainly, for the x above and any a 9^ 0 in F, 

(x + a)-lL(x + a) r\Do5* F, 

which is to say L Pi (x + a)Do(x0 + a ) " 1 ^ F. Hence L P (x + a)D(x + a)~l 

is one of the Lt. Since F is infinite, by the pigeon-hole principle, there exist 
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three dist inct elements, a i , a2l a3 £ F, none of them 0, such tha t 

^ I = L H ( x + ai)D0(x + a^-1 = L C\ (x + a2)D0(x + a2)~
1 

= LC\ (x + a3)D0(x + «a)"1 . 

Let a G M, a $ F. Hence, for some d\, d2j dz £ Do we have 

(x + 0Li)dt(x + a * ) - 1 = a, 
t ha t is, 

(x + ai)di = a(x + «1) 

(1) (x + a2)d2 = a(x + a2) 

(x + a3)^3 = a(x + a 3 ) . 

From (1), by subtract ing one of the relations from another we get: 

(2) x(di — d2) + aidi — a2d2 = a(a\ — a2) = a/3, M O f ^ 

x(d2 — dz) + a2d2 — azdz = a(a2 — œs) = ay, y 9^ 0 £ F. 

Playing the relations in (2) off against each other yields t ha t 

x(y(di — d2) — fi(d2 — dz)) + yfaidi — a2d2) — P(a2d2 — azdz) = 0. 

If 5 = y(di — d2) — /3(d2 — dz) 9e 0, being in D0, s - 1 Ç DQ and so 

x = [(3(a2d2 — azdz) — 7 («1^1 — a ^ ) ] * " 1 

would be in Do, contrary to our choice of x. Hence 

(3) 7(^1 -d2) = I3(d2-dz). 

This , in turn , forces 

(4) 7(«1^1 ~" a^d2) = P(a2d2 — azdz). 

Eliminating dz between (3) and (4) we end up with 

(5) 7(0:3 — a±)di = (a + 13) (az — a2)d2. 

However, recalling t ha t 7 = a2 — az 5* 0, P = a\ — a2 9^ 0, (5) readily gives 
us t ha t d\ = d2. 

Returning to (2) with the result d\ = d2 in hand, we get (a± — a2)d\ = 
(ai — a2)a, and so a = d\. But then (1) tells us t ha t (x + a\)a = a(x + a i ) 
and so xa = ax. Th i s contradicts the fact t ha t x does not commute with any 
element in L outside of F, and a £ L, a (? F. The theorem is thus proved. 

T h e theorem has some immediate implications, namely: 

COROLLARY 1. Let D be a division algebra finite dimensional over its center F 
and let L be a maximal sub field of D. If K is a maximal separable sub field of D 
then L C\ xKx~x = F for some x £ D. 

COROLLARY 2. If D is a division algebra finite dimensional over its center F 
and if K = F (a) is a maximal sub field which is a simple extension of F, then for 
some x £ D, a and xax"1 generate D over F. 
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Proof. By the theorem there is an x Ç D such that xKx~l C\ K = F. Thus 
if Do is the subalgebra of D generated by a and xax"1 over F, then K and 
xKx~x are both maximal subfields of D0. Since the center of Do is contained in 
every maximal subfield of D0 and K C\ xKx~l = F, F must be the center of 
Do. But then, since K is a maximal subfield of D0, [D0:F] = [K:F]2 = [D:F] 
(where [ :F] denotes the degree over F). Hence D = Do. 

COROLLARY 3. If D is a division algebra finite dimensional over its center F 
then there exists an element a £ D such that a and xax~l generate D over F, for 
some x G D. 

Proof. D has a maximal subfield K which is separable over F. Thus 
K = F (a) for some a £ K. Apply Corollary 2 to this. 

We now prove 

THEOREM 2. Let D be a division algebra finite dimensional over its center F, 
and let M D F be any subfield of D. Then M = Ki P\ K2 for some maximal 
subfields Ki, K2 of D. In fact, if Kis any maximal subfield of D which contains M 
then for some maximal subfield L of D, K C\ L = M. 

Proof. Let D\ = CD(M) = j x f D\xm = mx for all m Ç M} ; Di is a division 
algebra and, by the double centralizer theorem [2], M is the center of D\. 
Applying Corollary 1, if K is a maximal subfield of Di then for some other 
maximal subfield L of i>i, K C\ L = M. 

Now, any maximal subfield of D\ is a maximal subfield of D, for if 
T D K 3 M, where T is a field and K is a maximal subfield of D±, then clearly 
T centralizes M, so T C CD(M) = D\. Hence T = K. This finishes the proof. 
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