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This work presents models for the behaviour of both upstream- and downstream-travelling
waves in screeching elliptical jets. Proper orthogonal decomposition is performed on
experimental velocity data in both the major and minor axis planes, for an aspect ratio
AR = 2 converging elliptical jet operating at nozzle pressure ratios of 2.6 and 3.4.
From this decomposition, the radial and axial structure of the guided-jet mode (GJM)
and the Kelvin–Helmholtz instability are educed. Linear-stability analysis (LSA) is
performed using both the experimentally obtained mean flow, and one obtained using
Reynolds-averaged Navier–Stokes (RANS) at matched conditions. It is shown that the
wavenumber predicted by LSA for both waves are within the range of experimentally
observed wavenumbers. Furthermore, the model accurately predicts the structure of these
waves at multiple axial locations, using either the experimental or RANS mean flow.
Most critically, it is demonstrated that the GJM is only predicted to be neutrally stable
at the screech frequency for a relatively limited streamwise domain, the size and location
of which is dependent on the nozzle pressure ratio. A comparison with the amplitude
envelope for the GJM extracted from the experimental measurements indicates that the
maximum fluctuations associated with the GJM are collocated with this region of the flow
that is predicted to support the GJM. While there have been extensive discussions about
the frequency dependence of the GJM, this is the first demonstration that its existence is
highly dependent on streamwise position within the flow.
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1. Introduction

Jet noise is a significant problem, as it can cause permanent hearing loss, structural damage
and disruption to those who live near flight paths and airports. As such, increasingly
stringent noise regulations are being enforced, thus increasing the demand for quieter
jet engines. Lighthill’s seminal work (Lighthill 1952) determined that acoustic power
output for a jet is proportional to the exhaust velocity to the eighth power. Thus, jet
noise reductions have been achieved by implementing ever-increasing high-bypass ratio
jet engines, which have higher mass flow rates, and lower exhaust velocities. However, the
future viability of increasing the bypass ratio to decrease jet noise is limited. Increasing
the bypass ratio requires larger engines to maintain thrust, and engines on commercial
jets cannot get much larger without redesigning the aircraft. Creative noise-reduction
techniques are now required to achieve further noise improvements.

Orderly wave-like structures have been attributed to noise generation in jets since the
1960s. Some of these waves amplify over some distance or time as they travel downstream,
thus being referred to as instability waves. Instability waves in axisymmetric jet flows were
first studied using temporal linear-stability analysis (LSA) by Batchelor & Gill (1962)
to determine the frequencies and the temporal growth rates of instability waves that are
supported by the flow. The relation of coherent structures to jet noise, first postulated by
Mollo-Christensen (1967), was further investigated by Crow & Champagne (1971) who
compared the instability waves predicted using temporal LSA with those observed in
experiments. Spatial LSA (which focuses on analysing structures growing in space, instead
of time) has successfully been used to predict the characteristics of instability waves in
finite-thickness jets; Michalke (1971) demonstrated close agreement with the experimental
phase-velocity measurements of Crow & Champagne (1971). Since then, LSA has been
used consistently to predict a range of characteristics of the coherent structures associated
with jet noise, being used extensively in noise prediction models (Jordan & Colonius 2013;
Cavalieri, Jordan & Lesshafft 2019).

Non-axisymmetric nozzles have the potential to reduce jet noise due to their enhanced
mixing characteristics (Chauhan, Aravindh Kumar & Rathakrishnan 2015; Chauhan,
Kumar & Rathakrishnan 2016) or due to their ability to disrupt the most unstable modes
of instability waves in the flow (Crighton 1973). The closest non-axisymmetric nozzle
geometry related to circular nozzles is elliptical nozzles. These nozzles have been observed
to radiate less noise than equivalent circular jets at the same operating condition (Kinzie &
McLaughlin 1999), confirming Crighton’s hypothesis. However, the specific mechanism
in which this reduction is achieved has not been exposed, and LSA applied to elliptical jets
may allow the underlying physics to be better understood. It is also unclear how universal
these reductions are, with studies on subsonic elliptical jets (Amaral et al. 2023), and
elliptical nozzles (Viswanathan 2023) not demonstrating clear noise reductions.

Temporal and spatial LSA was first extended to elliptical jet flows in the limit of
infinite aspect ratio (Crighton 1973) ascertaining that ‘flapping’ spatial instabilities are
dominant. Spatial LSA was extended to finite aspect ratio (AR) elliptical jets (Morris 1984,
1988; Morris & Bhat 1995) determining that the growth of the equivalent axisymmetric
‘varicose’ mode in circular jets was damped by the elliptical geometry, although ‘flapping’
modes were observed to become more unstable. Since the paper by Morris & Bhat
(1995), few publications have been made extending the use of LSA on elliptical jets (a
noteworthy exception being Suzuki, Nogueira & Edgington-Mitchell (2023)). Although
Morris was able to explore how Mach number, shear layer thickness and aspect ratio
affects the characteristics of instability waves, there was no comprehensive comparison
drawn between the LSA model and experimental data. In depth comparisons between
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Modal analysis of screeching elliptical jets

experimental data using proper orthogonal decomposition (POD) and LSA have been
performed on swirling jets by Oberleithner et al. (2011) and on twin jets by Nogueira
& Edgington-Mitchell (2021) which has yet to be extended to elliptical jets. In addition,
Morris’ LSA formulation used elliptical coordinates to allow a bespoke solution scheme
to be implemented, however, this limits the base flow (flow profile of the nozzle) to
strictly elliptical geometries. However, elliptical jet base flow profiles are known to deviate
significantly from a perfect elliptical profile downstream by switching axis and even
bifurcating (Hussain & Husain 1989; Zeng et al. 2023). Shock-cell structures in elliptical
jets also possess complex characteristics that can affect the development of the different
flow structures (Menon & Skews 2010; Li et al. 2017; Nagata et al. 2022). Therefore, a
model that can handle arbitrary geometry flow profiles is desirable in studying these jets.
Furthermore, the existing elliptical jet LSA literature primarily considers how independent
variables at a single jet operating condition affect the growth rates. For instance, Morris
studied the effect of temperature ratio and displacement thickness on growth rate, only at a
single Mach number and aspect ratio (Morris & Bhat 1995). However, different operating
conditions may alter how sensitive growth rates are to a given independent variable.
Therefore, the parameter space can be further explored by considering how characteristics
of instability waves are affected by changing multiple parameters simultaneously, such as
aspect ratio, Strouhal number, Mach number and shear layer thickness.

The existing literature on LSA of elliptical jets is primarily concerned with the most
unstable coherent structures. However, neutrally stable waves are of significance in the
study of some jet noise phenomena, particularly in jet screech. Screech is a jet noise
phenomenon in which high-amplitude tones at discrete frequencies are produced over
certain ranges of nozzle pressure ratios (NPR), caused by an aeroacoustic feedback process
(Edgington-Mitchell 2019). The feedback process involves the downstream propagating
Kelvin–Helmholtz (KH) instability wave (linearly unstable waves predicted by LSA) and
has been shown to be closed by an upstream travelling neutral wave called the guided-jet
mode (GJM) (Edgington-Mitchell et al. 2018; Gojon, Bogey & Mihaescu 2018; Nogueira
et al. 2022b). The fundamental mechanism of screech is the same in both round and
elliptical jets (Edgington-Mitchell et al. 2022), but the manifestation of mode staging is
somewhat different in elliptical jets (Edgington-Mitchell, Honnery & Soria 2015). The
differences may in part be due to differences in characteristics of the guided-jet and
KH waves. However, the characteristics of the GJM for elliptical jets have not been
explored in the literature to date. It is well established that the GJM only exists for a
narrow range of frequencies, and these frequencies are dependent on the Mach number,
temperature ratio, velocity profile and a number of other parameters (Tam & Hu 1989).
One less well understood property of the GJM is its spatial dependence. The first results
of Edgington-Mitchell et al. (2018) used a filtering in wavenumber space to reconstruct
approximate amplitude profiles for the GJM; the mode was seen to exhibit a peak at
some distance downstream, and decay away in either direction. This behaviour is not
consistent with the linear stability approximation of this wave, which is that it is neutrally
stable in the spatial sense. This behaviour was confirmed for a wider range of cases in
Edgington-Mitchell et al. (2021) and Li et al. (2023). While care must always be taken in
interpreting reconstructions based on filtered data, there is clear evidence that this wave,
though predicted to be neutrally stable by linear stability analysis, exhibits some kind of
decay behaviour in the physical jet. While this has been shown in multiple prior works, a
definite explanation is yet to be provided. In the long-range resonance model of Mancinelli
et al. (2021), this decay in space was hypothesised to be related to the ‘energisation’
of the GJM through a reflection mechanism. In the short-range resonance of Nogueira
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et al. (2022b), there is no requirement for the upstream wave to be neutral, and resonance
is triggered by a pocket of absolute instability in the spatially periodic flow. Thus, the
resulting global mode may be composed of waves that are spatially decaying, with their
spatial growth rates only affecting the local spatiotemporal growth rate.

