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Abstract

The present paper numerically prices a resettable guarantee of a salary-connected individual
pension account (IPA). The results indicate that a principal guarantee without a reset feature
is not worth much unless the volatility of assets in the IPA is huge, while the death benefit
contributes a very small proportion to the guarantee value. Deferred proportional funding is
an alternative to reducing problems from the difficulty in modeling salary behavior, because
the required deferred proportional cost is impacted less by the salary behavior. Moreover, if
the lapse from a guarantee is possible, then the guarantee is not necessarily more valuable
for a younger individual.
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Introduction

As demographic aging becomes a global trend, workers everywhere are realizing that
they are exposed to the uncertainty that arises from unfunded social security systems.
This recognition is prompting a global wave of social security reforms, resulting in a
larger role for defined contribution (DC) pension plans and raising the question re-
garding how workers should be protected from capital market volatility since a no-
table feature of DC plans is that workers take charge of their own investment
decisions and therefore bear the investment risk. Concern over this question has
consequently prompted policymakers to provide or propose some forms of guarantee
for DC pension accumulations (see Lachance and Mitchell, 2003; Walliser, 2003).
Aside from mandatory DC plans, a wide range of voluntary DC plans have also
offered retirement guarantees, as discussed by Turner and Rajnes (2003).
Although one can find attractive provisions in guarantees on DC plans, there re-

mains the important issue of how to finance and price the costs of offering various
guarantees. The pension literature presents contingent claims pricing techniques
along the line of the Black and Scholes (1973) option price formula to value pension
guarantees. Marcus (1987), Hsieh et al. (1994), and Pennacchi and Lewis (1994) used
the contingent claims methodology to price the value of Pension Benefit Guarantee
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Corporation (PBGC) insurance. They focused on the defined benefit (DB) pension
guarantee and chose different termination provisions. In their models, the guaranteed
portfolio consists of a single contribution that grows with returns following a lognor-
mal distribution, in which the Black–Scholes formula provides a closed-form solution
for the guarantee values. Our study focuses efforts on a more complicated DC pension
guarantee that provides the death benefit and a reset provision. The ‘death benefit’
causes the guarantee to be paid off and terminated immediately upon the death of
the worker. The reset provision allows the holder to reset the guarantee level in
order to lock in market gains, but not to extend the ultimate maturity time.
Windcliff et al. (2001, 2002) indicated that Canada’s segregated fund guarantees,

which embed a death benefit and a reset feature in the contract, can be very valuable.
Although previous studies showed the segregated funds to be invested in by a group of
investors, each guarantee priced by this paper herein is provided for an individual pen-
sion account (IPA). Moreover, while the guaranteed asset consists of a single contri-
bution in the segregated fund guarantee, it is periodically contributed during the life
of the participant’s working career in the case of IPA. The guarantee on an IPA
should be salary-connected when the contributions of an IPA are connected with in-
dividual salaries, and therefore the accumulation of an IPA is a function of the entire
historical salaries.
This paper takes the salary-connected issue as an important consideration compared

to previous studies in the literature that price the segregated fund guarantee that embeds
a death benefit and a reset feature in the contract.Although this IPA framework assumes
the value of each contribution follows a lognormal distribution, the accumulation of
the contributions is not lognormal. The valuation of the guarantee on an IPA is there-
fore more complicated than simple applications of Margrabe’s (1978) option pric-
ing model where two assets to be exchanged are required to grow according to a
lognormal distribution in order to obtain a closed-form solution of the option’s value.
In addition to the path-dependent feature given above, both the reset provision and

the death benefit also increase the complexity of the valuation of a guarantee on an
IPA. The reset provision allows the guarantee level to rise not only by the new con-
tribution, but also by the current profit of an IPA. The death benefit makes the
guarantee be like time life insurance, where the policy allows only one claim to be
made within a contract period. Shimko (1992) provided a solution of a time integral
of European option prices for the value of a multiple claim insurance contract where
idiosyncratic risk affects policy valuation. One can apply Shimko’s (1992) approach to
the case of a claim-terminating policy using the intensity-adjusted risk-free interest
rate to replace the market risk-free interest rate. Shimko’s insurance pricing technique
cannot help generate a closed-form solution for the value of a guarantee on an IPA
due to the salary-connected feature, but it does help to construct an appropriate
equivalent security for the guarantee on an IPA. The value of the guarantee on an
IPA can then be numerically priced by evaluating its equivalent security. Chen
(2006) applied contingent claims pricing on the claim-terminating insurance contract
to value the guarantee on a new DC pension plan to exchange back an old defined
benefit. Although the guarantee priced herein has claim-terminating and salary-
connected features similar to Chen (2006), this paper focuses on pricing a resettable
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principal guarantee and extends beyond Chen (2006) by modeling the practice of de-
ferred funding. Based upon a variety of scenarios this paper further numerically esti-
mates the required deferred funding costs as well as up-front values for guarantees on
an IPA.
The remaining work is as follows: Section 1 provides the theoretical analysis of a

resettable guarantee on an IPA. Section 2 describes the numerical approach.
Section 3 presents results and discussions. Section 4 is a summary conclusion for
this paper.

Theoretic analysis of a resettable guarantee on an IPA

Assume each contract priced here is written for a principal guarantee on the accumu-
lation of an IPA with a death benefit and a reset provision. The guarantee level, or the
principal of an IPA, ascends by every contribution to the IPA during the life of the
contract as a proportion of the corresponding salary. Moreover, the reset provision
allows the holder to lock up the market gains of the IPA in the principal so as to in-
crease the guarantee level. The guarantee has an ultimate maturity time conditional
on the individual’s age and cannot be extended even if the guarantee level is reset.
Early termination can occur under a holder’s death or if the holder lapses before
the ultimate maturity. While the death benefit is provided, where the guarantee is
paid off immediately upon death, there is no payoff from the guarantee if the holder
lapses from the guarantee contract. To reduce moral hazard and basis risk for the con-
tract provider, each contract requires the asset of the IPA to be connected with a
specific traded portfolio or mutual fund.
The guarantee on an IPA is priced as a claim-terminating insurance contract. The

effect of the death benefit on the payoff of the guarantee is similar to one of life in-
surance. The reset feature is treated as an option provision of a structured insurance.
The approach from Shimko (1992) helps construct the appropriate equivalent security
to replicate the payoff of the guarantee.
While every contract is assumed to be written at time (t) 0, the ultimate maturity

time, T, is a function of the individual age at time 0, y. The value of an individual
guarantee V(C, K, y, t) is a function of the accumulation of an IPA, C(y,t), and the
guarantee level, K(y,t). The C(y,t) is determined from the salary history as well as
the rate of return on the portfolio connected to the IPA. Valuing C(y,t) is equivalent
to valuing a security with negative dividends and whose capital value grows like a
market index. The dividends are not proportional to the C(y,t) itself, but fixed pro-
portional to the worker’s salary level S(y,t). While the guarantee level, K(y,t), is set
at the level of the current accumulation of the IPA, C(y,t), if the reset is executed,
then it also automatically ascends by new contributions. We model the stochastic
differential equations for C(y,t) and S(y,t) as:

