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STRONGLY E-REFLEXIVE INVERSE SEMIGROUPS

by L. O'CARROLL

(Received 23rd February 1976)

Let S be an inverse semigroup with semilattice of idempotents E. We
denote by a the minimum group congruence on S (6), and by T the
maximum idempotent-determined congruence on S (2). (Recall that the
congruence 17 on S is called idempotent-determined if (e, x) G TJ and e £ E
imply that x G E.) In general T C <J.

The semigroup S is said to be E-unitary if Ea = E, or alternatively if,
given e in E and x in S, ex £ £ implies that x G.E; such semigroups were
originally called proper (15). The semigroup S is said to be E-reflexive if,
given x and y in S, xy G E implies that yx G E. More restrictively, S is said
to be strongly E-reflexive if, given e G £ ' and x and y in S, exy G E implies
that eyx G E, where the element 1 is the identity of 5' .

Thus an E-unitary inverse semigroup is strongly E-reflexive, and a
strongly E-reflexive inverse semigroup is E-reflexive. As shown below,
neither of these statements can be reversed.

In (4), McAlister described the structure of an E-unitary inverse semi-
group S in terms of the group Sla acting on a certain partially ordered
set. Now an inverse semigroup S is E-unitary if and only if T = <r on S, and
in (11) McAlister's construction was generalised to the case where a given
idempotent-determined congruence TJ was specified on an arbitrary inverse
semigroup S. There, S was shown to be embedded in an inverse semigroup
L = L(TJ) in a prescribed way, L being defined in terms of T = S/17 acting
on a certain partially ordered set. We recall that if S is E-reflexive, then T
can be described concretely (12).

In Section 2 of this paper, the theory of (11, 12) is supplemented so as
to describe how S may be recovered from a suitable inverse semigroup L,
and the full theory is then examined in detail whenever T is a semilattice
of groups. This restriction is shown to be equivalent to the supposition that
5 is a strongly E-reflexive inverse semigroup. In the penultimate section
we sketch how the theory specialises in other cases, while the last section
is devoted to illustrative examples.

Thus, a structure theorem for strongly E-reflexive inverse semigroups is
obtained which generalises McAlister's structure theorem for E-unitary
inverse semigroups. In fact, we show that an inverse semigroup is strongly
E-reflexive if and only if it is a semilattice of E-unitary inverse semigroups.
We also use the theory of (11,12) to show, in the terminology of (13), that a
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340 L. O'CARROLL

strongly E-reflexive inverse semigroup is embedded in a strong semilattice
of inverse semigroups, each of which is a semidirect product of a semi-
lattice and a group.

In the main we adhere to the notation of (1), and we assume familiarity
with the basic theory of inverse semigroups contained therein; the symbol
'C' means 'properly contained in'.

I should like to record my thanks to the referee for his extremely
helpful suggestions. In particular, Lemma 2 and Theorem 8 are due to him.
The former helped to simplify the original exposition of Section 2, while
the latter generalised the original result, which was the analogue for
strongly E-reflexive semigroups, and enabled the exposition of these
results to be clarified.

1.

Proposition 1. An inverse semigroup S is strongly E-reflexive if and
only if SIT is a semilattice of groups.

Proof. Suppose that S is strongly .E-reflexive. Then 5 is E-reflexive,
so that by (12, Theorem 1)

T = {(a,b)£SxS\E.-a = E.-b} (1)

where, for example, E. • a = {x G S\ax £ E}, E being the semilattice of
idempotents of S. It is easily seen that {ex, xe) G T, for each x G S and
e G E. Hence S/T is a semilattice of groups.

Conversely, suppose that S/T is a semilattice of groups. Then SIT is
E-reflexive, and since T is an idempotent-determined congruence, it follows
that S itself is .E-reflexive. Reversing the argument of the first part of the
proof shows that S is strongly E-reflexive.

Corollary 1. An inverse semigroup S is strongly E-reflexive if and only
if S/TJ is a semilattice of groups for some idempotent-determined con-
gruence TJ on S.

Proof. Suppose that TJ is an idempotent-determined semilattice of
groups congruence on S. Then 17 C T, SO that SIT is also a semilattice of
groups, being a homomorphic image of S/17.

The result now follows almost immediately from Proposition 1.

Corollary 2. An inverse semigroup S is strongly E-reflexive if and only
if the minimum semilattice of groups congruence v is idempotent-deter-
mined.

Proof. First we recall that v is the congruence generated by the
relation {{ex, xe)\e, x G S, e = e2}. Suppose TJ is an idempotent-determined
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congruence such that S/TJ is a semilattice of groups. Then v is also
idempotent-determined since v C 17.

The result now follows from Corollary 1.
In analogy with (10, Theorem 2) we have the following result. As above,

the minimum semilattice of groups congruence is denoted by v.