This work aims to predict the existence and characteristics (wavenumber, growth
rate, spatial support) of instability waves in elliptical jets, and to further explore how
operating conditions affect the behaviour of the supported instability waves. To that end,
an elliptical jet velocity database will be explored and coupled with Reynolds-averaged
Navier–Stokes (RANS) simulations so as to predict the overall characteristics of the mean
flow of underexpanded elliptical jets. These will then be used as input to LSA to shed light
on the salient features of the resonance loop. The current work is divided up as follows. In
§ 2, the experiments, numerical simulations and wave-modelling approaches are described.
After that, the analysis of the experimental and simulation results are exposed in §§ 3 and
4, where an analysis of the different waves supported by the flow is also carried out. In
§ 5, the apparent disagreement between the spatially neutral LSA prediction and spatially
decaying experimental result will be resolved. The paper is closed in § 6 with a revision of
the main conclusions.

2. Methodology

2.1. Experimental set-up
The experimental database used in this work comprises of velocity measurements
previously reported in Mitchell, Honnery & Soria (2013), and acoustic measurements
reported in Edgington-Mitchell et al. (2015).

The elliptical jets studied here are produced from a purely converging nozzle with
aspect ratio AR = 2. The nozzle is connected to an upstream circular flange, and smoothly
transitions from a 70 mm diameter circular section to an ellipse with major and minor
axes of 20 and 10 mm, respectively, over a distance of 70 mm, before terminating with a
2.5 mm parallel section. The varying internal length in the azimuthal direction means that
the boundary layer will likewise be azimuthally inhomogeneous. The state of the boundary
layer at exit has not been established quantitatively, but visualisation of a M = 0.9 jet from
the same nozzle indicates an initially laminar shear layer that rapidly undergoes transition
to turbulence. Two jets are considered in this study, at nozzle pressure ratios of NPR = 2.6
and 3.4, which act here as surrogate for the Mach number of these jets – the corresponding
ideally expanded Mach numbers for these values of NPR are Mj ≈ 1.25 and 1.45.

The velocity measurements are taken over a field of view of 2De × 10De aligned with
the major and minor axes of the ellipse. For each axis and each pressure ratio considered,
1000 statistically independent velocity snapshots were obtained via two-component 2-D
particle image velocimetry (PIV). The velocity vectors have a spacing of 0.013De, with
a spatial resolution based on minimum interrogation window size of 0.026De, though
the through-plane resolution is much lower at 0.1De. A detailed discussion of the PIV
measurements is available in Mitchell et al. (2013). The velocity fields in the major-axis
plane are biased by a slight misalignment of the laser sheet; for the purposes of the analysis
in this paper, symmetry is enforced across the centreline to remove this bias.

Acoustic measurements are used in the context of this work only to identify the
non-dimensional frequencies associated with the screech tones. A G.R.A.S type 46BE
1/4 in. preamplified freefield microphone located in the minor axis at a polar angle of
φ = 20◦ from the downstream axis.
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The velocity data are further decomposed via a snapshot-based POD (Sirovich 1987).
The autocovariance matrix is constructed from the velocity snapshots V such that

R = V TV . (2.1)

The solution of the eigenvalue problem

Rv = λv, (2.2)

yields the eigenpairs (λ, v) from which the spatial POD modes are constructed as

φn(x, y) = Vvn(t)
‖Vvn(t)‖ . (2.3)

The coefficients at each time t for each mode n can be expressed as

an(t) = vn(t)‖Vvn(t)‖. (2.4)

For a POD mode pair that represents a travelling wave, the two POD modes should be
in phase quadrature, which in the absence of noise will produce a perfect circle when their
temporal coefficients are plotted against each other.

2.2. Reynolds-averaged Navier–Stokes
The RANS modelling is carried out using the open-source code OpenFOAM within the
framework of the density-based High-Speed Aerodynamic (HiSA) (Heyns 2023) solver.
Details about the implementation and some verification cases for similar supersonic flow
scenarios are given in Macia et al. (2019) and Heyns & Oxtoby (2014). The AUSM+Up
scheme proposed by Liou (2006) is employed for capturing discontinuities in the fluid and
a dual time stepping (pseudotime) approach used for iterating the solution towards steady
state. Turbulence modelling is performed with the realisable k–ε model proposed by Shih
et al. (1995).

The computational domain and mesh with corresponding boundary conditions is shown
in figure 1. A fully structured o-grid mesh was devised with y+ = 0.1 at the walls and
in order to ensure sufficient grid resolution a grid-convergence study was carried out. At
the inlet, the total pressure is ramped up to the desired NPR in order to ensure numerical
stability. It is assumed that the operating gas enters the nozzle at ambient temperature
(300 K) and the velocity at the inlet is set to Neumann condition (dui/dxi = 0). At
the outlet, standard ambient conditions are set with a fixed pressure of 1 × 105 Pa and
temperature of 300 K.

The ideal-gas model is used for calculating the density of the fluid and the viscosity
computed according to Sutherland’s law (μ0 = 1.716 × 10−5 kg m−1 s−1, T0 = 273 K,
Sμ = 111 K).

2.3. Spatial LSA
The linear-stability model used herein is based on work by Lajús et al. (2019) in the study
of corrugated jets, and Nogueira & Edgington-Mitchell (2021) in the study of twin-jets.
The coordinate system is given in figure 2. The formulation assumes compressible,
inviscid, locally parallel flow, for which the non-dimensional Navier–Stokes equations in
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Inlet Wall Fluid Outlet

Figure 1. Schematic of boundary conditions with structured grid for the present simulations.

cylindrical coordinates are given by

D
Dt

(
1
ρ̃

)
−

(
1
ρ̃

)
(∇ · ũ) = 0, (2.5)

Dũx

Dt
+ 1
ρ̃

∂ p̃
∂x

= 0, (2.6)

Dũr

Dt
− ũ2

θ

r
+ 1
ρ̃

∂ p̃
∂r

= 0, (2.7)

Dũθ
Dt

+ ũθ ũr

r
+ 1

r
1
ρ̃

∂ p̃
∂θ

= 0, (2.8)

Dp̃
Dt

+ γ p̃(∇ · ũ) = 0, (2.9)

with

D
Dt

= ∂

∂t
+ ũx

∂

∂x
+ ũr

∂

∂r
+ ũθ

r
∂

∂θ
, (2.10)

∇ · ũ = ∂ ũx

∂x
+ ∂ ũr

∂r
+ ũr

r
+ 1

r
∂ ũθ
∂θ
, (2.11)

where ũ = (ũx, ũr, ũθ ) is the velocity vector following figure 2, ρ̃ is the density, p̃ is the
pressure and γ is the ratio between specific heats. The variables are made non-dimensional
by the equivalent diameter Deq (the diameter of a circular nozzle with the same area as the
elliptic nozzle as per Hussain & Husain (1989)), the free stream density ρ∞ and the ideally
expanded jet velocity Uj, which may be obtained from the nozzle-pressure-ratio values
using isentropic relations. The equations of motion are then linearised by decomposing
variables into mean and perturbation components and neglecting the second-order terms.
Azimuthal and radial mean velocities are assumed to be zero in this locally parallel flow
assumption. To consider the behaviour of instability waves, a normal-mode ansatz is taken,
which assumes that the perturbations take the form of a wave, which assumes the shape
q(r, θ) exp(−iωt + iαx), with q being any of the aforementioned flow variables. In the
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current spatial stability analysis, ω is a real number, and α is complex; its real part
(αr) corresponds to the wavenumber of the disturbances while its imaginary part (−αi)
represents their growth rates. Following Lajús et al. (2019), the resulting set of equations
may be rearranged so as to obtain a single equation for the pressure perturbations, given
as

