A NOTE ON DIVISION ALGEBRAS

I. N. HERSTEIN AND A. RAMER

In this note we prove some results on the intersection properties of maximal subfields of division algebras which are finite dimensional over their centers. These results indicate that we can get very small intersections with any subalgebra if we use the appropriate maximal subfields. As a consequence of our first theorem, we obtain some theorems which are known and some which can be obtained from these known theorems (see, for instance, Theorem 3, Chapter VII in [3]). The proofs of these known results given here are very elementary and are quite different from the ones in the literature.

We begin with
Theorem 1. Let D be a division algebra finite dimensional over its center and let $D_{0} \neq D$ be a sub-division algebra of D. Then there exists a maximal subfield K of D such ihat $K \cap D_{0}=F$. In fact, if L is any maximal subfield of D which is a simple extension of F, then for some $x \in D, x L x^{-1} \cap D_{0}=F$. Thus if L is a maximal separable subfield of $D, x L x^{-1} \cap D_{0}=F$ for some appropriate $x \in D$.

Proof. We may assume that F is an infinite field, otherwise D itself would be a field by Wedderburn's theorem. Let $L=F(t)$ be a maximal subfield of D which is a simple extension of F. By a well-known theorem (see [1] or [4]) there are only a finite number of fields L_{i} with

$$
L \supset L_{i} \supset F .
$$

Let $C_{D}\left(L_{i}\right)=\left\{x \in D \mid x u=u x\right.$ for all $\left.u \in L_{i}\right\}$. Since $L_{i} \not \subset F, C_{D}\left(L_{i}\right)$ is not $D ; C_{D}\left(L_{i}\right)$ is a vector space over F (in fact, a sub-division algebra). Since F is an infinite field and D is a vector space over F, D cannot be the set-theoretic union of a finite number of proper subspaces. Hence $D_{0} \cup_{i} C_{D}\left(L_{i}\right) \neq D$. Thus there is an element $x \in D, x \notin D_{0}$ which centralizes no L_{i}; hence x does not commute with any element $a \in L$ if $a \notin F$.

Suppose that the theorem is false, that is, that $y L y^{-1} \cap D_{0} \neq F$ for every $y \in D$. Then, certainly, for the x above and any $\alpha \neq 0$ in F,

$$
(x+\alpha)^{-1} L(x+\alpha) \cap D_{0} \neq F
$$

which is to say $L \cap(x+\alpha) D_{0}\left(x_{0}+\alpha\right)^{-1} \neq F$. Hence $L \cap(x+\alpha) D(x+\alpha)^{-1}$ is one of the L_{i}. Since F is infinite, by the pigeon-hole principle, there exist

[^0]three distinct elements, $\alpha_{1}, \alpha_{2}, \alpha_{3} \in F$, none of them 0 , such that
\[

$$
\begin{aligned}
F \neq M=L \cap\left(x+\alpha_{1}\right) D_{0}\left(x+\alpha_{1}\right)^{-1}=L \cap & \left(x+\alpha_{2}\right) D_{0}\left(x+\alpha_{2}\right)^{-1} \\
& =L \cap\left(x+\alpha_{3}\right) D_{0}\left(x+\alpha_{3}\right)^{-1} .
\end{aligned}
$$
\]

Let $a \in M, a \notin F$. Hence, for some $d_{1}, d_{2}, d_{3} \in D_{0}$ we have

$$
\left(x+\alpha_{i}\right) d_{i}\left(x+\alpha_{i}\right)^{-1}=a,
$$

that is,

$$
\begin{align*}
& \left(x+\alpha_{1}\right) d_{1}=a\left(x+\alpha_{1}\right) \\
& \left(x+\alpha_{2}\right) d_{2}=a\left(x+\alpha_{2}\right) \tag{1}\\
& \left(x+\alpha_{3}\right) d_{3}=a\left(x+\alpha_{3}\right) .
\end{align*}
$$

From (1), by subtracting one of the relations from another we get:

$$
\begin{array}{ll}
x\left(d_{1}-d_{2}\right)+\alpha_{1} d_{1}-\alpha_{2} d_{2}=a\left(\alpha_{1}-\alpha_{2}\right)=a \beta, & \beta \neq 0 \in F \tag{2}\\
x\left(d_{2}-d_{3}\right)+\alpha_{2} d_{2}-\alpha_{3} d_{3}=a\left(\alpha_{2}-\alpha_{3}\right)=a \gamma, & \gamma \neq 0 \in F .
\end{array}
$$

Playing the relations in (2) off against each other yields that

$$
x\left(\gamma\left(d_{1}-d_{2}\right)-\beta\left(d_{2}-d_{3}\right)\right)+\gamma\left(\alpha_{1} d_{1}-\alpha_{2} d_{2}\right)-\beta\left(\alpha_{2} d_{2}-\alpha_{3} d_{3}\right)=0 .
$$