Proposition 2. Let S be an inverse semigroup. Then the congruence
generated by v H R is the minimum congruence K such that SIK is strongly
E-reflexive.

Proof. Let £ be a congruence on S such that Slg is strongly E-
reflexive, and let (a,b)&vf\R. Then aa~l = bb~\ so that af(a£)~' =
bi(b^)'1. Let v denote the minimum semilattice of groups congruence on.
S/£. Then v induces a surjective homomorphism <f>: Slv-^(SI^)lv such that
£i>'=<v(f>. Since (a,b)E.v, it follows that (aij,bf;)Gv. By Corollary 2 to
Proposition 1, £ is an idempotent-determined congruence and hence, by
(11, Proposition 2.1), a£ = b$. Thus v f~l R C £.

On the other hand, let x denote the congruence generated by vC\R.
Then \ Q v- Thus if we denote by v' the minimum semilattice of groups
congruence on Six, it follows that (ax, bx) G v' if and only if (a, b) G v. We
wish to prove that v' is idempotent-determined (see Corollary 2 to Pro-
position 1).

Consider a G S such that (ax,(aa~')x)G v'. Then (a,aa~l)G.v. Now
(a, aa~l) G R and v D R C x- Hence (a, aa~l) G \, so that ax = (aa~x)x, and
the result follows.

A semilattice of groups is strongly E-reflexive, as is an E-unitary
inverse semigroup. Clearly, however, a semilattice of groups need not be
E-unitary. Further, consider the bisimple inverse w-semigroup S(G,a),
where the endomorphism a of G is not injective. Then S(G, a) is not
E-unitary (8), so that T C a on S(G,a). However, S(G,a) is E-reflexive;
this follows either by direct computation or else from the result due to
Schein (private communication) that an inverse semigroup is E-reflexive
whenever its semilattice of idempotents forms a chain. Suppose that
S(G,a) were strongly E-reflexive. By Proposition 1, S(G,a)lr is a bisim-
ple semilattice of groups, that is to say, a group. Hence cr C T, a con-
tradiction.

The class of strongly E-reflexive inverse semigroups is closed under the
taking of inverse subsemigroups and direct products.

Now an inverse semigroup T is r-reduced, that is, of the form Sh for
some inverse semigroup S, if and only if the identity congruence is the
maximum idempotent-determined congruence on T. Since any congruence
on T is specified by its idempotent classes, which in the case of an
idempotent-determined congruence are subsemilattices of the semilattice
of idempotents, one sees from (1) above that the semilattices of groups T
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arising in Proposition 1 are those for which

e<f implies that E. • e* E. f; e,fGE (2)

where E is the semilattice of idempotents of T. It is easily seen that (2) is
equivalent to the condition

e<f implies that E. • f C E. • e; e,fEE. (3)

Proposition 3. Let T be a semilattice of groups with semilattice of
idempotents E and structural homomorphisms {<t>f,e\e, f G E, f 5* e}. Then T
satisfies (3) if and only if, given f>e in E, there exists g G E with g =s /,
g&e such that Ker <f>g,eg is a non-trivial subgroup of T.

Proof. This is easily seen.
The final result of this section examines the gross structure of a

strongly £-reflexive inverse semigroup S. The fine structure will be given in
Section 3.

First we need a result due to Hardy and Tirasupa; for the sake of
completeness we include a short proof.

Lemma 1. (3) Let S be an inverse semigroup which is a semilattice W
of inverse semigroups Sa, a E W, and let aa denote the minimum group
congruence on Sa, a E.W. Then Uaa is a semilattice of groups congruence
on S.

Proof. The result follows easily from the characterisation of cra due to
Vagner (16), see (5, Theorem 1), namely that <ra = {(x, y) G Sa x Sa\z =£ x, y
for some z G Sa}.

As is natural, a homomorphism on an inverse semigroup will be called
an idempotent-determined homomorphism whenever the associated con-
gruence is idempotent-determined.

Theorem 1. An inverse semigroup S is strongly E-reflexive if and only if
S is a semilattice of E-unitary inverse semigroups.

Proof. Suppose that S is strongly .E-reflexive. By Corollary 1 to
Proposition 1, there exists an idempotent-determined semilattice of groups
congruence 17 on S. Let 0 denote the canonical homomorphism onto Sir),
where S/TJ is the semilattice W of the groups Ga, a G W, say. Let 4> denote
the canonical homomorphism from S/TJ onto W, and let x = 04>- Then ^ is a
homomorphism from S onto the semilattice W; let Sa = ax'1 for each
a£W.