1
r
∂

∂r

(
r
∂p
∂r

)
+ 1

r2
∂2p
∂θ2 + A

∂p
∂r

+ B
∂p
∂θ

+ Cp = 0, (2.12)

with

A = 1
γ p̄
∂ p̄
∂r

− 1
ρ̄

∂ρ̄

∂r
−

(
2α

αūx − ω

)
∂ ūx

∂r
, (2.13)

B = 1
γ p̄
∂ p̄
∂θ

− 1
ρ̄

∂ρ̄

∂θ
−

(
2α

αūx − ω

)
∂ ūx

∂θ
, (2.14)

C = ρ̄(αūx − ω)2

γ p̄
− α2. (2.15)

Floquet theory can be applied considering a 2π/N azimuthal periodicity of the mean
jet flow (the elliptic jet is π periodic, thus N = 2), which allows the pressure-amplitude
function to be expressed as

p(r, θ) = p̂(r, θ) eiμθ , (2.16)

where μ is the Floquet exponent. This allows the domain size to be halved, reducing the
computational resources required. The Floquet exponent maps to azimuthal wavenumbers
based on the number of lobes N as

m = {. . . , μ− 3N, μ− 2N, μ− N, μ, μ+ N, μ+ 2N, μ+ 3N, . . .}, (2.17)

which are all the azimuthal modes m included in the simulations for each value of μ.
Substituting equation (2.16) into (2.12) yields

1
r
∂

∂r

(
r
∂ p̂
∂r

)
+ 1

r2
∂2p̂
∂θ2 + Â

∂ p̂
∂r

+ B̂
∂ p̂
∂θ

+ Ĉp̂ = 0, (2.18)

with

Â = 1
γ p̄
∂ p̄
∂r

− 1
ρ̄

∂ρ̄

∂r
−

(
2α

αūx − ω

)
∂ ūx

∂r
, (2.19)

B̂ = 1
γ p̄
∂ p̄
∂θ

− 1
ρ̄

∂ρ̄

∂θ
−

(
2α

αūx − ω

)
∂ ūx

∂θ
+ 2iμ, (2.20)

Ĉ = ρ̄(αūx − ω)2

γ p̄
− α2 − μ2

r2 + iμ
r2

[
1
γ p̄
∂ p̄
∂θ

− 1
ρ̄

∂ρ̄

∂θ
−

(
2α

αūx − ω

)
∂ ūx

∂θ

]
. (2.21)

The equation above may be re-expressed as a polynomial in terms of the wavenumber α
as

(F 0 + αF 1 + α2F 2 + α3F 3)p̂ = 0, (2.22)

where operators F n are given in Stavropoulos et al. (2023). Equation (2.22) can be posed
as a nonlinear eigenvalue problem by discretising the domain in both radial and azimuthal
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Nozzle

y

θ, uθ

r, ur

z x, ux

Figure 2. Coordinate system for LSA formulation.

directions. This allows the problem to be solved as the matrix equation⎡
⎣ O I O

O O I
−F 0 −F 1 −F 2

⎤
⎦

⎡
⎣ p̂
αp̂
α2p̂

⎤
⎦ = α

⎡
⎣ I O O

O I O
O O F 3

⎤
⎦

⎡
⎣ p̂
αp̂
α2p̂

⎤
⎦ , (2.23)

where I and O are identity and null matrices and F 0, F 1, F 2 and F 3 are the
matrices representing the discretised operators in (2.22). This can be solved numerically
for the eigenvalue α and eigenfunction p̂, which can then be used to calculate the
pressure-amplitude function using (2.16). Once the pressure eigenfunction is determined,
the linearised governing equations can be used to determine the velocity and density
eigenfunctions (Lajús et al. 2019).

A Dirichlet boundary condition setting the pressure-amplitude function to zero in the
far-field is implemented, since pressure fluctuations associated with instability waves
should be vanishingly small far away from the jet. However, since the domain is finite,
the pressure eigenfunction is set to zero at the maximum radial coordinate rmax, as to
approximate the exponentially decaying behaviour of that quantity. At the centre of the
jet, boundary conditions are set as (Gudmundsson 2009; Nogueira & Edgington-Mitchell
2021) [

r2 ∂
2p
∂r2 + r

∂p
∂r

− μ2p
]

r→0
= 0. (2.24)

A cylindrical-polar mesh was used in these calculations, which consists of a radial-mesh
component and an azimuthal-mesh component. Azimuthal points are equispaced, and
azimuthal derivatives were computed using Fourier differences (Weideman & Reddy
2000), whereas the radial mesh is constructed from Chebyshev polynomials, which are
then used to compute radial derivatives (Trefethen 2000). A transformation from Bayliss
& Turkel (1992) was applied to concentrate the radial points around the shear layer. Both
the validation of the method and a convergence study are available in the Appendix (A).

Linear stability analysis aims to evaluate particular solutions for the linearised
Navier–Stokes equations under a locally parallel assumption by neglecting the nonlinear
effects of turbulence on the wave-like disturbances. The method is also a function of
the choice of base-flow around which one linearises the equations; in the present case,
these base flows are given either by the experimental mean flow obtained by limited
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Figure 3. Mean streamwise velocity fields obtained from PIV for NPR = 2.6 (a,c) and NPR = 3.4 (b,d).
Data taken from Mitchell et al. (2013).

PIV data, or by an approximate solution for the time-averaged flow under a turbulence
closure model given by RANS. The application of linear-stability approaches is formally
justified in the context of resolvent analysis, as described in Beneddine et al. (2016);
the authors showed that the analysis generally produces faithful results for convectively
unstable, slowly varying flows such as cold jets. Even though shock-containing jets are not
slowly varying, application of linear stability in this case still leads to a good description
of the waves involved in resonance (see, for instance, Edgington-Mitchell et al. (2018),
Gojon et al. (2018); Edgington-Mitchell et al. (2021) and Nogueira & Edgington-Mitchell
(2021)).

3. The elliptical jet base flow and the waves supported by it

3.1. Experimentally derived two-dimensional base flow and fitted profiles
Unlike axisymmetric jets, the overall mean flow characteristics of elliptical jets cannot
be educed by velocity measurements in a single PIV plane; the tri-dimensional nature of
the elliptical jet dictates a fully three-dimensional (3-D) measurement of the velocity field
(such as that achieved for a rectangular jet by Sellappan & Alvi (2022)) is necessary to
characterise the shear layer development in both x and azimuth. In the absence of such a
measurement, the velocities in the minor and major axes of the jet were measured, which
are shown in figure 3. In both NPR cases, complex shock-cell structures are observed,
especially in the major axis; a low-velocity region is present in that axis (at z/Deq = 0),
which seems to be necessary to match the centreline velocity in both axes. The jet expands
more strongly in the minor axis, but the same periodicity is observed in both axes. While
shear layer and potential core of the higher NPR jet develops more slowly, the NPR = 2.6
jet experiences a somewhat stronger variation around x/D = 5, where the core of the jet
shrinks substantially in the major axis, and the shear-layer expands more quickly in the
minor. These features seem to indicate axis switching at that position for the lower-NPR
jet. It is possible that axis switching also occur for the higher-velocity case, but farther
downstream from the measurement window.