dC(y, t) = [π(C, t) · C(y, t) + g · S(y, t)] · dt+ σC(C, t) · C(y, t) · dZC, (1)
dS(y, t) = w(S, t) · S(y, t) · dt+ σS(S, t) · S(y, t) · dZS, (2)

where π(C,t) is the instantaneous expected rate of return on the connected portfolio, g
is the fixed contribution rate as a proportion of the salary, σC(C,t) is the standard
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deviation of the rate of return, and W(S,t) and σS(S,t) are the salary’s instantaneous
average growth rate and its volatility, respectively. Terms dZC and dZS are the stan-
dardized Wiener increments.
The net cash flow of the guarantee is a terminating type and equals the guarantee

payoff minus the value of the guarantee at the time of payment to surrender the con-
tract. Since there is no payoff from the guarantee for the holder’s lapse, the payoff of
the guarantee for this case is zero. Therefore, the net cash flow conditional on the
holder’s lapse, CFl, satisfies CFl =−V(C, K, y, t), where the holder gets nothing,
but surrenders the value of the contract. In the other case, the 100% guarantee is
paid off immediately upon death or ultimate maturity, where G(y, t) =max{[K(y, t) −
C(y, t)], 0}, representing the payoff of the guarantee for this case. The net cash
flow conditional on death or ultimate maturity, CFd, therefore satisfies that CFd=
G(y, t)−V(C, K, y, t), where the holder gets the 100% guarantee payoff and surren-
ders the value of the contract.
While the intensity rate for individual lapse from the guarantee contract, El(y, t),

and the intensity rate for individual death or ultimate maturity, Ed(y, t), are assumed
to be deterministic conditional functions of time, the terminating rate E(y, t) =
Ed(y, t) + El(y, t) also is a deterministic conditional function of time. The value of
an individual guarantee involves a minimum value constraint, Vmin =V(C, C, y, t),
which is the value of the contract if the reset is executed and the guarantee level is
reset at the level of the current accumulation of the IPA. The value of an individual
guarantee also must satisfy the boundary condition of being worthless at ultimate
maturity, V(C, K, y, T) = 0.
Subject to the boundary condition, the guarantee is equivalent to a risky security

that has an ultimate maturity value equal to 0 and dividends equal to G(y,t)
Ed(y,t) × Δt, and its value could jump to zero with an intensity of E(y,t) × Δt. One
may substitute the intensity-adjusted interest rate, r+ E(y, t), for the risk-free interest
rate in order to automatically include the terminating payment in the price of this
risky security. Merton (1976) and Shimko (1989, 1992) found a similar conclusion
about the pricing of the terminating payment. An up-front value of the guarantee
on an IPA can then be solved by numerically pricing its equivalent security.
We consider the Cox et al. (1985) single factor term structure model as an example

for stochastic short-term risk-free interest rate r(t).1 Let H(t, τ) be the risk-neutral
price at time t for a pure discount bond that pays off US$1 at maturity time t+ τ
and has a deterministic average intensity of �E · dt to jump instantaneously to zero be-
fore time t+ τ. H(t, τ) has the form:2

H(t, τ) = P(t, τ) · exp (−�E · τ), (3)

Where P(t, τ) =A(t, τ) exp[−B(t, τ)·r(t)],

A(t, τ) = 2γ · exp [(α+ γ)τ/2]
(α+ γ)[exp (γ · τ) − 1] + 2γ

[ ]2α·β/σ2r
,

1 The risk-neutral process for r in their model is dr = α(β − r) dt+ σr
�
r

√
dZr.

2 Please refer to Shimko (1989) and Merton (1976) for this intensity-adjusted bond-pricing formula.
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B(t, τ) = 2[exp (γ · τ) − 1]
(α+ γ)[exp (γ · τ) − 1] + 2γ

,

and γ = ����������
α2 + 2σ2r

√
. Parameter β in equation (3) is the mean-reverting drift, α is the

reversion rate, and σr is the volatility of changes in the interest rate. The claim-
terminating type of payment is automatically priced in the intensity-adjusted bond
pricing equation. Since the terminating rate of the guarantee on an IPA is assumed
to be a deterministic function of time, then term �E in equation (3), applied to a
guarantee valuation, should be the average terminating rate between time t and
time t+ τ.
Modeling the deferred funding, one can assume that the deferred proportional costs

are extracted from the accumulation of the IPA. The required deferred cost rate
charged for the guarantee is then determined so that the net residual value of the
guarantee is zero.

Numerical approach

The value of an equivalent security of the guarantee just described in the last section
will be numerically estimated by Monte Carlo simulation in a risk-neutral world. In
that, paths for all variables are simulated from their risk-neutral processes and each
payoff of the equivalent securities is discounted by multiplying the risk-neutral
price of a risky zero-coupon-bond as shown in equation (3).
The risk-neutral stochastic difference equation for salary level (S), the accumulation

of an IPA (C), and short-term risk-free interest rate (r) are set by equation (4), (5), and
(6), respectively:

St+Δt = St + (w− λS · σS) · St · Δt+ σS · St ·
���
Δt

√
· ZS, (4)

Ct+Δt = Ct + (rt · Ct + g · St) · Δt+ σC · Ct ·
���
Δt

√
· ZC, (5)

rt+Δt = rt + α · (β − rt) · Δt+ σr ·
�������
rt · Δt

√
· Zr, (6)

where the terms ZS, ZC, and Zr are stochastic variables of a standardized trivariate
normal distribution. Generating the samples ZS, ZC, and Zr requires that independent
samples x1, x2, and x3 from a univariate standardized normal distribution are
obtained first. The samples ZS, ZC, and Zr are then calculated one after another as
follows:

ZS = x1,ZC = ρSC · x1 +
���������
1− ρ2SC

√
· x2, Zr = ρCr · ZC +

���������
1− ρ2Cr

√
· x3,

where ρSC is the correlation between ZS and ZC, and ρCr is the one between ZC and
Zr. This scheme was suggested by Hull (1997) to avoid an impossible correlation
structure where the Cholesky decomposition of the correlation matrix for ZS, ZC,
and Zr does not exhibit real solutions. The feasible correlations between ZS, ZC,
and Zr in this scheme are required to satisfy ρSr = ρSC ρCr, where ρSr is the correlation
between ZS and Zr.
Equation (4) indicates that the unconditional distribution of salary is lognormal.