Now Sa = Ga&~\ Let e,x & Sa where e = e2 and ex = (ex)2. Since e& is
the identity element of Ga, xd = eO • xd = (ex)6. Since 6 is an idempotent-
determined homomorphism, it follows that x = x2. Hence Sa is .E-unitary,
and the result follows.
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Conversely, let S be a semilattice W of E-unitary inverse semigroups
Sa, a £ W. It follows from Lemma 1 that \Jaa is an idempotent-determined
semilattice of groups congruence on S. By Corollary 1 to Proposition 1,
therefore, S is strongly E-reflexive.

Remarks, (i) Following the first part of the proof of Theorem 1, we
have shown that -qa = 17 D (Sa x Sa) is a group congruence which is also
idempotent-determined. Hence TJO is the minimum group congruence on Sa

(a £ W).
(ii) Suppose that a semilattice W indexes a set of mutually disjoint

E-unitary inverse semigroups Sa, a £ W, and suppose that we have connec-
ting homomorphisms 4>aP: Sa^*Sp (a>/3) where each <f>aa is the identity
map and <f>ay = <S>a$4>pi whenever a =s /3 ^ y. Then under the obvious mul-
tiplication S = U{Sa |a£l¥} becomes a strongly E-reflexive inverse se-
migroup. Such connecting homomorphisms can always be defined. In this
case, following the notation of (13), we shall call 5 a strong semilattice of
E-unitary inverse semigroups.

As will be seen in Sections 3 and 5, not every strongly E-reflexive
inverse semigroup is of this form, although any strongly E-reflexive inverse
semigroup can be embedded in a strongly E-reflexive inverse semigroup
which is a strong semilattice of inverse semigroups, each of which is a
semidirect product of a semilattice and a group.

2.

The aim of this section is to summarise and to supplement the theory of
(11, 12).

Let X be a down-directed partially ordered set, and let F be a
subsemilattice and order-ideal of X. Let T be an inverse semigroup acting
on X, on the left, via a given homomorphism 4>: T-*IX, where each
a £ Im 4> has the property that its domain Aa and its range Va are
order-ideals of X and a is an order-isomorphism. Suppose further that
X =TY and that At^ • for each t £ T (as usual, the map t<f> is denoted by
t). Define L = L(T, X, Y) to be

{(a, t)\t £ T, at YD M'\ r'a £ Y)

under the multiplication

) = (t(ria/\b),ts).

Then L is an inverse semigroup with semilattice of idempotents E =
{(a, 0 £ L\t = i2}; given (a, e) and {b,f) in E, (a, e){b,f) = (a A b, ef) and
(a,t)GL has inverse (t~la,t~l). Moreover, (a, t){a, t)'1 = (a, tt']). Let
IT,: L-^Y and ir2: L—*T denote the projection maps.
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It is easily seen that TT-JJB is a homomorphism which maps onto Y.
Moreover, TT2 is an idempotent-determined homomorphism which is also
surjective. This follows because, for each t G T, the hypotheses about X, Y
and Af~' imply that t~l(Y D At"1) D Y¥ D. In short, we shall refer to
(T, X, Y) as an L-triple.

The L-triple (T, X, Y) is called a sm'cf L-triple if T has the further
property that

for each a G Y, there is a least idempotent e{a) in T such that
a G Ae(a) (that is, such that (a, e(a))G E) and moreover, for a, b in y,

A b) = e(a) • e(6). (4)

Given a strict L-triple (T, X, Y), define Lm = Lm(T, X, Y) to be {(a, f) G
L\trl = e(a)}, and let Em = {{a, e(a))\a G Y}. By (4), Em is a non-empty
subsemilattice of £ and -n\\Em maps onto Y.

Lemma 2. Let (T, X, Y) be a strict L-triple and let t GT. If a G Y DM
and ta G Y, then e(ta)= te{a)t~\

Proof. Clearly ta £.&te(a)t~\ so that e(ta)^ te(a)t~l. Replacing r oy
ta and f by r 1 , we deduce that e(a) = e(t~lta)*£ Cle(ta)t. Hence e(ta)=s
te(a)<~' =s«"'e(fa)«"' =ee(<a), and the result follows.

Theorem 2. Lm is an inverse subsemigroup of L with Em as its semilat-
tice of idempotents.

Proof. Let (a, O, (b, s) G Lm. Then (a, t)(b, s) = (t(t'la A b), ts)
where, by Lemma 2, e(f(r 'a A />)) = te(rxa A fc)/"1 = re(r 'a)e(b)r ' =
«~'e(a)re(fo)f"1 = tt~'M~'to~V~' = ts(ts)'1. Hence Lm is closed under mul-
tiplication.

Similarly, e(t~la) = t'le(a)t = r ' « " ' r = t~lt, so that (a, 0"' = (fa, t~l) G
Lm, and the result follows.

The next theorem brings out the connection between Lm and the theory
of (11, 12).

Theorem 3. Lm = {(a, t) G L|(a, s) G L and s « f /mp/y s = t}.