For a given base flow, LSA can calculate the two-dimensional (2-D) velocity, pressure
and density eigenfunctions, with their corresponding growth rate and wavenumber.
Therefore, if the base flow of the experimental PIV data can be determined, the
velocity eigenfunctions on the minor axis from LSA can be compared with the
experimentally determined coherent velocity fluctuations (ψ) from POD (Nogueira &
Edgington-Mitchell 2021). In addition to the base flow, LSA requires inputs of frequency
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(in its non-dimensional form, Strouhal number), Mach number M and static-temperature
ratio (or the jet-to-ambient temperature ratio). Isentropic relations were used to calculate
Mach number and static-temperature ratio for each NPR (the experimental operating
condition). To apply LSA to the experimentally derived data requires an additional
modelling step, however. The velocity profile is only known along the major and minor
axes, not for the full 2-D (r, θ) velocity field. Therefore, for a given axial location, the
base flow must be fitted to some sort of analytical mean-flow model that captures the
characteristics of the jet in both major and minor axes, modelling the region in between.
An expression based on Morris & Bhat (1995) was used, which assumes an elliptical
coordinate system as

y = ae cosh � cosφ, (3.1)

z = ae sinh � sinφ, (3.2)

where ae is the location of the foci of the ellipse (at ±ae), and �, φ are the elliptic radial
and azimuthal coordinates, respectively. An elliptical base flow similar to the one proposed
by Morris & Bhat (1995) is defined as

U
Uj

=
{

Uc, if η < 0,
Uc e−η2

, if η ≥ 0,
(3.3)

with

η = f (φ)
(

asin� − hB

bB

)
, (3.4)

f (φ) =
(

1 + f0
2

)
−

(
1 − f0

2

)
cos(2φ), (3.5)

f0 = bB√
(hA + bA)2 − a2

e − hB
. (3.6)

In the equations above, hA and hB are the jet core width of the major and minor axes,
respectively, and bA and bB are the half-widths of the shear layer on the major and minor
axes, respectively (the distance at which the velocity decreases to half the centreline
velocity). The parameter Uc represents the centreline velocity, which was obtained by
smoothing out the shock-cells from the data at y = z = 0. The aspect ratio of the flow is
defined as

AR = hA + bA

hB + bB
. (3.7)

For each axial station of the PIV data, (3.3) was fitted to the data using a nonlinear
least squares method, from which the potential core width (hA, hB) and the shear-layer
half-widths (bA, bB) on the major and minor axes, respectively, were determined, allowing
a 2-D velocity field to be generated. The fitted potential-core widths, half-widths and
the aspect ratio of the PIV flow fields are given in figure 4. As expected from figure 3,
the potential-core width decreases with streamwise distance for both cases, while the
shear-layer half-width increases. Close to the axis switching point, the core width in the
major axis decreases more strongly, highlighting the changes in the mean flow around
that position. More interestingly, the aspect ratio of the jets does not start exactly at 2; at
x/Deq = 0.5, its value is around 1.7 for both jets. This discrepancy with the nominal AR
of the jet may be due to the definition of a flow aspect ratio, which is somewhat arbitrary.
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Modal analysis of screeching elliptical jets
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Figure 4. Fitted core widths (a,d) and shear layer half-widths (b,e) to PIV profiles, and the resulting aspect
ratio (c, f ) of the flow for NPR = 2.6 (a–c) and 3.4 (d–f ).

However, a clear trend of reduction is observed as x/Deq is increased, highlighting how
the jet becomes increasingly circular as the shear layer develops (at least if one considers
the mean flow to be well described by the equation of the ellipse as the jet evolves). The
axis switching point (AR = 1) is around the position where the mean flow is observed
to change the most for NPR = 2.6, as mentioned previously; the axis switching point is
located farther downstream for NPR = 3.4, being not as noticeable as in the lower-speed
case.

A comparison of the PIV velocity profile and the ideally expanded fitted profile on
the major and minor axes are shown in figure 5, where the relevant first derivatives of
the mean flow are also shown. It is clear that, while the original velocity profiles display
complex features in the potential core resulting from the presence of shock-cells, the fitted
profile seems to capture the overall shape of the flow, especially outside of the core. This
is confirmed by the gradients shown in figure 5, which show good agreement between the
fit and the experiments. A similar level of agreement is observed in both major and minor
axes, at upstream and downstream regions. As shocks are generally undesirable in the LSA
computations, this profile choice seems to be well suited for the analysis at hand.

3.2. The RANS-derived 3-D base flow
The objective of using RANS in this work is two-fold: first, it provides the actual
streamwise velocity distribution in y–z, which is lacking in the current PIV set-up; this
allows us to check if the current fit choice is appropriate to represent the development
of the jet in the downstream direction. A secondary objective is to provide data for a
sensitivity analysis. As the RANS results capture some of the features of the experimental
data, one may use these results to evaluate what are the essential features of the mean flow
that lead to good predictions of the waves responsible for screech.

A comparison between the streamwise velocity at the centreline for both NPR is
shown in figure 6. Clearly, the simulation results do not capture all the features from
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Figure 5. Comparison between fitted velocity profiles and actual velocity profiles and their gradients at
x/Deq = 0.4 and x/Deq = 4.0 for NPR = 2.6 (a,c) and 3.4 (b,d).

the experimental data, with the most striking difference being the rapid decay of the
centreline velocity in the PIV for NPR = 2.6, which is absent in the RANS. While the
disparity farther downstream is quite severe, the key LSA calculations for this pressure
ratio presented in later sections are confined to the region 0 ≤ x/De ≤ 4, where the
data agree quite well. The rapid decay of shock cells at NPR = 2.6 is likely driven
by a violent flapping motion associated with a strong screech tone at this condition
(Edgington-Mitchell et al. 2015). The change in spacing of the shock for NPR = 3.4 is
also misrepresented in the simulation, even though the decay of the shocks follows the
same overall behaviour. Despite these discrepancies, the first shock-cell wavelength and
the maximum amplitude of the shocks are well represented by the simulation for both
NPR. For the NPR = 2.6 case, the overall decay of the shocks and the decrease in spacing
farther downstream is also observed in both experiments and simulation, even though
the minima of velocity induced by the shocks are not well captured. Overall, it is clear
that the simulation has only captured the flow in a qualitative sense; however, it is well
known that results from RANS are dependent on the choice of turbulence model and their
underlying parameters, and no attempt has been made to tune these parameters here. As the
simulation cannot capture the effects of screech, which include a significant amplification
of shear-layer growth, it is unsurprisingly than an untuned turbulence model produces only
qualitative agreement. However, the purpose of the RANS here is not to exactly reproduce
a ‘real’ flow, but to produce internally consistent solutions that can act as an input to the
LSA calculations, as an alternative to the empirical mean-flow fit used with PIV data.
Thus, the current simulation results may only be seen as an approximation of the real data,
but one that may give insight about the blind spots induced by the current experimental
set-up, namely the absence of cross-plane data.

The fitted mean flow profile and the RANS are plotted for x/Deq = 0.5, 2 and 4 for
both NPR in figures 7 and 8. Very close to the nozzle, the mean flows are remarkably
similar for both cases, with the exception of the shock-cell signature in the core of the jet
visible in the RANS result. The level of agreement deteriorates with increasing streamwise
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Modal analysis of screeching elliptical jets
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Figure 6. Comparison between streamwise velocity magnitudes in the centreline from PIV and RANS for
NPR = 2.6 (a) and NPR = 3.4 (b).
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Figure 7. Streamwise velocity profiles at x/Deq = 0.5 (a,d), 2 (b,e) and 4 (c, f ) for NPR = 2.6. Both
experimentally fitted (a–c) and RANS (d–f ) profiles are shown.

position for the NPR = 3.4 case, especially at x/Deq = 4, where the mean flow does not
resemble a perfect ellipse anymore; at this position, the RANS suggests that the real mean
flow will have a more intricate shape. For the lower NPR case, there is less deviation
from an elliptical shape, but there is significantly greater disparity in shear layer thickness.
Consistent with the previously described mismatch in centreline decay, the shear layer
of the fitted profile is also significantly thicker than the simulation. This is once again
likely due to the violent flapping motion induced by screech not being captured by the
RANS. Despite these differences in shear layer thickness, the qualitative match of shape
is excellent for the streamwise positions considered in figure 7, supporting the choice of
velocity profile used in the fit.
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Figure 8. Streamwise velocity profiles at x/Deq = 0.5 (a,d), 2 (b,e) and 4 (c, f ) for NPR = 3.4. Both
experimentally fitted (a–c) and RANS (d–f ) profiles are shown.
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Figure 9. Transverse velocity fluctuation POD mode energies for NPR = 2.6 (a) and NPR = 3.4 (b).