Following Chen (2006), this description of salary allows the possibility for negative
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wage growth and is based on the fact that negative wage growth could happen during
an economic slump. In equation (4), the term w− λS σS is the risk-adjusted expected
growth rate of salary, whereby λS and σS are respectively the market price of salary
risk and the volatility of salary.
Equation (5) presents that the risk-neutral expected rate of return on the IPA is

assumed to be the short-term risk-free interest rate, rt. This assumption is based
on a result for the equilibrium pricing theory, as the asset of the IPA is connected
with a specific traded portfolio. In equation (5), the term g is the fixed contribution
rate as a proportion of salary and σC is the volatility of the accumulation of an IPA.
Equation (6) indicates that the risk-neutral short-term risk-free interest rate is gen-

erated using the Euler scheme to discrete-time approximate the stochastic interest rate
modeled in Cox et al. (1985).3 In that, β is the mean-reverting drift, α is the reversion
rate, and σr

��
rt

√
is the volatility of the interest rate. One problem with this scheme is

that the discrete process for the interest rate could become negative with non-zero
probability, which makes the computation of

��
rt

√
impossible, if the size of the time

step is not enough small. To handle this problem and to consider both simplicity
and efficiency simultaneously, Lord et al. (2010) proposed a Full Truncation fix as
in equation (7):

rt+Δt = rt + α · (β − rt+) · Δt+ σr ·
��������
rt+ · Δt

√
· Zr, (7)

where rt
+ =max(rt, 0). This scheme allows the process for the interest rate to go below

zero while avoiding making the computation of
��
rt

√
impossible. A full truncation fix

to prevent the interest rate from going to become negative involves taking the maxi-
mum of the value generated from equation (6) and zero as equation (8):

rt+Δt = max{[rt + α · (β − rt) · Δt+ σr ·
�������
rt · Δt

√
· Zr], 0}. (8)

The fix schemes of equations (7) and (8) are not to be used before a known failure of
the time stepping from the original Euler scheme as in equation (6).4

When modeling the deferred funding, the risk-neutral stochastic difference equation
for the accumulation of an IPA, equation (5), is reset by equation (9):

Ct+Δt = Ct + [rt · Ct + (g − p) · St] · Δt+ σC · Ct ·
���
Δt

√
· ZC, (9)

where p is the deferred proportional cost on salary. In order to maintain the central
theme as being salary-related throughout this paper, we only model the cost pro-
portional to salary and leave the alternative of the cost proportional to the value of
the IPA aside here.5

3 According to Hull (1997), equation (6) leads directly to the risk-neutral process for interest rates, and the
necessary risk-adjustments are incorporated in equation (6), so that the assumption about the market
price of interest rate risk does not matter in the current valuation.

4 One can also review other discrete-time approximate schemes for square root diffusions in the studies of
Andersen (2008) and van Haastrecht and Pelsser (2010). They also proposed some new algorithms for
time discretization of the Heston stochastic volatility model, in that the volatility process has the
same form as the interest rate process of Cox et al. (1985).

5 While the proportional deferred cost (p) is charged and increasing, the net residual up-front value of the
guarantee should be decreasing to zero when it reaches a required charge fee. Herein, we exclude the case
when the deferred fee is deeply overcharged, where the term (g− p) in equation (9) could become a
minus.
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Regarding the expected terminating rate, we suppose that the guarantee should ulti-
mately mature when the individual reaches 60 years old and assume two types, 5%
and no lapse, for the deterministic annual lapse intensity. Table 1 shows the female
mortality rates on an annual basis based on the fourth and third experience mortality
tables provided by the Life Insurance Association of R.O.C.,6 which are used respect-
ively as the low and high types of expected intensity of individual death (EIID). The
ratio of the EIID of the low type to the high type is about 50%–60%. For monthly
calculations, the early terminations are assumed to be uniformly distributed over
the year of age. The two-type lapse and mortality purposes not only mitigate the ques-
tion from the arbitrary choice of the rate, but also mainly help analyze the sensitivity
of the guarantee value to early terminating intensity.
We assume the reset provision is ignored or used optimally at any time a new con-

tribution is made. If resets are ignored, then the guarantee level at time t+Δt, Kt+Δt,
satisfies Kt+Δt=Kt+ g× St ×Δt. If the resets are used optimally, then Kt+Δt=max
{Ct,Kt} + g× St ×Δt. The value of a reset feature is observed from the difference in
results between the two types of reset.7

Results and Discussion

The results and discussion are followed by carrying out Monte Carlo simulations
based on 11 scenario assumptions about the parameter values of the stochastic vari-
ables as summarized in Table 2. Scenario 1 is the base scenario, and each of the latter
eight scenarios adjusts one of the parameter values to see its impact on the results.
Although none of the scenarios are factual enough for the real world, the differences
in results among the scenarios contribute to the discussion on the sensitivities of the
value of the guarantee and the values of a death benefit and a reset feature attached to
the guarantee on the parameter values.
Within Scenario 1, assume that both coefficients of correlations ρSC and ρCr are

equal to zero. The annual average growth rate of salary (w) and its volatility (σS)
are respectively 0.04 and 0.03, the market price of salary risk is zero, and the volatility
of the return on the asset of an IPA, σC, is conservatively assumed to be 0.04. We take
the parameter values for the process of the risk-free interest rate from Maurer and
Schlag (2003) as a benchmark, where the mean-reverting drift (representing the long-
run average level) β, the reversion rate α, and the volatility σr are respectively equal to
0.05, 0.15, and 0.05.8 We set the initial risk-free interest rate or the risk-free interest
rate at the pricing time, r0, at 0.03, reflecting a low interest rate relative to its long-run
average level.
Following Scenario 1, the volatility of the return on the asset of an IPA, σC, is

doubled to 0.08 in Scenario 2. The parameter values for the risk-free interest rate

6 The Life Insurance Association of R.O.C. develops a new mortality table every 8 years, with each mor-
tality table developed based on Taiwan’s life insurance experiences of the preceding 4 years.

7 One could treat an optimal reset herein as an automatic reset conditional on the value of the current
accumulation of the IPA, Ct, being greater than the current guarantee level Kt.

8 The original estimates in Maurer and Schlag (2003) are 0.0539, 0.1494, and 0.0511 for the mean-
reverting drift, reversion rate, and the volatility, respectively.
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as σr decrease to be 0.025 in Scenario 3, as β increases to be 7% in Scenario 4, as r0
increases to be 5% in Scenario 5, and as α increases to be 0.3 in Scenario 6. The av-
erage salary growth rate (w) is increased to 7% in Scenario 7, and the market price of

Table 1. The EIID

Age EIID (low type) EIID (high type)

20 0.000530 0.000838
21 0.000536 0.000849
22 0.000533 0.000855
23 0.000525 0.000860
24 0.000515 0.000870
25 0.000507 0.000890
26 0.000504 0.000926
27 0.000510 0.000982
28 0.000527 0.001063
29 0.000556 0.001159
30 0.000593 0.001259
31 0.000638 0.001353
32 0.000688 0.001428
33 0.000743 0.001479
34 0.000802 0.001516
35 0.000865 0.001551
36 0.000931 0.001599
37 0.001001 0.001675
38 0.001074 0.001789
39 0.001153 0.001944
40 0.001240 0.002138
41 0.001336 0.002371
42 0.001445 0.002641
43 0.001567 0.002947
44 0.001707 0.003280
45 0.001867 0.003633
46 0.002049 0.003997
47 0.002257 0.004362
48 0.002491 0.004723
49 0.002747 0.005090
50 0.003017 0.005474
51 0.003294 0.005889
52 0.003572 0.006346
53 0.003848 0.006852
54 0.004140 0.007393
55 0.004469 0.007949
56 0.004858 0.008499
57 0.005327 0.009024
58 0.005895 0.009521
59 0.006554 0.010064