Proof. Let (a, t) GE Lm and suppose we have (a, s)G L with s == f. Then
(a, ss"1) = (a, s)(a, s)"1 G L with ss"1« tt'x = e(a). By definition of e(a) we
deduce that ss~' = tt~\ Since s «£ f, s = ss^t = «"'f = t.

Conversely, suppose that (a, t)E.L has the property that if (a,s)EL
and s =s t then s = t, and suppose that (a, e) G E. Then (a, ef) = (a, e)(a, f) G
L where ef =£ f. Hence et = t, so that tt~l « e. Since (a, «"') G £, it follows
that «"' = e(a). Hence (a, 0 G Lm.

Remark. Simple examples (with T a chain) show that L-triples exist in
which Em = • or in which Em is non-empty but not a subsemilattice of E.
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Even where we have a strict L-triple (T, X, Y), another simple example
with T a two element chain shows that 7j-2(Lm) need not equal T.

In view of the preceding remark, a strict L-triple is said to be fully strict
whenever 7r2(Lm) = T.

We point out that if (T, X, Y) is a strict L-triple and if Tm = 7r2(Lm),
Xm = TmY, then (Tm,Xm,Y) is a fully strict L-triple and Lm(T,X, Y) =
Lm\l m, Xm, Y ) .

As is essentially shown in (11), the above theory can be turned around.
The details are summarised in the next result.

Theorem 4. Let S be an inverse semigroup with semilattice of idem-
potents E, and let TJ be an idempotent-determined congruence on S. Then
there exists a fully strict L-triple (T,X,Y), where T = S/17 and Y is
isomorphic to E, and an isomorphism from S onto Lm\ n2 induces the
congruence -q on S.

If T is a group, then an L-triple is a fully strict L-triple, (4) being satisfied
automatically; in this case (T, X, Y) is called a P-triple. The above theory
then specialises as follows:

Let X be a down-directed partially ordered set, and let Y be a
subsemilattice and order-ideal of X. Let C be a group, with identity
element 1, acting on X on the left by order-automorphisms. Suppose
further that X = GY. Define P = P(G,X, Y) to be {(a,g)£Yx G\g~'a G
Y} under the multiplication (a, g)(b, h) = (a A gb, gh). Then P is an E-
unitary inverse semigroup with semilattice of idempotents E =
{(a, \)\a £ y} and maximal group homomorphic image G, TT2: P^>G being
the canonical homomorphism. (Note that Pm = P, this property being in
fact characteristic of the .E-unitary case.) Conversely, given an IJ-unitary
inverse semigroup S, there exists a P-triple (G, X, Y), with G = S/cr and Y
isomorphic to E, and an isomorphism from S onto P(G,X, Y).

This theory is due to McAlister (4, 9).

3.

We now apply the theory of the first two sections to obtain the fine
structure of strongly £-reflexive inverse semigroups.

All order-ideals of partially ordered sets are tacitly assumed to be
non-empty.

Theorem 5. (i) Let (T, X, Y) be a strict L-triple where T is a semilattice
of groups. Then Lm is a strongly E-reflexive inverse semigroup.

(ii) Conversely, let S be a strongly E-reflexive inverse semigroup. Then
there exists a fully strict L-triple (T, X, Y) where T is a semilattice of
groups and S is isomorphic to Lm.
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Proof, (i) As noted in Section 2, n2\Lm is an idempotent-determined
homomorphism into the semilattice of groups T. Its image is therefore a
semilattice of groups, and the result follows from Corollary 1 to Pro-
position 1.

(ii) This follows from Proposition 1 and Theorem 4.

Remarks. Let (T, X, Y) be an L-triple where T is a semilattice of
groups. An easy analogue of the proof of part (i) of Theorem 5 shows that
L(T, X, Y) is a strongly jB-reflexive inverse semigroup. In particular, if T is
a semilattice then L(T, X, Y) is just a semilattice.

If S is a semilattice of groups with semilattice of idempotents E, then
(5, E, E) is a fully strict L-triple with each s G S acting as the identity map
on As ={e E E\e =£ 5"'s}; see (11, page 21).

Let (T, X, Y) be an L-triple where T is the semilattice W of groups
Ga, a E W. For each a G W, we denote by ea the identity element of Ga.
Let / = {Aea\a E W}\ then J is a semilattice under intersection and the map
(/»: W ^*J defined by the rule i/r: a-»Aea is a surjective homomorphism. By
a slight abuse of notation, we define, for each a E W, Ya = Y OAe. and
Xa = GaYa; note that each g EGa is an order-automorphism of Aea.