3.3. Wave-like structures in the experimental data
Fluctuating-velocity fields were determined by subtracting the mean flow from each
snapshot obtained from PIV. Proper orthogonal decomposition was then performed on
the fluctuating-transverse-velocity fields on the major and minor axes (as described in
§ 2.1), yielding the spatial shape of the most-energetic coherent structures in the flow and
their relative energies. The transverse component was chosen as to avoid the influence
of shear-thickness modes (Weightman et al. 2018; Nogueira & Edgington-Mitchell 2021).
The relative energy of the POD modes on the major and minor axes for each NPR is
presented in figure 9.

It is evident that for both major and minor axes the first two modes contain significantly
more energy than all other modes, with the exception of the major axis for NPR = 2.6
where the first four modes are of similar energy. On the minor axis, the first two modes
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Figure 10. Phase portraits of first two POD modes at each axis for NPR = 2.6 (a) and NPR = 3.4 (b).

account for 35 % of total energy for NPR = 3.4, and 23.6 % for NPR = 2.6, whereas on
the major axis the first two modes comprise 10.3 % of total energy for NPR = 3.4 and
6.8 % for NPR = 2.6. Oberleithner et al. (2011) suggests that if the energy of the first
two POD modes are substantially higher than the other modes, and they are of similar
magnitude, the modes may represent a travelling wave. As described in § 2.1, for a pair of
modes in phase quadrature, the phase portrait of their temporal coefficients should form
a circle. This is shown in figure 10, which demonstrates that the phase portrait of the first
and second minor axis modes for each NPR forms a circle, whereas the phase portrait
of the first and second modes on the major axis does not. This further suggests that the
first two POD modes of the minor axis may comprise of a single wave, whereas wave-like
behaviour is less pronounced on the major axis. This is consistent with the tendency of
jets to ‘flap’ about their minor axis.

Figures 10 and 11 together confirm that both jets are resonating in a flapping mode
in the minor axis, leading to symmetric velocity disturbances in the transverse direction.
In order to improve mode convergence and facilitate comparison with modes predicted
by LSA, the POD was recomputed using symmetry-imposed fields, as in Nogueira
& Edgington-Mitchell (2021). Following the results of figure 11, only even modes in
transverse velocity will be analysed. The imposition of symmetry does not significantly
change the mode shapes or energies, but does slightly improve convergence.

Since snapshot POD gives no time resolution, a complex travelling wave can be
constructed as (Oberleithner et al. 2011; Edgington-Mitchell et al. 2021)

uc(x, y, t) = â[φ1(x, y)+ iφ2(x, y)] e−iωt, (3.8)

where â e−iωt = a1 − ia2. The equation above provides the spatial support of the most
amplified travelling wave in the flow, which is expected to be associated with the
screech phenomenon – this wave-like mode is now represented as a complex mode. The
absolute value of the resulting structure is shown in figure 12. These plots show that the
most-energetic coherent structure is dominated by a standing wave, which is especially
prevalent for NPR = 3.4. The standing wave is a signature of the jet undergoing screech,
being caused by a superposition between the upstream travelling GJM and downstream
travelling KH instability (Panda 1999; Edgington-Mitchell et al. 2021). The standing-wave
is observed across a large region of the space, which includes the centreline of the jet, as
in the flapping/helical mode studied in Nogueira et al. (2022b).
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Figure 11. Transverse velocity fluctuations associated with minor axis POD modes 1 (a,b) and 2 (c,d) for
NPR = 2.6 (a,c) and NPR = 3.4 (b,d).
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Figure 12. Absolute value of the resonance mode reconstructed using POD modes 1 and 2 on minor axis for
NPR = 2.6 (a) and NPR = 3.4 (b). Only the transverse velocity is used in the reconstruction.

A spatial Fourier transform can be performed to deduce the most energetic wavenumbers
kx of the waves that produce the standing wave. The wavenumber spectrum of the
Fourier-transformed coherent-velocity-amplitude function is presented in figure 13. As in
previous works (Edgington-Mitchell et al. 2018, 2021; Nogueira & Edgington-Mitchell
2021), phase and group velocity are assumed to have the same sign. Therefore, for a
positive frequency, positive wavenumbers correspond to downstream-travelling waves and
negative wavenumbers correspond to upstream-travelling waves. Figure 13 demonstrates
two prominent peaks on each wavenumber spectra; a peak for kx > 0 (downstream
travelling) and a peak for kx < 0 (upstream travelling). The upstream-travelling peak is at
a wavenumber corresponding to a phase velocity slightly slower than the speed of sound.
This is consistent with the current understanding of screeching jets, where the downstream
travelling wave is the KH instability, whereas the upstream travelling wave is the GJM
(Edgington-Mitchell et al. 2022). Table 1 shows the peak wavenumber for each of the
waves in figure 13 and the range of wavenumbers that comprise each peak, computed as
the wavenumbers where the energy decays to 10 % of the peak. A secondary downstream
peak is also visible in figure 13 very close to the dominant KH peak. The origin of this peak
is unclear, but it is possibly related to the limitations of POD in isolating the structures at
a single frequency, or to a secondary structures associated with the development of the
vortices. The lack of time-resolved data hinders a clearer identification of the physical
mechanism behind this peak in the present case, and further analysis of the possible
causes will be left as a future work, as this secondary peak does not affect our current
interpretation of the phenomenon.

To isolate the structure of one of each of these waves, all velocity amplitude functions
outside of the wavenumber range of each wave (provided in table 1) are set to zero. Then an
inverse spatial Fourier transform can be performed to determine the spatial structure of the
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Figure 13. Wavenumber spectra of the dominant travelling wave for NPR = 2.6 (a) and NPR = 3.4 (b).

NPR KH range KH peak GJM range GJM peak

2.6 (2.15, 5.37) 3.68 (−5.36,−1.53) −3.06
3.4 (1.38, 3.53) 2.61 (−4.45,−1.07) −2.45

Table 1. Wavenumber range of resulting KH and GJM extracted from POD.

waves represented in the wavenumber spectrum. The resulting structure of the GJM and
the KH instability wave are presented in figure 14. It is evident that, when comparing each
NPR, the equivalent KH and the GJMs have the same overall structure, although the peak
magnitude for each of these waves occurs farther downstream for the NPR = 3.4 jet. This
is consistent with figure 12, which shows that the standing wave pattern for the NPR = 3.4
jet reaches a higher amplitude farther downstream than the NPR = 2.6 jet. Interestingly,
both waves follow the same behaviour as the flapping/helical mode in circular jets shown
in Edgington-Mitchell et al. (2021), at least in this plane of measurement. Particularly, both
waves have peaks at the centreline of the jets. For the KH wavepacket, it is expected that
the disturbances peak at the shear layer if it is sufficiently thin; however, as this mode
develops downstream, the peak in the transverse velocity component for flapping-like
disturbances (with dominant azimuthal wavenumber |m| = 1) may shift to regions closer
to the centreline, as will be shown shortly using LSA. One should note that the mode
reconstruction in figure 14 is performed by considering waves in the wavenumber range
shown in table 1 (computed as the wavenumbers where the energy decays to 10 % of
the peak). As expected, the spatial shapes of the modes are somewhat dependent on that
threshold value, but they remain qualitatively the same. The streamwise positions of the
peaks of both waves change less than 5 % when the threshold is varied between 10 % and
50 %, confirming the robustness of the approach.

4. Predictions from LSA

4.1. The KH mode
As stated in § 3.3, coherent velocity fluctuation associated with travelling waves was only
observed about the major axis (along the minor axis). Morris & Bhat (1995) have shown
using LSA that the KH instability splits into two different Mathieu function modes, the
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Figure 14. Filtered GJM (a,c) and KH instability (b,d) from reconstructed POD wave for NPR = 2.6 (a,b)
and NPR = 3.4 (c,d). Only the transverse velocity component is shown.