Note: These are the female mortality rates on an annual basis based on the fourth and third
experience mortality tables provided by the Life Insurance Association of R.O.C. The former
is used as the low type of EIID and the latter is used as the high type of EIID.
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salary risk (λS), is adjusted to −0.1 in both Scenarios 8 and 9. Scenario 9 also simul-
taneously adjusts the volatility of salary σS to 0.06 in order to see the effect of an in-
crease in the volatility of salary with a negative market price of salary risk.9 Lastly, we
respectively adjust the coefficients of correlations ρSC and ρCr to 0.5 in Scenarios 10
and 11.
For all scenarios, we assume that the initial yearly salary is US$240,000, the initial

accumulation of an IPA is zero, and the contribution rate of an IPA is 6%, which is
the current mandatory contribution rate for Taiwan’s labor IPAs. We use a monthly
time interval, setting the size of the time step Δt= 1/12. Every final valuation is cal-
culated by the arithmetic average of the valuations from the 30,000 paths. All simula-
tions are executed by the version 6.0.0.1 of ‘The GAUSS Mathematical and Statistical
System’. Since the time stepping scheme does not fail in executing the discrete process
of the interest rate of equation (6), we do not use the Full Truncation fix of Lord et al.
(2010) as in equation (7). Before determining the number of simulation paths to be
30,000, we first execute 20,000 paths and then increase the number to 30,000. The
simulation’s estimates of the up-front guarantee values remain almost the same,
while the standard errors of the simulations drop to a reasonably small level.10

The up-front guarantee values

Tables 3 and 4 present the up-front guarantee values as a fraction of the initial con-
tribution of the IPA for individuals whose ages are 20, 25, 30, 35, 40, and 45. The
standard errors for every valuation are in the parentheses. Values in Table 4 are
the results when ignoring the reset feature. We omit the results for Scenarios 10

Table 2. The assumptions of stochastic scenarios

Scenario w σS λS σC α β σr r0

1 0.04 0.03 0 0.04 0.15 0.05 0.05 0.03
2 – – – 0.08 – – – –

3 – – – – – – 0.025 –

4 – – – – – 0.07 – –

5 – – – – – – 0.05
6 – – – – 0.30 – – –

7 0.07 – – – – – – –

8 – −0.1 – – – – –

9 – 0.06 −0.1 – – – – –

Note: This table presents the assumptions of the main parameter values for equations (4)–(6).
Here, r0 is the interest rate at pricing time. The short dotted line (–) hints that the referred value
is assumed to be the same as the one in Scenario 1 and therefore omitted.

9 The negative market price of salary risk is considered, as salary growth and the return on the market
portfolio could be negatively correlated.

10 One can refer to chapter 15 of Hull (1997) for some variance reduction procedures for Monte Carlo
simulation when the strict accuracy of a simulation is required with a limited cost of computation time.
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Table 3. The up-front guarantee values with a death benefit and a reset feature as a fraction of the initial monthly contribution

Age
Type of
EIID

Annual lapse
intensity

Scenario

1 2 3 4 5 6 7 8 9

20 High 0.05 0.3550
(0.0022)

1.5602
(0.0078)

0.2988
(0.0018)

0.1741
(0.0012)

0.3197
(0.0020)

0.2968
(0.0018)

0.6159
(0.0040)

0.3733
(0.0023)

0.3931
(0.0025)

0 2.2875
(0.0161)

10.1273
(0.0569)

1.9143
(0.0130)

1.1013
(0.0090)

2.0658
(0.0146)

1.9071
(0.0131)

4.0708
(0.0291)

2.4115
(0.0170)

2.5468
(0.0185)

Low 0.05 0.3196
(0.0023)

1.4121
(0.0081)

0.2678
(0.0019)

0.1547
(0.0013)

0.2883
(0.0021)

0.2664
(0.0019)

0.5664
(0.0042)

0.3368
(0.0024)

0.3554
(0.0026)

0 2.1768
(0.0170)

9.6610
(0.0594)

1.8170
(0.0137)

1.0413
(0.0095)

1.9667
(0.0154)

1.8109
(0.0138)

3.9190
(0.0306)

2.2973
(0.0179)

2.4283
(0.0194)

25 High 0.05 0.3887
(0.0024)

1.6990
(0.0085)

0.3320
(0.0020)

0.1954
(0.0014)

0.3499
(0.0022)

0.3301
(0.0020)

0.6293
(0.0041)

0.4063
(0.0026)

0.4251
(0.0027)

0 1.9888
(0.0139)

8.7561
(0.0487)

1.6921
(0.0114)

0.9838
(0.0079)

1.7963
(0.0126)

1.6874
(0.0116)

3.2837
(0.0233)

2.0833
(0.0146)

2.1834
(0.0157)

Low 0.05 0.3539
(0.0026)

1.5562
(0.0089)

0.3013
(0.0021)

0.1756
(0.0014)

0.3193
(0.0023)

0.3002
(0.0021)

0.5834
(0.0043)

0.3706
(0.0027)

0.3884
(0.0029)

0 1.8998
(0.0148)

8.3904
(0.0508)

1.6131
(0.0121)

0.9332
(0.0083)

1.7172
(0.0133)

1.6103
(0.0122)

3.1696
(0.0245)

1.9921
(0.0153)

2.0897
(0.0164)

30 High 0.05 0.4204
(0.0027)

1.8097
(0.0092)

0.3634
(0.0023)

0.2187
(0.0016)

0.3780
(0.0025)

0.3603
(0.0023)

0.6354
(0.0042)

0.4370
(0.0028)

0.4544
(0.0030)

0 1.7093
(0.0121)

7.4032
(0.0411)

1.4730
(0.0101)

0.8772
(0.0070)

1.5418
(0.0110)

1.4648
(0.0102)

2.6205
(0.0187)

1.7791
(0.0126)

1.8528
(0.0134)

Low 0.05 0.3878
(0.0028)

1.6780
(0.0096)

0.3342
(0.0024)

0.1993
(0.0017)

0.3495
(0.0026)

0.3322
(0.0024)

0.5946
(0.0044)

0.4036
(0.0030)

0.4203
(0.0031)

0 1.6407
(0.0126)

7.1267
(0.0428)

1.4113
(0.0106)

0.8362
(0.0074)

1.4817
(0.0115)

1.4055
(0.0107)

2.5381
(0.0197)

1.7091
(0.0132)

1.7814
(0.0140)
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35 High 0.05 0.4421
(0.0029)

1.8701
(0.0096)

0.3868
(0.0025)

0.2388
(0.0018)

0.3956
(0.0026)

0.3804
(0.0025)

0.6232
(0.0042)

0.4567
(0.0030)

0.4719
(0.0032)

0 1.4272
(0.0101)

6.0699
(0.0334)

1.2458
(0.0086)

0.7624
(0.0062)

1.2815
(0.0091)

1.2286
(0.0086)

2.0317
(0.0145)

1.4757
(0.0104)

1.5262
(0.0110)

Low 0.05 0.4127
(0.0030)

1.7553
(0.0100)

0.3603
(0.0026)

0.2205
(0.0019)

0.3705
(0.0028)

0.3553
(0.0026)

0.5886
(0.0044)

0.4268
(0.0031)

0.4415
(0.0033)

0 1.3761
(0.0105)

5.8721
(0.0348)

1.1996
(0.0091)

0.7302
(0.0065)

1.2381
(0.0096)

1.1851
(0.0091)

1.9742
(0.0152)

1.4240
(0.0109)

1.4737
(0.0115)

40 High 0.05 0.4419
(0.0030)

1.8316
(0.0096)

0.3903
(0.0026)

0.2502
(0.0019)

0.3911
(0.0027)

0.3797
(0.0026)