If $s=\gamma\left(d_{1}-d_{2}\right)-\beta\left(d_{2}-d_{3}\right) \neq 0$, being in $D_{0}, s^{-1} \in D_{0}$ and so

$$
x=\left[\beta\left(\alpha_{2} d_{2}-\alpha_{3} d_{3}\right)-\gamma\left(\alpha_{1} d_{1}-\alpha_{2} d_{2}\right)\right] s^{-1}
$$

would be in D_{0}, contrary to our choice of x. Hence

$$
\begin{equation*}
\gamma\left(d_{1}-d_{2}\right)=\beta\left(d_{2}-d_{3}\right) . \tag{3}
\end{equation*}
$$

This, in turn, forces

$$
\begin{equation*}
\gamma\left(\alpha_{1} d_{1}-\alpha_{2} d_{2}\right)=\beta\left(\alpha_{2} d_{2}-\alpha_{3} d_{3}\right) . \tag{4}
\end{equation*}
$$

Eliminating d_{3} between (3) and (4) we end up with

$$
\begin{equation*}
\gamma\left(\alpha_{3}-\alpha_{1}\right) d_{1}=(\alpha+\beta)\left(\alpha_{3}-\alpha_{2}\right) d_{2} . \tag{5}
\end{equation*}
$$

However, recalling that $\gamma=\alpha_{2}-\alpha_{3} \neq 0, \beta=\alpha_{1}-\alpha_{2} \neq 0$, (5) readily gives us that $d_{1}=d_{2}$.

Returning to (2) with the result $d_{1}=d_{2}$ in hand, we get $\left(\alpha_{1}-\alpha_{2}\right) d_{1}=$ $\left(\alpha_{1}-\alpha_{2}\right) a$, and so $a=d_{1}$. But then (1) tells us that $\left(x+\alpha_{1}\right) a=a\left(x+\alpha_{1}\right)$ and so $x a=a x$. This contradicts the fact that x does not commute with any element in L outside of F, and $a \in L, a \notin F$. The theorem is thus proved.

The theorem has some immediate implications, namely:
Corollary 1. Let D be a division algebra finite dimensional over its center F and let L be a maximal subfield of D. If K is a maximal separable subfield of D then $L \cap x K x^{-1}=F$ for some $x \in D$.

Corollary 2. If D is a division algebra finite dimensional over its center F and if $K=F(a)$ is a maximal subfield which is a simple extension of F, then for some $x \in D, a$ and $x a x^{-1}$ generate D over F.

Proof. By the theorem there is an $x \in D$ such that $x K x^{-1} \cap K=F$. Thus if D_{0} is the subalgebra of D generated by a and $x a x^{-1}$ over F, then K and $x K x^{-1}$ are both maximal subfields of D_{0}. Since the center of D_{0} is contained in every maximal subfield of D_{0} and $K \cap x K x^{-1}=F, F$ must be the center of D_{0}. But then, since K is a maximal subfield of $D_{0},\left[D_{0}: F\right]=[K: F]^{2}=[D: F]$ (where $[: F]$ denotes the degree over F). Hence $D=D_{0}$.

Corollary 3. If D is a division algebra finite dimensional over its center F then there exists an element $a \in D$ such that a and $x a x^{-1}$ generate D over F, for some $x \in D$.

Proof. D has a maximal subfield K which is separable over F. Thus $K=F(a)$ for some $a \in K$. Apply Corollary 2 to this.

We now prove
Theorem 2. Let D be a division algebra finite dimensional over its center F, and let $M \supset F$ be any subfield of D. Then $M=K_{1} \cap K_{2}$ for some maximal subfields K_{1}, K_{2} of D. In fact, if K is any maximal subfield of D which contains M then for some maximal subfield L of $D, K \cap L=M$.

Proof. Let $D_{1}=C_{D}(M)=\{x \in D \mid x m=m x$ for all $m \in M\} ; D_{1}$ is a division algebra and, by the double centralizer theorem [2], M is the center of D_{1}. Applying Corollary 1, if K is a maximal subfield of D_{1} then for some other maximal subfield L of $D_{1}, K \cap L=M$.

Now, any maximal subfield of D_{1} is a maximal subfield of D, for if $T \supset K \supset M$, where T is a field and K is a maximal subfield of D_{1}, then clearly T centralizes M, so $T \subset C_{D}(M)=D_{1}$. Hence $T=K$. This finishes the proof.

References

1. E. Artin, Galois theory (Notre Dame Mathematical Lectures No. 2, 1946).
2. I. N. Herstein, Non-commutative rings (Carus Monograph No. 15, 1968).
3. Nathan Jacobson, Structure of rings (A.M.S. Colloquium Series, No. XXXVII, 1956, 1964).
4. Irving Kaplansky, Fields and rings (Chicago Lectures in Mathematics, 1969).

University of Chicago,
Chicago, Illinois;
Weizmann Institute of Science,
Rehovot, Israel

[^0]: Received August 27, 1971. The research of the first named author was supported by NSF Grant GP-29269.