‘cosine-elliptic’ (cen) and ‘sine-elliptic’ (sen). It is well known that the se1 KH pressure
fluctuation mode has odd symmetry about the major axis, and will cause ‘flapping’
velocity fluctuations along the minor axis, as shown in Morris & Bhat (1995) and in the
Appendix (A). Since screeching elliptical jets are known to flap along that axis, the se1
mode is likely to be the mode that is observed in the experiments; therefore only the se1
KH mode will be analysed using the LSA. One should note that the flapping mode may not
be the most unstable mode at a given frequency and streamwise station, but it is the mode
involved in resonance in the present case, which justifies focusing on this specific mode in
the LSA. The frequency chosen in the analysis is also the screech frequency for each case
as determined via acoustic measurements. Comparison of the radial velocity amplitude
function from LSA and the POD at various axial locations, at the screech frequency for
each NPR is shown in figure 15 for NPR = 2.6 and NPR = 3.4, using both the PIV-based
mean flow and the one obtained from RANS.

Figure 15 demonstrates that the distribution of radial velocity fluctuation along the
minor axis is similar between LSA and POD at nearly all axial locations when analysing
the PIV data. One should note that the streamwise positions were chosen as to include
positions where the KH mode has high amplitudes in the POD, while still being unstable in
the Navier–Stokes spectrum. In figure 15, both the radial locations and relative magnitudes
of the maxima are close to the experiments whereas the minima of the LSA tend to
be slightly larger than that of the POD. Though the agreement is generally good, it is
expectedly imperfect; the match at x/Deq = 2.5 for NPR = 2.6 for instance is relatively
poor. Results using the RANS profile agree with the PIV ones close to the nozzle, but
diverge from both the POD and the PIV-based ones farther downstream (while still keeping
the same overall features). This may be due to the presence of the shocks, which are
known to affect the characteristics of the predicted modes (Nogueira et al. 2022a), or
due to the differences in shear-layer thickness. Despite some discrepancies, these results
are still encouraging, as the general features of the POD mode can still be predicted by the
linear model for two different choices of mean flow. Given one mean flow is based on a fit
that assumes an ellipse, while the other includes 3-D effects and shocks, the qualitative
similarity in the predicted mode shapes suggests that details of the mean streamwise
velocity may have only second-order effects on the KH mode dynamics.

Figures 16 and 17 illustrate the wavenumber and growth rates of the KH instability
predicted by the LSA at various downstream stations using both PIV and RANS mean
flows. For each NPR in figure 16, the growth rate decreases in the downstream direction.
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Figure 15. Comparison between the absolute value of transverse velocity component obtained from the filtered
POD and LSA for the KH mode at several streamwise stations and at the screech frequency. Results were
generated at x/Deq = 0.5, 1.5 and 2.5 for NPR = 2.6 (a–c) and at x/Deq = 1, 2 and 3 for NPR = 3.4 (d–f ).

This is consistent with the findings of Nogueira et al. (2022a) for a circular jet. This is
likely due to the thickening of the shear layer (see figure 3), which smooths out velocity
gradients, thus stabilising the KH mode, as shown in a range of previous works (see, for
instance, Michalke (1984) and Morris (2010)). In figure 16, the farthest downstream point
provided for the KH instability at each NPR is the last axial location for which the mode
was found to be unstable. The process of obtaining growth rates from the PIV data is less
straightforward and therefore no comparison is drawn. Growth rates of the KH mode have
also been shown to be less important in defining the frequency of the resonance process
than the actual wavenumber of this mode; they do, however, impact the spatiotemporal
growth rates of the resonant mode (Nogueira et al. 2022b). While not directly related to the
resonance model used in the present work, the long-range resonance model of Mancinelli
et al. (2021) uses the growth rates of the KH to define positions where the resonance might
be sustained in space, which allows for the elimination of spurious-tone predictions in that
model.

Similarly, for each NPR in figure 17 it is evident that the wavenumber increases
before reaching a maximum, before decreasing. Phase velocity is inversely proportional
to wavenumber and therefore this trend implies an initial decrease in phase velocity
before reaching a minima, followed by an increase in phase velocity, consistent with the
measurements of Mercier, Castelain & Bailly (2017). The peak wavenumber reached in
the NPR = 2.6 jet is observed to occur closer to the nozzle than in the NPR = 3.4 jet;
this could be associated with the fact that maximum wave amplitude is also reached closer
to the nozzle in the NPR = 2.6 case. In the POD, the peak wavenumber for NPR = 3.4
is 2.6, whereas for NPR = 2.6 the peak wavenumber is 3.7. These values are represented
by the red lines in figure 17, whilst the horizontal black lines show the wavenumbers
for which a 90 % reduction in the peak-velocity amplitude was observed in the spatial
spectrum of the screech mode (see figure 13 and table 1). It is evident that, for each NPR,
all wavenumbers determined from the LSA fall within the same range determined from the
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Figure 16. Growth rate of KH mode for NPR = 2.6 (a) and NPR = 3.4 (b) as function of streamwise station.
Quantities computed at the screech frequency as function of streamwise distance from the nozzle.
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Figure 17. Wavenumber of KH mode for NPR = 2.6 (a) and NPR = 3.4 (b) as function of streamwise
station. Quantities computed at the screech frequency as function of streamwise distance from the nozzle.

POD, and they are remarkably close to the peak wavenumber for both Mach numbers. The
similarity between the structure of the observed transverse velocity fluctuation waves in
the POD and the LSA and the quantitative agreement between their wavenumbers, suggest
that LSA accurately predicts the behaviour of the se1 KH instability.

The wavenumbers determined by analysis of the RANS data and the PIV data
are extremely similar, although the change in wavenumber with axial direction has
fluctuations, likely due to the more pronounced effects of the shocks in the RANS solution.
The growth rates determined by the analysis of the RANS data are very similar to the PIV
data closer to the nozzle (from x/D = 0 to x/D = 1.5) for NPR = 2.6, whereas farther
downstream the RANS data produces a higher growth rate. The difference is likely due
to the fact that the velocity profiles of the PIV and RANS data match quite well when
close to the nozzle, and become less similar downstream as the flow profile becomes less
elliptic; as shown in figure 7, the shear layer in the PIV thickens more rapidly than in the
RANS. These differences are less pronounced in the NPR = 3.4 case, given the stronger
similarities between the mean flows used in this case.
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Figure 18. Absolute value of pressure eigenfunctions of the GJM for NPR = 2.6 and x/Deq = 2. Modes
computed for St = 0.2 (a), St = 0.36 (b), St = 0.42 (c).

4.2. The GJM
The GJM is known to be the upstream-travelling wave that closes the resonance loop in
jet screech. As such, the upstream-travelling wave observed in the POD is expected to
take the form of a GJM, and the ability of the LSA to predict the characteristics of this
wave will be assessed. Tam & Hu (1989) (see also Bogey (2021)) have previously shown,
using a vortex sheet model, that the GJM can exist for various azimuthal wavenumbers
in an axisymmetric jet. For an elliptical jet, the GJM is expected to follow a similar
‘cosine-elliptic’ and ‘sine-elliptic’ identified in the KH mode, as highlighted in the
previous section. The pressure eigenfunctions of GJMs shown in figure 18 below were
determined by performing LSA on the PIV data.

Figure 18 shows a single ce0 and two flapping modes associated with ce1 and se1
Mathieu functions; note that these modes were computed at different frequencies, as they
only exist for a limited range of frequencies and wavenumbers in the spectrum (Tam & Hu
1989). The structures in figure 18 resemble the ones computed for circular (Nogueira et al.
2022b) and twin (Nogueira & Edgington-Mitchell 2021) jets, with the main difference
being the fact that flapping modes have now a clear elliptical shape. In the POD data,
wave-like behaviour was only observed in the velocity fluctuations about the major axis,
and therefore the GJM observed in the POD is likely of se1 symmetry, as was the KH
instability; in fact, it has been observed that this symmetry is usually active around the
screech frequency. As such the remainder of the analysis of the GJM will focus on the se1
symmetry.