0.5806
(0.0040)

0.4536
(0.0031)

0.4661
(0.0032)

0 1.1319
(0.0081)

4.7154
(0.0259)

0.9980
(0.0070)

0.6350
(0.0051)

1.0053
(0.0073)

0.9733
(0.0069)

1.4967
(0.0108)

1.1626
(0.0083)

1.1954
(0.0087

Low 0.05 0.4180
(0.0031)

1.7435
(0.0100)

0.3684
(0.0027)

0.2341
(0.0020)

0.3715
(0.0028)

0.3595
(0.0027)

0.5540
(0.0042)

0.4294
(0.0032)

0.4416
(0.0033)

0 1.0978
(0.0084)

4.5923
(0.0269)

0.9664
(0.0073)

0.6114
(0.0053)

0.9775
(0.0076)

0.9446
(0.0072)

1.4604
(0.0112)

1.1282
(0.0086)

1.1607
(0.0090)

45 High 0.05 0.4225
(0.0030)

1.6760
(0.0092)

0.3780
(0.0026)

0.2538
(0.0020)

0.3656
(0.0027)

0.3601
(0.0026)

0.5175
(0.0037)

0.4309
(0.0031)

0.4397
(0.0032)

0 0.8601
(0.0063)

3.4236
(0.0193)

0.7685
(0.0055)

0.5134
(0.0042)

0.7463
(0.0056)

0.7331
(0.0054)

1.0568
(0.0078)

0.8775
(0.0064)

0.8958
(0.0066)

Low 0.05 0.4069
(0.0031)

1.6224
(0.0095)

0.3633
(0.0027)

0.2420
(0.0021)

0.3536
(0.0028)

0.3470
(0.0027)

0.5011
(0.0038)

0.4152
(0.0032)

0.4240
(0.0033)

0 0.8419
(0.0065)

3.3635
(0.0199)

0.7511
(0.0057)

0.4990
(0.0044)

0.7328
(0.0058)

0.7179
(0.0056)

1.0387
(0.0081)

0.8592
(0.0067)

0.8775
(0.0069)

Source: Author’s calculations.
Note: The standard errors for every valuation are in the parentheses (Is). A 95% confidence interval for every valuation is between every valuation ± 1.96I.
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Table 4. The up-front guarantee values ignoring resets as a fraction of the initial monthly contribution

Age
Type of
EIID

Annual lapse
intensity

Scenario

1 2 3 4 5 6 7 8 9

20 High 0.05 0.0006
(0.0000)

0.0167
(0.0005)

0.0003
(0.0000)

0.0002
(0.0000)

0.0002
(0.0000)

0.0003
(0.0000)

0.0007
(0.0000)

0.0006
(0.0000)

0.0006
(0.0000)

0 0.0009
(0.0000)

0.0625
(0.0035)

0.0004
(0.0000)

0.0004
(0.0000)

0.0004
(0.0000)

0.0003
(0.0000)

0.0015
(0.0003)

0.0010
(0.0000)

0.0010
(0.0001)

Low 0.05 0.0003
(0.0000)

0.0111
(0.0005)

0.0002
(0.0000)

0.0001
(0.0000)

0.0001
(0.0000)

0.0002
(0.0000)

0.0004
(0.0000)

0.0003
(0.0000)

0.0003
(0.0000)

0 0.0005
(0.0000)

0.0488
(0.0035)

0.0002
(0.0000)

0.0002
(0.0000)

0.0002
(0.0000)

0.0002
(0.0000)

0.0010
(0.0003)

0.0005
(0.0000)

0.0006
(0.0001)

25 High 0.05 0.0008
(0.0000)

0.0248
(0.0008)

0.0004
(0.0000)

0.0003
(0.0000)

0.0003
(0.0000)

0.0003
(0.0000)

0.0011
(0.0001)

0.0008
(0.0000)

0.0008
(0.0000)

0 0.0015
(0.0002)

0.0876
(0.0043)

0.0005
(0.0000)

0.0007
(0.0002)

0.0007
(0.0002)

0.0004
(0.0000)

0.0026
(0.0006)

0.0015
(0.0002)

0.0016
(0.0002)

Low 0.05 0.0005
(0.0000)

0.0176
(0.0008)

0.0002
(0.0000)

0.0001
(0.0000)

0.0002
(0.0000)

0.0002
(0.0000)

0.0007
(0.0001)

0.0005
(0.0000)

0.0005
(0.0000)

0 0.0009
(0.0002)

0.0714
(0.0043)

0.0003
(0.0000)

0.0002
(0.0000)

0.0005
(0.0002)

0.0002
(0.0000)

0.0020
(0.0006)

0.0010
(0.0002)

0.0010
(0.0003)

30 High 0.05 0.0011
(0.0001)

0.0373
(0.0012)

0.0005
(0.0000)

0.0004
(0.0000)

0.0005
(0.0000)

0.0004
(0.0000)

0.0014
(0.0001)

0.0011
(0.0001)

0.0012
(0.0001)

0 0.0020
(0.0003)

0.1181
(0.0050)

0.0007
(0.0000)

0.0009
(0.0002)

0.0009
(0.0002)

0.0006
(0.0000)

0.0030
(0.0005)

0.0020
(0.0003)

0.0021
(0.0003)

Low 0.05 0.0007
(0.0001)

0.0282
(0.0012)

0.0003
(0.0000)

0.0002
(0.0000)

0.0003
(0.0000)

0.0002
(0.0000)

0.0009
(0.0001)

0.0007
(0.0001)

0.0007
(0.0001)

0 0.0013
(0.0003)

0.0995
(0.0050)

0.0004
(0.0000)

0.0003
(0.0000)

0.0006
(0.0002)

0.0003
(0.0000)

0.0022
(0.0005)

0.0013
(0.0003)

0.0014
(0.0003)
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35 High 0.05 0.0015
(0.0001)

0.0577
(0.0017)

0.0007
(0.0000)

0.0005
(0.0000)

0.0006
(0.0000)

0.0006
(0.0000)

0.0018
(0.0001)

0.0015
(0.0001)

0.0016
(0.0001)

0 0.0025
(0.0002)

0.1595
(0.0055)

0.0009
(0.0000)

0.0003
(0.0000)

0.0010
(0.0001)

0.0008
(0.0000)

0.0032
(0.0003)

0.0025
(0.0002)

0.0026
(0.0002)

Low 0.05 0.0009
(0.0001)

0.0463
(0.0016)

0.0004
(0.0000)

0.0003
(0.0000)

0.0003
(0.0000)

0.0003
(0.0000)

0.0011
(0.0001)

0.0009
(0.0001)

0.0009
(0.0001)

0 0.0015
(0.0002)

0.1387
(0.0055)

0.0005
(0.0000)

0.0004
(0.0000)

0.0006
(0.0001)

0.0004
(0.0000)

0.0020
(0.0003)

0.0015
(0.0002)

0.0016
(0.0002)

40 High 0.05 0.0028
(0.0002)

0.0912
(0.0024)

0.0011
(0.0000)

0.0008
(0.0000)

0.0012
(0.0001)

0.0009
(0.0000)

0.0036
(0.0003)

0.0029
(0.0002)

0.0030
(0.0002)

0 0.0050
(0.0005)

0.2149
(0.0063)