We remark that if (T, X, Y) is fully strict then tp is injective. To see
this, suppose there exist a, /3 G W with ai/r = /3t/f. Since ir2(Lm) = T, there
exist a, b e Y such that ea = e(a) and ee = e(b). Then aEaip = (a/3)i^, so
that ea ^ eap, that is to say, a «/3. Similarly /3 « a, and we deduce that
a = /3. By Example 5.1 the converse does not hold.

Returning to our original situation where (T,X, Y) is not necessarily
fully strict, we now exhibit L(T, X, Y) as a semilattice of £-unitary inverse
semigroups.

Lemma 3. For each a G W, (Ga, Xa, Ya) is a P-triple.

Proof. Let a E.W. It is clear that Ga acts on Xa by order-automor-
phisms, and that Ya is a subsemilattice and order-ideal of Xa. Let a, b G Ya

and let g, h G Ga. Then there exists zE X such that z^ga and z «/ifc.
Then z E Aea and g~'z =s a. Hence g~'z G Y, and it follows that g~lz E Ya.
Thus z G Xa, and it follows that Xa is down-directed, whence the result.

Theorem 6. L(T, X, Y) is the semilattice W of the E-unitary inverse
semigroups P(Ga, Xa, Ya), a E W.

Proof. By the proof of Theorem 1, L = L(T, X, Y) is the semilattice W
of the .E-unitary inverse semigroups {(a, t) E L\t E Ga}, a E W—one uses
the second projection map TT2 as the candidate for 6 there. Let a EW.
Then (a, t)EL with t E Ga if and only if a E Ya and t~xa G Ya. Since / acts
on Aea as an order-automorphism, the result is almost immediate from
Lemma 3.
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Corollary. If X = Y is a semilattice, then L(T, X, X) is the semilattice
W of the inverse semigroups P(Ga, Aea, Aea), a G W, each of which is a
semidirect product of the semilattice Aea by the group Ga, a G W.

Proof. For each a G W, Ya = Y D Aea = X (1 AeQ = AeQ. The result
follows from Theorem 6.

Suppose further that (T, X, Y) is a strict L-triple. We wish to exhibit Lm

as a semilattice of £-unitary inverse semigroups. To smooth the argument,
we in fact assume that (T, X, Y) is a fully strict L-triple. By the remarks
preceding Theorem 4, this involves no real loss in generality.

So let (T, X, Y) be a fully strict L-triple, with T the semilattice W of
groups Ga, a G W.

For each a G W, let Va = {a G Y\e(a) = ea} and let Ua = GaVa. Each Va

is non-empty; note that Ya = U{Vp|/3 < a } .

Lemma 4. For each a G W, (Ga, Ua, Va) is a P-triple.

Proof. Let a G W, and let a, b G Va. Then e(a Ab) = e(a) • e(b) = ea,
and it follows that Va is a subsemilattice of Y.

Let g G Ga, and suppose that ga =£ b. Then ga G ya. By Lemma 2,
e(ga) = ge(a)g~' = geag~x = €„, so that ga G Va. Hence Va is an order-ideal
of Ua.

Let c,dE. Ua. Then c = gx and d = hy for some g, h E Ga and x j £ Va.
Since (T, X, Y) is a fully strict L-triple, there exists uE.Y' such that
(M, g)GLm. Hence, by Theorem 2, (g(g~'w A x),g) = (M, g)(x, e j G Lm, so
that u' = g(g~'a A x) G Va. Now M' =£ gx. Similarly, there exists v' G Va such
that v'^ hy. Then U ' A I ' 6 V , and is a lower bound for the set {c, d}.
Hence Ua is down-directed, and the result follows.

Theorem 7. Lm is the semilattice W of the E-unitary inverse semi-
groups P(Ga, Um Va), a£W.

Proof. The proof is analogous to that of Theorem 6 and follows almost
immediately from Lemma 4. One notes in particular that if a £ Y with
e(a) = ea, and if g G Ga with g~la G Y, then as seen in the proof of Lemma
4, e(g~'a) = ea.

Remark. Let S be a strongly E-reflexive inverse semigroup, and let 17
be an idempotent-determined semilattice of groups congruence on S. Then
S can be expressed as a semilattice W of E-unitary inverse semigroups Sa,
a G W, as in Theorem 1. Moreover, by Theorem 4, there exists a fully strict
L-triple (T, X, Y) with T = S/TJ such that 5 is isomorphic to Lm. Since the
second projection map TT2 induces the congruence TJ on S, it is clear from
Theorem 7 that Lm is the semilattice W of £-unitary inverse semigroups
P(Ga, Ua, Va), a G W, and that the isomorphism between S and Lm induces
an isomorphism between each Sa and P(Ga, Ua, Va).
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We now broach the question: when are the semigroups L(T, X, Y) and
Lm, of Theorems 6 and 7 respectively, strong semilattices of E-unitary inverse
semigroups?