The transverse velocity on the minor axis was calculated for the se1 GJM from the
pressure eigenfunction for several axial stations close to the peak of the POD, and then
compared with the experiments. One should note that, given the small range of frequencies
for which this mode is neutrally stable, it may not exist for both PIV and RANS mean flows
at the same frequency and streamwise position. The comparisons are shown in figure 19,
though as mentioned not every panel has predictions from both PIV and RANS. It is
evident that, regardless of the NPR, axial location or data analysed (PIV or RANS), the
structure of the se1 GJM transverse velocity component on the minor axis is somewhat
invariant and consists of a large, sharp peak in the centre, and a smaller peak around the
location of the shear layer. For each axial location and NPR, the centre peak of the mode
in both the LSA and the POD match almost perfectly, whereas the relative magnitude and
the width of the secondary peak changes slightly with downstream direction.
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Figure 19. Comparison between the absolute value of transverse velocity component obtained from the filtered
POD and LSA for the GJM at several streamwise stations and at the screech frequency. Results were generated
at x/Deq = 3, 3.5 and 4 for NPR = 2.6 (a–c) and at x/Deq = 4.5, 5.5 and 6.5 for NPR = 3.4 (d–f ).

5. Spatial dependence of the GJM

As discussed in § 1, one of the most striking features of the GJM is that it only exists
as a neutral wave over a discrete frequency range. An as-of-yet unexplained additional
characteristic is that in experimental data, the amplitude envelope of the GJM does not
match the expected shape for a neutral wave. An explanation may lie in the dependence
of the neutral range on the thickness of the shear layer; Nogueira et al. (2022a) have
previously shown for an m = 0 circular jet that the upper and lower bounds of permitted
Strouhal numbers for the GJM decrease with downstream distance (although the range
of existence is still approximately the same). This hypothesis will now be explored with
the current dataset. The vortex-sheet model (Bogey 2021) suggests that m = 1 GJMs
have a smaller existence region than m = 0 GJMs, and that higher Mach numbers have
a decreasing existence region. Therefore, one could expect that the se1 GJM (which is
reminiscent of m = 1 disturbances) in elliptical jets will have a narrower frequency region
than observed by Nogueira et al. (2022a) for the m = 0 mode in the circular jet. The
frequency region of existence of the se1 GJM predicted by the LSA is shown in figure 20
for each NPR, computed at a precision of 
St = 0.01.

It is evident that, at any axial location, the frequency range of existence predicted by the
LSA is larger for the NPR = 2.6 jet than the NPR = 3.4 jet, consistent with the Mach
number trend for circular jets observed by Bogey (2021). Furthermore, the maximum
observed range of permitted Strouhal numbers at any axial location is 
St = 0.09 in the
NPR = 2.6 jet and 
St = 0.03 in the NPR = 3.4 jet, both occurring when the shear layer
is thickest. The upper and lower bounds of the frequency range decrease with downstream
direction, also consistent with Nogueira et al. (2022a). This is likely due to the shear-layer
thickness increasing with downstream direction, in line with the findings of Mancinelli
et al. (2021), who demonstrated that increasing the shear-layer thickness decreases both the
upper and lower bound of the frequency existence range. In the NPR = 3.4 jet, the range
of existence seems to oscillate whilst decreasing, especially for the RANS-based results.
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Figure 20. Frequency range of existence of the se1 GJM for NPR = 2.6 (a,c) and NPR = 3.4 (b,d).

This is also consistent with Nogueira et al. (2022a), who observed a similar periodicity
in axisymmetric jets, which was assumed to be a shock-cell effect. This is not observed
in the NPR = 2.6 flow, potentially due to the shock structure decaying more quickly in
the axial direction. In both cases, the range of existence of the GJM computed using the
RANS mean flows is usually smaller than the PIV-based ones, possibly due to the slower
development of the shear layer in the downstream direction for the RANS (see figure 7).

With the relationship between streamwise position and the frequencies at which the
GJM is supported by the flow established, an explanation for the observed amplitude
envelope can be proposed. If the GJM was neutrally stable over the entire flow, it would
not decay as it travels towards the nozzle. Instead, as demonstrated in figure 14, the
guided jet mode peaks at some distance downstream, with a decay in either direction.
In figure 20, the location at which the GJM attains maximum amplitude, as determined
from figure 14, is plotted as a vertical dashed line. The experimentally determined screech
frequency is plotted as a horizontal dashed line; as the POD modes capture fluctuations
only at the screech frequency, the intersection of these lines is the relevant point of
comparison with the LSA calculations. For both cases considered here, there is only a
relatively narrow streamwise range where the GJM is predicted to be neutrally stable at
the screech frequency. In both cases, the maximum observed amplitude of the GJM falls
clearly within this narrow range for the PIV-based results. Predictions are slightly off for
the RANS-based results, which is again due to the thinner shear layers predicted by the
numerical model. This result is made clearer in figure 21, which shows the dispersion
relation associated with the GJM computed at the streamwise position where the GJM
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Figure 21. Dispersion relation of the se1 GJM for NPR = 2.6 (a) and NPR = 3.4 (b) obtained where the
POD mode is maximum.

amplitude derived from the POD is maximum. For both NPR, the screech frequency is
within the bands of existence of this mode.

The narrow streamwise range of existence shown in figure 20 may then be proposed
as an explanation for the shape of the amplitude envelope observed in figure 14, in the
context of the weakest-link model (Tam & Tanna 1982): downstream of this region,
the GJM becomes damped, and any waves generated farther downstream will decay
exponentially as they move upstream towards this region. Around the peak position, both
KH and GJMs interact with the periodic shock-cells to trigger resonance. Upstream of
this region, the guided jet mode cannot be supported as a discrete mode at this frequency;
since the mode cannot suddenly vanish, it may be expected to become an acoustic wave
travelling upstream, which are the only upstream waves supported by the flow at the
screech frequency. In the context of the absolute stability model (Nogueira et al. 2022b),
a similar mechanism may be proposed: the peak observed in the POD may represent
a pocket of absolute instability in the flow (Chomaz, Huerre & Redekopp 1991; Pier
2008); downstream from that region, the spatiotemporal growth rate of the resonance may
be negative, resulting in damped modes. Farther upstream, there is no GJM to trigger
resonance, and the POD mode is simply dominated by the propagation of the modes.
The long-range resonance scenario (Powell 1953; Mancinelli et al. 2019, 2021) provides
equivalent explanations, with the peak of the POD mode representing the dominant
position where the KH mode interacts with the shock-cell, and the upstream region being
dominated by the propagation of the upstream mode. Embedded in all these explanations
is the fact that all these resonance models consider a locally parallel (or, at best, spatially
periodic) approach to approximate the upstream wave. Obviously, mean-flow development
effects are not included in these approaches, so they can only capture part of the dynamics.
The behaviour of the GJM as it travels in the upstream direction has not been studied in
detail in the literature to the best of our knowledge but, given the acoustic-like nature of
this mode, it may be hypothesised that, once it is not supported in its discrete form, it would
simply become an acoustic wave, matching early descriptions of the screech phenomenon
(Powell 1953). This hypothesis is corroborated by the fact that, even though the GJM is
not a free stream acoustic wave, it bears several resemblances to acoustic waves travelling
inside of the jet, being a manifestation of an acoustic wave generated in the region that
experiences total reflection by the shear layer (Nogueira et al. 2024), a phenomenon that
explains many of its key characteristics. Furthermore, it should be noted that the only
upstream-travelling waves supported by the flow in the upstream region are acoustic waves
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that belong to the continuous spectrum (Gloor, Obrist & Kleiser 2013); as such, it may be
expected that upstream waves in that region may be represented by a superposition of these
acoustic waves.