0.0015
(0.0001)

0.0022
(0.0003)

0.0022
(0.0003)

0.0013
(0.0001)

0.0069
(0.0007)

0.0052
(0.0005)

0.0053
(0.0005)

Low 0.05 0.0018
(0.0002)

0.0779
(0.0024)

0.0006
(0.0000)

0.0005
(0.0000)

0.0008
(0.0001)

0.0005
(0.0000)

0.0025
(0.0003)

0.0019
(0.0002)

0.0020
(0.0002)

0 0.0036
(0.0005)

0.1941
(0.0064)

0.0009
(0.0001)

0.0006
(0.0000)

0.0016
(0.0003)

0.0007
(0.0001)

0.0052
(0.0007)

0.0037
(0.0005)

0.0039
(0.0005)

45 High 0.05 0.0057
(0.0003)

0.1343
(0.0032)

0.0021
(0.0001)

0.0014
(0.0001)

0.0023
(0.0002)

0.0017
(0.0001)

0.0071
(0.0005)

0.0058
(0.0004)

0.0060
(0.0004)

0 0.0099
(0.0007)

0.2631
(0.0066)

0.0029
(0.0002)

0.0040
(0.0005)

0.0040
(0.0005)

0.0024
(0.0002)

0.0128
(0.0009)

0.0102
(0.0007)

0.0105
(0.0008)

Low 0.05 0.0044
(0.0003)

0.1216
(0.0032)

0.0013
(0.0001)

0.0008
(0.0001)

0.0018
(0.0002)

0.0010
(0.0001)

0.0057
(0.0005)

0.0045
(0.0004)

0.0047
(0.0004)

0 0.0082
(0.0007)

0.2460
(0.0067)

0.0019
(0.0002)

0.0012
(0.0001)

0.0034
(0.0005)

0.0016
(0.0002)

0.0109
(0.0010)

0.0084
(0.0008)

0.0088
(0.0008)

Source: Author’s calculations.
Note: The standard errors for every valuation are in the parentheses (Is). A 95% confidence interval for every valuation is between every valuation ± 1.96I.
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and 11 to save space, because those results are almost the same as the results for
Scenario 1. This shows that a variation in the conditional correlations between salary,
the accumulation of the IPA, and the interest rate has very little effect on the guaran-
tee’s values.11 Although each simulation proceeds by an initial yearly salary of US
$240,000 and a constant contribution rate of 6%, the results are robust to a change
in the initial salary or the contribution rate. That means every up-front guarantee
value before being divided by the initial contribution fluctuates with the initial salary
and the contribution rate on a constant scale.
Compared to Table 3, the values in Table 4 are dramatically lower, showing that a

principal guarantee with a death benefit on an IPA relative to the one with both a
death benefit and a reset feature is worth little. We find that the guarantee has an av-
erage 99.43% value contributed by the reset feature, which is consistent with the result
by Windcliff et al. (2001). The rest of this subsection focuses on discussing the findings
in Table 3.
Before discussing the results among different scenarios in Table 3, we summarize

the main findings based on the results with different types of EIID and lapse. First,
up-front guarantee values decrease by over 50% and up to 80%, while the annual
lapse intensity increases from zero to 0.05. Table 5 shows the percentage reduction
in the up-front guarantee values when the annual lapse intensity increases. By lapsing,
the holder of the guarantee surrenders the right to the contract and the writer is not
responsible for any payments, and hence lapsing from the guarantee is beneficial to
the writer. Table 5 also further shows how these up-front guarantee values are reduced

Table 5. The percentage reduction in the up-front guarantee values when the annual
lapse intensity increases from zero to 0.05 (using the results in Table 3 for calculation)

Age Type of EIID

Scenario

1 2 3 4 5 6 7 8 9

20 High 84.48 84.59 84.39 84.19 84.52 84.44 84.87 84.52 84.56
Low 85.32 85.38 85.26 85.14 85.34 85.29 85.55 85.34 85.36

25 High 80.46 80.60 80.38 80.14 80.52 80.44 80.84 80.50 80.53
Low 81.37 81.45 81.32 81.18 81.41 81.36 81.59 81.40 81.41

30 High 75.41 75.56 75.33 75.07 75.48 75.40 75.75 75.44 75.48
Low 76.36 76.45 76.32 76.17 76.41 76.36 76.57 76.39 76.41

35 High 69.02 69.19 68.95 68.68 69.13 69.04 69.33 69.05 69.08
Low 70.01 70.11 69.97 69.80 70.08 70.02 70.19 70.03 70.04

40 High 60.96 61.16 60.89 60.60 61.10 60.99 61.21 60.98 61.01
Low 61.92 62.03 61.88 61.71 61.99 61.94 62.07 61.94 61.95

45 High 50.88 51.05 50.81 50.56 51.01 50.88 51.03 50.89 50.92
Low 51.67 51.76 51.63 51.50 51.75 51.66 51.76 51.68 51.68

11 The assumption that the coefficients of correlations ρSC and ρCr are equal to zero only means that the
conditional distributions of salary, the accumulation of the IPA, and the interest rate are independent.
Based on equation (5), the accumulation of an IPA is in fact affected by the risk-free interest (r) and
salary (S).
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from a lapsing loss in a greater proportion for younger workers, whereas in a stable
proportion among different scenarios. Figure 1 illustrates the above relationships be-
tween the percentage reduction and age for Scenario 1. Although modeling a holder’s
lapsing behavior is not simple work, one can infer that if lapsing from the guarantee is
beneficial to the writer, then the holder remains in the contract as long as possible
and lapses simply for liquidity or other non-strategic reasons, like individual
unemployment.12

Table 6 shows the percentage increment in the up-front guarantee values when the
high type of EIID is used instead of the low type of EIID, where the up-front guaran-
tee values go up about 2% to 10%. The high type averages about 1.6 to 2 times the
intensity of the low type. Since the guarantee averages a 99.43% value contributed
by the reset feature, one infers that an increase in the value of a death benefit from
higher death intensity is also mainly contributed by the reset feature. We find the con-
tribution of a reset feature on the value of a death benefit by observing the spreads of
figures in Tables 3 and 4 among different types of EIID. Table 6 further shows how
the guarantee values increase from higher death intensity in greater proportion for
younger workers and in a stable proportion among nine scenarios. Figure 2 illustrates
the above relationships between the percentage increment and age for Scenario 1.
Given the type of EIID, the relationship between the up-front guarantee value and

individual age depends on the holder’s lapsing behavior. The results in Table 3 show
that the up-front guarantee value monotonically decreases with the individual’s age if
there is no lapse. However, for an annual lapse intensity of 0.05, a simple monotonic
relationship between the guarantee value and the individual age does not exist any-
more, due to the fact that the time value of a longer contract is diluted by a greater

Figure 1. The percentage reduction in the up-front guarantee values
when the annual lapse intensity increases from zero to 0.05 for
Scenario 1 (using the results in Table 3 for calculation).