First of all, following (14), we say that an order-ideal / of a par-
tially ordered set X is a p-ideal if, for each a GX, the set {xG/|x=£a}
is a principal order-ideal of X; that is, if the set {x G I\x =£ a) has a greatest
element.

The next theorem, which was pointed out to me by the referee, shows
that our question admits a wholly general treatment.

Theorem 8. Let S be an inverse semigroup which is the semilattice W
of inverse semigroups Sa, a G W, each with semilattice of idempotents Ea.
Let E = U{Ea\a E W} denote the semilattice of idempotents of S, and for
each a G W, let Fa = U {Ee\P «£ a}; each Fa is an ideal of E. Then the
following are equivalent:

(i) S is a strong semilattice of the Sa;
(ii) E is a strong semilattice of the Ea;

(iii) each Fa is a p-ideal of E;
(iv) if a^ p, e G Fa then the set {/ G Fp\f «£ e\ has a maximum element;
(v) if a ^ P, e G Ea then the set {f G Ep\f «£ e} has a maximum element

ep, where if a ^ /3 ̂  y, (ee)y = ey.

Proof, (i) => (ii) This is clear.
(ii) => (iii) If a,/3G W with a & p, let 9afs: Ea^>Ee denote the

linking homomorphism. Let yG.W, and let e GE Ey. Then e$yayE.Fa and
eOy<ay*£: e. On the other hand, suppose / G Fa and / ^ e. Then / G Ee where
/3 *£ a and /3 =£ y. Hence /3 =s ay, and it follows almost immediately that
/ « eQy<ay. Thus eQy,ay is the maximum element in the set {/ £ Fa\f =£ e), and
the result follows.

(iii) => (iv) This is immediate.
(iv) => (v) Let a & )3 and let e G Ea. Then e E Fa. Denote by ep the

maximum element of the set {/ G Fp\f « e}. Pick g G Ep. Then eg E. EeC Fp

and eg =s e. Hence eg =£ ep, and it follows that ep G £p. Thus ep is the
maximum element in {f e Ep\f *s e}.

Let j8 ^ y. By the above, («P)T G Ey and (ep)y =̂  ep *£ e, so that (ep)y « ey.
On the other hand eyEEyQ Fe and er =s e, so that eT «£ ep, and it follows
that ey m(ep)y. Hence ey = (ep)y.

(v) ^> (i) We claim that

given e G Ea, x G 5a, and /3 ̂  a, x^x"1 = (xex"1)^. (5)

Certainly xepx~l E Ep and xe^" 1 « xex~l. On the other hand, if / G Ep and
f*sxex~\ then / « « " ' and x~lfx =s e. But x~xfxEEp, so that x'lfx^ep.
Hence / = xx~'/xx~' ^xc^x"1, and (5) follows.
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Given a > /3 and x G Sa, define the map <£Q/3: Sa -» Sp by the rule
<l>al): x ** (xx'^px.

Let y G Sa. Then, using (5), we see that (xy)<l>a$ = x(yy~%y, while
x<t>afi • y<f>ap = x(x'lx)p(yy'l)py, so that x</>a$ • y<f>ae «{xy)<f>afs. Howeve r ,
x~lx • (yy~% ^ (x~'jc)p, and from this it follows easily that (xy)</>a/s=s
x<f>ap • y<̂ ap. Hence ^ is a homomorphism.

Clearly <£„„ is the identity map, and it is easily seen that if /3 s* y, then

= (xx-l)Mzz-l)wz, by (5)
= X<f>av • Z<j>Sv

Thus (i) holds with the <f>ap as linking homomorphisms.
We can use Theorem 1 to reformulate condition (iii) of Theorem 8 as

follows:

Theorem 9. Let S be an inverse semigroup with semilattice of idem-
potents E. Then S is a strong semilattice of E-unitary inverse semigroups if
and only if there exists an idempotent-determined semilattice of groups
congruence rj on S such that (Ee)t] is a p-ideal in E, for all e G E.

Proof. This is immediate.

Remark. Examples of the kind given in Section 5 below show that a
given strongly -E-reflexive inverse semigroup may be expressed as a strong
semilattice of .E-unitary inverse semigroups, as in Theorem 1, by means of
v (the minimum semilattice of groups congruence) but not by means of T,
and vice versa. Thus there does not exist a test idempotent-determined
congruence which would enable us to decide whether a strongly E-
reflexive inverse semigroup, however presented, is or is not a strong
semilattice of E-unitary inverse semigroups. However, it follows from
Theorem 8 or 9 that if S is a strongly E-reflexive inverse semigroup whose
semilattice of idempotents is inversely well-ordered, then S is a strong
semilattice of E-unitary inverse semigroups.

Before applying Theorem 8 we prove a preliminary lemma.