6. Conclusions

In this paper, the dominant features of screeching elliptical jets were analysed using LSA.
A PIV dataset for an elliptical aspect ratio 2 converging nozzle at two different Mach
numbers was explored, and some characteristics of the flow could be identified. A complex
shock-cell pattern was observed in the major axis, which included a low-speed streak that
arises as to match the velocities at the centreline. The lower Mach number case was shown
to experience axis switching at around five equivalent diameters away from the nozzle,
which was also evident from the computed equivalent aspect ratio of the flow as function
of the streamwise coordinate x. The experimental data was fitted to an elliptical jet profile,
which allowed for the definition of approximated cross-plane velocity fields, which were
necessary for the linear stability computations. The RANS simulations were also run for
the same geometry to confirm the soundness of the fitting methodology and to provide
alternative mean flows that were used to test the sensitivity of the results to details of the
mean flow. Results show that the elliptical-jet approximation is accurate enough in the
upstream region, but it fails to capture the overall flow shape farther downstream. It was
also observed that, while the RANS managed to capture some dominant features of the
flow (such as the first shock-cell position and the decay of the shocks), it failed to capture
the position of axis switching and the variation in spacing of the shocks, requiring further
tuning of the turbulence models to reproduce the exact same trends of the experiments.

Proper orthogonal decomposition was used to identify the wave-like structures involved
in the screech loop. The method led to the identification of a clear pair of waves in the
minor axis associated with most of the kinetic energy of the flow; no clear wave dominance
was observed in the major axis, suggesting that the jets were resonating at a flapping mode.
A spatial Fourier analysis of the travelling wave built using the POD modes allowed
for the identification of the upstream and downstream components of the resonance
loop, where their contrasting spatial support was highlighted. The characteristics of these
different waves were then analysed in light of the KH and GJMs computed using spatial
linear stability. The favourable match between model and experiments for the transverse
velocity shapes, the frequencies of existence of the modes and their respective wavenumber
confirmed that the se1 mode is responsible for the flapping disturbances in elliptical jets,
which is the preferred resonant stage at higher Mach numbers. It also confirms that LSA
is able to capture the dominant characteristics of the waves responsible for screech in
elliptical jets, despite being only a linear model.

One of the most interesting results of the current analysis is the fact that the GJM is
only supported in a small range of streamwise positions for the flows at hand. The position
where the amplitude of that wave is maximum in the POD is within the region where
this mode is predicted in the stability analysis, but it ceases to be predicted at the screech
frequency as it travels upstream – the linear stability model only predicts pure acoustic
waves travelling at an angle in the negative region of the wavenumber space for regions
closer to the nozzle. As there is no discrete mode to trigger the absolute instability in
that region (Nogueira et al. 2022b), resonance may not be sustained. This description
is somewhat similar to the presence of pockets of absolute instability in wake flows
(Chomaz et al. 1991); in this case, this pocket of instability can only be present where
the GJM is present in the flow. However, as the signature of upstream-travelling waves is
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Figure 22. Mesh convergence study for the KH and GJMs obtained using linear stability analysis. For the KH
mode (a), the error is shown in percentage compared with the finest mesh used herein for NPR = 3.4, St = 0.27
and x/Deq = 0.3. For the GJM (b), the pressure eigenfunctions for rmax/Deq = 6 and rmax/Deq = 12.5 along
the minor axis for the se1 mode are shown for NPR = 3.4, St = 0.27 and x/Deq = 1.2.

non-negligible close to the nozzle, it is further hypothesised that such signature is simply
due to the propagation of this wave in the upstream direction, which may become more and
more similar to a pure acoustic wave as it travels upstream, given the lack of requirement
for it to be a discrete mode. Further understanding of this phenomenon may be attained by
means of spatial marching methods (Towne & Colonius 2015; Zhu & Towne 2023), which
is considered to be outside of the scope of this work. Nevertheless, the current results are
in support to the recent description of screech involving the KH wavepacket, the GJM and
the shock-cell structure, which is now extended to elliptical jets.

Acknowledgements. This work was sponsored by the Australian Research Council through the Discovery
Project scheme (DP220103873).

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Daniel Edgington-Mitchell https://orcid.org/0000-0001-9032-492X;
Maximilian Maigler https://orcid.org/0000-0002-7535-014X;
Petrônio A.S. Nogueira https://orcid.org/0000-0001-7831-8121.

Appendix A. Convergence analysis and validation

A convergence study was performed to determine an appropriate mesh for the problem at
hand. The LSA was performed on the velocity profile generated from NPR = 3.4 PIV data
at x/Deq = 0.3. The near-nozzle region was chosen since this region has the largest aspect
ratio (therefore largest difference between major and minor axes shear layer positions) and
the thinnest shear layer (therefore the steepest velocity gradients), and it therefore presents
the most difficult conditions for resolving the shear layer. As such, if the chosen mesh
resolves all flow features for the flow at this position, it will also be able to resolve them
farther downstream. The percentage error in wavenumber relative to the finest mesh is
shown in figure 22 below for seven different meshes, (Nr × Nθ ), where Nr is the number
of radial points, and Nθ is the number of azimuthal points.

It is evident that as the mesh is refined, the error in wavenumber decreases
monotonically tending to a plateau for mesh four onwards, thus showing convergent
behaviour. The run time for solving the eigenvalue problem for the cases chosen in the
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Mesh (Nr × Nθ ) 100 × 24 120 × 36 140 × 48 160 × 64 180 × 72 200 × 80 220 × 88

Run time (s) 3.39 12.37 32.91 86.80 185.72 316.29 520.17

Table 2. Run time of LSA for different mesh sizes.
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Figure 23. Real value of pressure of five most unstable modes for M = 1.5, AR = 1.5, St = 0.4,
bA = bB = 0.2.

convergence study is shown in table 2 for the same case shown in figure 22. All run times
were evaluated using the Arnoldi method in MATLAB (built-in function eigs).

As expected, as the mesh is refined, the run time increases drastically. Figure 22,
however, demonstrates that the reduction of error after mesh four is relatively small, and
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Figure 24. Comparison of growth rates obtained using the current formulation with Morris & Bhat (1995)
for M = 1.5, St = 0.4, bA = bB = 0.2.

does not justify the excessive increase in run time. As such, a mesh of 160 × 64 was
selected for all simulations herein.

Convergence must also be ensured regarding the height of the radial domain. The
maximum radius must be sufficiently large to allow the pressure eigenfunction to smoothly
decay to zero as r/Deq approaches the end of the domain, to well approximate the
Dirichlet boundary condition. A comparison between the GJM pressure eigenfunction for
two domain sizes is shown in figure 22. It is evident that, for both maximum domain
sizes, the pressure eigenfunctions are indistinguishable. The GJM was used as a source
of comparison as it takes far longer to decay in the radial direction than the KH mode.
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Therefore, the smaller maximum domain radius of rmax/Deq = 6 was selected, since it
allows a more concentrated mesh to be produced for a given number of points.

The LSA model presented in this work was applied on the elliptic baseflow in (3.3)
for a Mach number of 1.5, and an aspect ratio of 1.5 for an unheated jet, the same case
studied by Morris & Bhat (1995). The five most unstable modes (KH instability modes)
obtained are presented in figure 23. It demonstrates that the azimuthal distribution of
the pressure-amplitude functions are Mathieu functions in azimuth, consistent with the
findings of Morris & Bhat (1995). This not only serves as validation in the sense that the
form of the solution is consistent with previous results from the literature, but it allows
individual Mathieu function modes to be identified, allowing the corresponding growth
rate of each individual mode to be compared with Morris & Bhat (1995). Linear stability
results were obtained for the same elliptical baseflow for M = 1.5, St = 0.4, whilst varying
the aspect ratio from 1 to 3. The growth rate for each mode at each aspect ratio is compared
with the ones obtained by Morris & Bhat (1995) in figure 24.

The ce0, ce1, se1 and se2 modes demonstrate a high level of agreement with Morris
whereas the growth rate of the ce2 mode show slightly lower levels of agreement for
higher aspect ratios, although the same decreasing trend is observed. Since all the other
modes match these previous results with a high level of agreement (which are solved
for simultaneously with the ce2 mode) the animosity may be due to the use of different
solution schemes.
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