12 Although individual unemployment cannot cause the termination of an IPA since the IPAs are portable
for individuals, it could result in a lapse from the guarantee on the IPA for the reason of individual
liquidity concerns or a lapse provision of the guarantee contract.
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lapse loss. Figure 3 illustrates the above relationships between the up-front guarantee
value and the individual’s age using Scenario 1 with a high type of EIID.
After discussing the results of horizontal sections in Table 3, we proceed to discuss

the results among different scenarios in order to analyze the sensitivities of guarantee
values on parameter values. First, there is a notable spread between results in the first
two scenarios. While the volatility of the asset of the IPA doubles in Scenario 2, it
averages over four times the guarantee value of Scenario 1. Because the guarantee
value is notably sensitive to the volatility of the IPA’s assets, it is an important
requirement of the guarantee contract that the asset of an IPA must be connected

Figure 2. The percentage increment in the up-front guarantee values
when the high type of EIID is used instead of the low one for Scenario
1 (using the results in Table 3 for calculation).

Table 6. The percentage increment in the up-front guarantee values when the high type
of EIID is used instead of the low one (using the results in Table 3 for calculation)

Age
Annual lapse
intensity

Scenario

1 2 3 4 5 6 7 8 9

20 0.05 11.08 10.49 11.58 12.54 10.89 11.41 8.74 10.84 10.61
0 5.09 4.83 5.36 5.76 5.04 5.31 3.87 4.97 4.88

25 0.05 9.83 9.18 10.19 11.28 9.58 9.96 7.87 9.63 9.45
0 4.68 4.36 4.90 5.42 4.61 4.79 3.60 4.58 4.48

30 0.05 8.41 7.85 8.74 9.73 8.15 8.46 6.86 8.28 8.11
0 4.18 3.88 4.37 4.90 4.06 4.22 3.25 4.10 4.01

35 0.05 7.12 6.54 7.36 8.30 6.77 7.06 5.88 7.01 6.89
0 3.71 3.37 3.85 4.41 3.51 3.67 2.91 3.63 3.56

40 0.05 5.72 5.05 5.94 6.88 5.28 5.62 4.80 5.64 5.55
0 3.11 2.68 3.27 3.86 2.84 3.04 2.49 3.05 2.99

45 0.05 3.83 3.30 4.05 4.88 3.39 3.78 3.27 3.78 3.70
0 2.16 1.79 2.32 2.89 1.84 2.12 1.74 2.13 2.09
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with a specific traded portfolio or fund so as to reduce both moral hazard and basis
risk for the contract provider.
While we discuss the sensitivities of results on the risk-free interest rate, we are

reminded that the interest rate affects the yield of the asset of an IPA, aside from
impacting the present value interest factor. Those two effects are partially offset
since they cause the guarantee value (especially the reset value) to change in opposite
directions. Nevertheless, one still can see that the up-front guarantee value is posi-
tively related to the volatility of the interest rate (σr) and negatively related to the
interest rate at pricing time (r0) and the long-run average interest rate (β) based on
comparing the results of Scenarios 3–5 to the results of Scenario 1 in Table 3.
Nevertheless, while the guarantee value averages a 50% decline when the long-run av-
erage interest rate rises from 0.05 (in Scenario 1) to 0.07 (in Scenario 4), the sensitiv-
ities of the guarantee value on interest rate volatility and the interest rate at pricing
time are not obvious.
The results in Scenario 6 additionally show that when the reversion rate of the inter-

est rate doubles, the guarantee values decline as Scenario 3 where the volatility of the
interest rate decreases in half. This is due to the fact that, once the interest rate devi-
ates far from the long-term average, the duration of adjustment toward the long-term
average shortens as its reversion rate lengthens. Thus, with a higher reversion rate, the
chances for abnormally high or low interest rates are fewer. The effect of a higher re-
version rate of the interest rate on the guarantee value is thus similar to the effect of a
lower volatility of the interest rate.
The discussion now proceeds to the sensitivity of the guarantee value on salary. The

average salary growth affects the size of the asset of an IPA and has a positive re-
lationship with the guarantee value. Scenario 7 assumes an expected salary growth
of 0.07 and averages about 1.5 times the guarantee value of Scenario 1 where the
expected salary growth is 0.04. Furthermore, the sensitivity of the up-front guarantee

Figure 3. The up-front guarantee values with a death benefit and a
reset feature as a fraction of the initial monthly contribution using a
high type of EIID and Scenario 1 from the results in Table 3.
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value to the volatility of salary depends on the market price of salary risk. When the
market price of salary risk is assumed to be zero, the influence of the volatility of sal-
ary on the guarantee value is not shown, because it is very small. However, in the case
where the market price of salary risk is assumed to be −0.1, the guarantee values be-
come sensitive to the volatility of salary, as seen by comparing the results in Scenario
9 with those in Scenario 8. This finding is consistent with the previous study of Chen
(2006) who valued the guarantee to exchange back a DB for the DC pension plan. An
accurate estimation of the market price of salary risk is thus important for valuing an
IPA’s guarantee.

The required deferred costs

Table 7 presents the required deferred cost proportional on salary, given a fixed con-
tribution rate of 6%. We approximate each estimate by gradual interpolation to make
the up-front guarantee value zero. Since the deferred cost is charged over the life of

Table 7. The required annual fee rate on salary: given a contribution rate of 6%
(in basis points)

Age
Type of
EIID

Annual lapse
intensity

Scenario

1 2 3 4 5 6 7 8 9

20 High 0.05 1.08 4.74 0.93 0.62 1.07 0.95 1.22 1.10 1.11
0 3.19 13.92 2.73 1.97 3.19 2.85 3.06 3.17 3.16

Low 0.05 0.97 4.25 0.83 0.55 0.96 0.85 1.11 0.98 1.02
0 2.99 13.08 2.56 1.84 2.99 2.67 2.88 2.98 2.96

25 High 0.05 1.25 5.37 1.07 0.72 1.23 1.10 1.36 1.26 1.27
0 3.14 13.56 2.71 1.93 3.14 2.82 3.04 3.13 3.12

Low 0.05 1.13 4.87 0.96 0.65 1.11 0.99 1.25 1.14 1.15
0 2.96 12.78 2.54 1.81 2.96 2.65 2.87 2.95 2.94

30 High 0.05 1.42 6.03 1.23 0.83 1.39 1.26 1.51 1.43 1.44
0 3.08 13.14 2.67 1.88 3.07 2.77 2.99 3.08 3.07

Low 0.05 1.29 5.52 1.12 0.75 1.27 1.15 1.39 1.30 1.31
0 2.91 12.42 2.52 1.76 2.90 2.61 2.84 2.90 2.89

35 High 0.05 1.63 6.75 1.43 0.98 1.58 1.45 1.69 1.63 1.64
0 3.07 12.79 2.69 1.89 3.03 2.76 3.00 3.06 3.06

Low 0.05 1.50 6.25 1.31 0.90 1.46 1.34 1.57 1.51 1.51
0 2.91 12.14 2.55 1.79 2.88 2.62 2.85 2.91 2.90

40 High 0.05 1.82 7.47 1.61 1.12 1.74 1.61 1.86 1.82 1.83
0 3.00 12.36 2.66 1.87 2.90 2.68 2.94 2.99 2.99

Low 0.05 1.70 7.00 1.50 1.03 1.63 1.51 1.74 1.70 1.71
0 2.85 11.80 2.53 1.77 2.77 2.55 2.80 2.85 2.84