Lemma 5. Let (T, X, Y) be an L-triple, where T is the semilattice W of
groups Go, a G W. Then the following are equivalent:

(i) Each element of {Ya\a G W} is a p-ideal of Y;
(ii) Each element of J — {Aea|a G W} is a p-ideal of X.
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Proof, (i) => (ii). Let aEX,aEW. Then there exists p G. W such that
a = gb for some g G G&, b G Yp. By hypothesis there exists a maximum
element c E.Ya such that c =£ b. Then gc « a, and moreover, since c G Aeap,
gc = gea0c G AeO0 C Aea.

Conversely, consider x G Aea such that x s£ a. Then g~'x *£ b, so that
g"'x G Y. Moreover, x G Aep so that x G Aea<J. Hence g~lx - g~leafix G
Aea(3 C Aea. Thus g~'x =£ c, so that x «gc. The result follows.

(ii) =̂> (i). This is trivial.
The next result is now almost immediate from Theorem 8 and Lemma 5.

Theorem 10. (A) Let (T, X, Y) be an L-triple where T is the semilattice
W of groups Ga, a G W. Then the following are equivalent:

(i) L(T, X, Y) is a strong semilattice of the E-unitary inverse semi-
groups P(Ga, Xa, Ya), a&W;

(ii) Given a and (3 in W with a & /3 and a G Ya, there is a largest
element b ELY$ such that b =£ a;

(iii) Each element of J = {Aea|a G W} is a p-ideal of X.

(B) Suppose further that (T, X, Y) is a fully strict L-triple. Then the
following are equivalent to each other and to any one of (i), (ii), (iii):

(iv) Lm is a strong semilattice of the E-unitary inverse semigroups
P(Ga, Ua, Va), « G W;

(v) Given a, /3 and y in W with a 5* /3 s? y and a G Va, there is a largest
element ap G Vp such that ap *s a, where (a^)y = ay.

Proof. In view of the remarks before Lemma 4 and after Theorem 7,
under the hypotheses in (B), the equivalence of (ii), (iii), (iv) and (v) follows
straightaway from Theorem 8 and Lemma 5.

In the terminology of Theorem 8, in (A), S = L(T,X,Y), Sa =
P(Ga, Xa, Ya), Ea=Yax {ea}, and Fa = U{Y0x {e0}\p =s a}. Thus the ap-
plication of Theorem 8 to this situation is not entirely straightforward.
However, an easy argument establishes that (ii) above is the analogue of
condition (iv) (and of condition (v)!) of Theorem 8, and that, because of
Lemma 5, (iii) above is the analogue of condition (iii) of Theorem 8.

Following the hypotheses of Theorem 10 (A), let X be the set of
ordej-ideals A of X such that A C gYa for some g E. Ga, a E. W, the order
on X being that of inclusion. For each a G W, let Aea = {A G X\A c AeQ}.
As shown in (11), (T, X, X) is an L-triple, gE.Ga having domain Aea for
each a G W. Note tha^each Aea is a p-ideal of X; if B G X, B (1 Aea is the
largest element C of Aea such that C C B. Combining these remarks with
the Corollary to Theorem 6 and with Theorem 10 (A) we have one half of
the following result, the other half of which is immediate.

Theorem 11. An inverse semigroup is strongly E-reflexive if and only if
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it can be embedded in a strong semilattice of inverse semigroups, each of
which is a semidirect product of a semilattice and a group.

Recall that homomorphisms between two E-unitary inverse semigroups
presented in the form P(G,X, Y) have been described explicitly (4).

We remark here that the theory of Section 2 can be brought full circle
in the following sense.

Let (T, X, Y) be a strict L-triple, where T is now an arbitrary inverse
semigroup, and as before, let Tm = 7r2(Lm), Xm = TmY. Now the congruence
TT2 ° 77-2~'|Lm x Lm is an idempotent-determined congruence on Lm, so that
Lm is embedded in a semigroup L0) as in Theorem 4. Further, as mentioned
prior to Theorem 4, (Tm, Xm, Y) is a fully strict L-triple, so that one
can form L<2) = L(Tm, Xm, Y). Finally, let L<3) = {(a, t) E Y x Tm\{a, t) e
UT, X, Y)}. Then it can be shown that Lm « L(2) = L°\

The full L-theory can be viewed as a structure theorem machine. In this
paper, we have fed into the machine the stipulation that T lies in the class
C of inverse semigroups consisting of semilattices of groups. The main
properties of C used in Propositions 1 and 2 were that C is a subclass of
the class of E-reflexive inverse semigroups, that C is closed under
homomorphic images, and that there is a minimum congruence p on an
arbitrary inverse semigroup S such that Sip G C. Using (1) in the proof of
Proposition 1, the exact denning conditions were found on an inverse
semigroup S so that 5 / T G C ; the first property of C mentioned above
entails that S itself is E-reflexive. The class C of groups also has these
properties, and the results in McAlister's theory (4) can be viewed as
arising from the stipulation that T lies in C. Thus Propositions 1 and 2 can
be extended in an obvious way for suitable subclasses of the class of
E-reflexive inverse semigroups.

Another class of semigroups which recommends itself for consideration
is the class of bisimple inverse «-semigroups S(G, a). As mentioned
before, such semigroups are E-reflexive. Recall (8) that if a is injective
S(G, a) is E-unitary, while if a is not injective any non-group congruence
separates idempotents, so that S(G, a) is then r-reduced. Stipulating that
T = S(G, a) in the former case yields E-unitary inverse semigroups for Lm,
since the composition of idempotent-determined homomorphisms is again
idempotent-determined. Something new is achieved in the latter case,
namely a description of all inverse semigroups S for which Sir = S(G, a).
In practice the two cases may as well be treated together, so that for a
given bisimple inverse w-semigroup B we find a description of all inverse
semigroups S for which S/TJ = B, where TJ is an idempotent-determined
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congruence on S. The theory, which has features in common with that of (7), is
left to the reader.

5.

This section is devoted to illustrative examples. The first is typical of
the class of examples in which T is a chain.

Example 5.1. Let X be the real numbers R under the usual ordering,
let Y = X, let / be the set of those order-ideals of R which are either of the
form {x £ R\x =s t} or of the form {x G R\x < t} for some t £ R, and let T be
the chain consisting of the identity maps on the elements of /. Then
(T, X, Y) is a strict L-triple which is not fully strict; if t G T, the identity
map on {x G R\x < t} is not of the form e(a) for any a GR.

The next two examples are more complicated. The first shows that a
strongly E-refiexive inverse semigroup need not be a strong semilattice of
E-unitary inverse semigroups, while the second shows that the technicality
in conditions (v) of Theorem 8 and (v) of Theorem 9 is indeed essential.

Example 5.2. Let X = Y be the semilattice {a, b, c, d, e, /} where a =
b A c, bvc = d = ehf, b and c are incomparable, and e and / are also
incomparable. Let W = {a, /?} where a > j3, and let T be the semilattice W
of the groups Ga = Klein 4-group and Ga = cyclic 2-group given by a
surjective homomorphism from Ga to Gp. Set / = {{a, b, c}, X}. Then there
is an obvious injective homomorphism <f>: T^IX such that (T, X, X) is a
fully strict L-triple, where each element of Ga is an order-automorphism of
X, and each element of Gp is an order-automorphism of {a, b, c}.
Moreover, Lm = ({a, b, c} x Gp) U ({d, e, / } x Ga).

Suppose that Lm is the semilattice A of E-unitary inverse semigroups
SA, A6A, where (e, x) G Sx say, x being any element of Ga such that
x~le=f. Then (/, x) = (e, x)'1 E SA, so that (/, ea) = (/, *)(/, x)'1 G SA and
(e, ea) = (e, x){e, x)~l G SA. Hence (d, ea) = (e, ea)(f, ea) is in SA, and it fol-
lows that {d, e, /} x GaC Sx. Similarly {a, b, c}xG s C S^ for some fi G A.

By Proposition 3 (with / = g = ea and e = ep there), T is T-reduced.
Since T is an idempotent-determined homomorphic image of Lm, it follows
that Lm is not JB-unitary. Hence fi ^ A, so that A = {a, /?} with Ŝ  = Sp =
P(GP, Up, Vp) and 5A = Sa = P(Ga, Ua, Va). Now d <= Ya and there is no
largest element in Yp below d. It follows from Theorem 10 (B) that Lm is
not a strong semilattice of ^-unitary inverse semigroups.

Example 5.3. Let X = Y be the semilattice {a, b, c, d} where a = b A C,
d = b v c, and b and c are incomparable. Let Xt = X, X2 = {a, b, c}, and
X} = {a, b), and let / = {X{, X2, X3}. Let T be the chain {ea, ep, ey) where
e<i[e<3> ey] is the identity map on X\[X2, X3]. Then (T, X, X) is a fully strict
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L-triple, and Vy = {a, b), Vp = {c}, and Va = {d}. Now dy = b, while (dp)y =
cy = a.

The final example shows that Theorem 10 (B) is not sufficiently general
for our purposes, but that Theorem 10 (A) is needed.

Example 5.4. Let E be the chain {ax < a2 < • • • < an < an+1 < <
bn+i < bn < • • • < b2< bi}, and consider the fully strict L-triple (E,E,E)
described in the remarks following Theorem 5. Then the L-triple (E, E, E)
is not even strict, as can be seen by considering the element {a,|i =
1,2,3,...} of E.

I should like to record my thanks to Mario Petrich for some stimulating
conversation.
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