45 High 0.05 2.02 8.17 1.82 1.27 1.88 1.77 2.04 2.03 2.03
0 2.93 11.89 2.63 1.85 2.74 2.57 2.88 2.93 2.92

Low 0.05 1.91 7.76 1.71 1.19 1.78 1.67 1.93 1.92 1.92
0 2.81 11.44 2.51 1.76 2.64 2.46 2.76 2.80 2.80

Source: Author’s calculations.
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the guarantee contract, on a same cost rate, a young individual is expected to be
charged more than an older individual. Moreover, the fact that the deferred cost is
extracted from the accumulation of the IPA once it is charged overcomes the effect
of the reset that pushes the guarantee level to the prevailing accumulation of an
IPA. The above finding provides clues among different ages as to where, without
lapse, the required deferred cost rate does not appreciably rise for younger individuals
who are charged a higher up-front guarantee value. Nevertheless, a lapse intensity of
0.05 makes the required deferred cost rate monotonically increase with the individual
age to reflect the lower lapse loss for older individuals.
The diversity of the required deferred costs among different types of EIID and lapse

intensity appears to be similar to the diversity of the up-front values. Given the indi-
vidual age, the high type of EIID with no lapse carries the heaviest required deferred
cost rate to cover the guarantee value for all scenarios. Moreover, the required de-
ferred costs do not decrease as rapidly as the up-front values to reflect a greater
lapse loss when the deterministic lapse intensity increases, yet they do increase faster
than the up-front values when the high type of EIID is used instead of the low one to
reflect more death benefits. It is due to the fact that, given a deferred cost rate, the
increase in the early terminating intensity causes the effective life of the contract to
decrease, and consequently the value of the future cost drops. Tables 8 and 9 show
the percentage changes of those required deferred costs when the lapse intensity
and EIID increase, respectively. One can correspondingly compare figures in Tables
8 and 9 with those in Tables 5 and 6 to find the differences of a move’s speed between
the required deferred cost rate and the up-front value along the different types of lapse
and EIID.
Among different scenarios, one finding that deserves to be mentioned is that an

increase in salary growth from 4% to 7% (Scenario 7) does not cause the required

Table 8. The percentage reduction in the required annual fee rate when the annual lapse
intensity increases from zero to 0.05 (using the results in Table 7 for calculation)

Age Type of EIID

Scenario

1 2 3 4 5 6 7 8 9

20 High 66.14 65.95 65.93 68.53 66.46 66.67 60.13 65.30 64.87
Low 67.56 67.51 67.58 70.11 67.89 68.16 61.46 67.11 65.54

25 High 60.19 60.40 60.52 62.69 60.83 60.99 55.26 59.74 59.29
Low 61.82 61.89 62.20 64.09 62.50 62.64 56.45 61.36 60.88

30 High 53.90 54.11 53.93 55.85 54.72 54.51 49.50 53.57 53.09
Low 55.67 55.56 55.56 57.39 56.21 55.94 51.06 55.17 54.67

35 High 46.91 47.22 46.84 48.15 47.85 47.46 43.67 46.73 46.41
Low 48.45 48.52 48.63 49.72 49.31 48.85 44.91 48.11 47.93

40 High 39.33 39.56 39.47 40.11 40.00 39.93 36.73 39.13 38.80
Low 40.35 40.68 40.71 41.81 41.16 40.78 37.86 40.35 39.79

45 High 31.06 31.29 30.80 31.35 31.39 31.13 29.17 30.72 30.48
Low 32.03 32.17 31.87 32.39 32.58 32.11 30.07 31.43 31.43
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deferred cost rate to change much. It could be due to the fact that the deferred cost is
modeled as a proportion of contemporaneous salary, and the required deferred cost
rate therefore does not need to change much to cover the appreciation of the contract
caused by the salary growth. However, one still can see that as the salary growth rises,
the required deferred cost rate slightly decreases if there is no lapse and slightly
increases if there is an annual lapse intensity of 0.05. Higher wage growth also brings
diminutions in the percentage changes in the required deferred costs along different
lapse intensities and different types of EIID. We can see this by respectively compar-
ing the figures of Scenario 7 with the ones of Scenario 1 in Tables 8 and 9. Moreover,
a negative market price of salary risk (in Scenarios 8 and 9) causes an increase in the
risk-adjusted salary growth, especially when accompanied by higher salary volatility
(in Scenario 9). Its effect on the required deferred cost is similar to the impact from an
increase in salary growth. Other findings about the required deferred cost among the
first six scenarios are limited. They are similar to findings about the up-front value
among corresponding scenarios.

Conclusion

Although this paper numerically prices a guarantee of an IPA, the reset feature on the
guarantee connected to the salary is the main issue herein. The results show that, with-
out resets, a principal guarantee on an IPA is not worth much unless the volatility of
assets in the IPA is huge, and the death benefit contributes a very small proportion to
the guarantee value. Moreover, the reset value contributing to the guarantee on an
IPA is very sensitive to the risk of the asset of the IPA. These findings are consistent
with previous studies on Canada’s segregated fund guarantees by Windcliff et al.
(2001, 2002).

Table 9. The percentage increment in the required annual fee rate when the high type
EIID is used instead of the low type one (using the results in Table 7 for calculation)

Age Annual lapse intensity

Scenario

1 2 3 4 5 6 7 8

20 0.05 11.34 11.53 12.05 12.73 11.46 11.76 9.91 12.24
0 6.69 6.42 6.64 7.07 6.69 6.74 6.25 6.38

25 0.05 10.62 10.27 11.46 10.77 10.81 11.11 8.80 10.53
0 6.08 6.10 6.69 6.63 6.08 6.42 5.92 6.10

30 0.05 10.08 9.24 9.82 10.67 9.45 9.57 8.63 10.00
0 5.84 5.80 5.95 6.82 5.86 6.13 5.28 6.21

35 0.05 8.67 8.00 9.16 8.89 8.22 8.21 7.64 7.95
0 5.50 5.35 5.49 5.59 5.21 5.34 5.26 5.15

40 0.05 7.06 6.71 7.33 8.74 6.75 6.62 6.90 7.06
0 5.26 4.75 5.14 5.65 4.69 5.10 5.00 4.91

45 0.05 5.76 5.28 6.43 6.72 5.62 5.99 5.70 5.73
0 4.27 3.93 4.78 5.11 3.79 4.47 4.35 4.64
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This paper’s results also show that if a lapse from the guarantee is possible, then the
time value of a longer contract is diluted by a greater expected lapse loss, such that the
guarantee does not necessarily cost young individuals more. Given the individual age,
the high type of EIID with no lapse carries the most expensive guarantee for all
specified scenarios.
A salary-connected model requires a precise estimation of the volatility and average

growth of individual salary along with the market price of salary risk in order to
accurately price the up-front guarantee value. The work of modeling salary behavior
is still insufficient along the scope of salary-related derivatives. However, the results of
this paper show that the required deferred cost rate is affected much less by the salary
behavior than the up-front guarantee value. Deferred funding is therefore an alterna-
tive to reducing problems from the difficulty in modeling salary behavior.
The practical problem of providing a guarantee on an IPA is that few structured

securities with salary-linked cash flows offer providers an established hedging strat-
egy. We advocate and expect that financial innovation will lead to the creation of
new securities that provide opportunities for the providers of non-traditional pension
guarantees to establish better hedging strategies.
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