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Abstract

In this paper we prove uniqueness theorems for mappings F ∈W1,n
loc (Bn;Rn) of finite distortion 1 ≤ K(x) =

‖DF(x)‖n/JF(x) satisfying some integrability conditions. These types of theorems fundamentally state
that if a mapping defined in Bn has the same boundary limit a on a ‘relatively large’ set E ⊂ ∂Bn, then the
mapping is constant. Here the size of the set E is measured in terms of its p-capacity or equivalently its
Hausdorff dimension.

2010 Mathematics subject classification: primary 30C65.

Keywords and phrases: p-capacity, p-modulus, distortion, Hausdorff dimension.

1. Introduction

There have been a number of far-reaching generalizations of the famous original F.
and M. Riesz’s uniqueness theorem that states that if a bounded analytic function in
the unit disc of the complex plane has the same radial limit in a set E of positive
Lebesgue measure on its boundary, then the function has to be constant.

First Beurling (see [1, 17]), considering the case of nonconstant meromorphic
functions mapping the unit disc on a Riemann surface of finite spherical area, was able
to prove that if such a function showed an appropriate behavior in the neighborhood of
the limit value where the function maps a set on the boundary of the unit disc, then that
set has capacity zero. Here the capacity considered is the logarithmic linear capacity.

Carleson, in [3], proved that some condition on the limiting value must be required
if we want E to be a set of uniqueness. He constructed a nonconstant function in the
unit disc B2 having the same limiting value in a subset E ⊂ ∂B2 of positive capacity.

This led to the following question: what condition must we impose on the limiting
value so that if the capacity of E is positive, then the function is constant?

The author of the present note, in [19], was able to weaken Beurling’s condition
on the limit value. Later Jenkins, in [10], showed that in the presence of such a local
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[2] Uniqueness theorems for mappings of finite distortion 413

condition on the limit value, the global behavior of the image Riemann surface is
irrelevant and at the same time he gave an improved and sharper condition.

Those results were quite restrictive in a twofold way. Namely, they were in
dimension n = 2 and the regularity requirements on the functions under consideration
were quite strong; analyticity and meromorphicity. Koskela, in [11], was able to
remove those two restrictions by proving a uniqueness result for functions in W1,p(Bn)
(here Bn is the unit ball of Rn) for values of p in the interval (1, n] and satisfying
a condition on the limit value very similar in nature to the one of Jenkins in two
dimensions. In particular, Koskela’s result recovers Jenkins’ in the case p = n = 2. He
proved that a continuous function u in the Sobolev space W1,p(Bn), where 1 < p ≤ n,
vanishes identically provided

I(ε) =

∫
|u(x)−a|<ε

|∇u(x)|p dx = O
(
ε p

(
log

(1
ε

))p−1)
as ε → 0 and there is a set E on ∂Bn of positive p-capacity such that for each x ∈ E
and every locally rectifiable curve γ ∈ Bn ending at x, there is a sequence of points in
γ ending at x for which the function u tends to a.

Observe that this is a very strong condition. In our results we are going to require a
much weaker condition. Namely, we will require that for each x ∈ E there are a curve
γ ⊂ Bn ending at x and a sequence of points {bk}

∞
k=1 ⊂ γ tending to x with

lim
k→∞

u(bk) = a.

Since we are going to be dealing with mappings for which each of their component
functions satisfies a Lindelöf-type theorem, see [12, 13], it will follow that if our
condition above holds at x ∈ E with limit a, these Lindelöf-type theorems (see [12,
Theorem 2, page 434] and [13, Theorem 2, page 404]) guarantee that, modulo sets of
small p-capacity, for any other locally rectifiable curve γ ⊂ Bn ending at x ∈ E, either
the limit exists and is equal to a or the limit does not exist. This allows us to show that
our chosen metrics for the module problem Mα(∆(B j0 , E;Bn)), where ∆(B j0 , E;Bn)
consists of the family of curves in Bn joining B j0 , an open ball in Bn and E ⊂ ∂Bn, are
admissible and that Mα(∆(B j0 , E;Bn)) = 0.

It is well known, see [5], that without loss of generality we can assume that all the
curves in ∆(B j0 , E;Bn) are locally rectifiable, since the set ∆NLR(B j0 , E;Bn) of curves
in ∆(B j0 , E;Bn) that are not locally rectifiable is an exceptional set for the module
problem Mα(∆(B j0 , E;Bn)), that is, Mα(∆NLR(B j0 , E;Bn)) = 0, and the subadditivity
property of the module.

Afterwards, classical symmetrization results [20, Lemmas 4.2 and 4.3] and [12,
Lemma 4.7] will allow us to conclude that the same holds for the module
Mα(∆(B j0 , E;Rn)) = 0 for the family of curves in Rn joining B j0 and E. Our results
will then follow from well-known equivalence results between α-modules and α-
capacities; see [8, 22, 23].

In Mizuta [15] and Miklyukov and Vuorinen’s [14] papers, they require the
existence of fine boundary limits at every point x ∈ E ⊂ ∂Bn, which is a much stronger
condition than ours; see [2, 4].
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Koskela [11] showed that his result is sharp in the sense that (log(1/ε))p−1 cannot be
replaced by (log(1/ε))p−1+δ for some positive δ (even if u is assumed to be continuous
in the closure of Bn).

Mizuta, in [15], showed that under the same hypothesis on the function u as in [11],
if

I(ε) = O(ε pφ(ε))

as ε → 0, where φ is a positive nonincreasing function on the interval (0,∞) satisfying
the following conditions:

A−1φ(r) ≤ φ(r2) ≤ Aφ(r)

for every r > 0 and A a positive constant and∫ 1

0
[φ(r)]1/(1−p)r−1 dr =∞,

then if there is a set E on ∂Bn of positive p-capacity such that the same fine boundary
limit a exists at each x ∈ E, then the function u is identically equal to a on Bn. It is easy
to observe that the function φ(ε) = (log(1/ε))p−1 satisfies the two conditions in [15].

Lastly, Miklyukov and Vuorinen, in [14], showed that if the integral I(ε) satisfies
one of the conditions ∫

0

( 1
I′(ε)

)1/(p−1)
dε =∞

or ∫
0

(
ε

I(ε)

)1/(p−1)
dε =∞,

or there exists a nonnegative function f (ε) satisfying the conditions

I(ε) ≤ ε p( f (ε))p−1

for every 0 < ε < 1
2 and

∞∑
k=0

1
f (2−k)

=∞

or
lim inf
ε→0

I(ε)
ε p <∞,

then again the function u is identically equal to a. It is not difficult to show that this
result generalizes the one in [15].

In this paper we are going to require a similar type of conditions, but for mappings
rather than for functions. Our conditions will be on the integral

∫
‖F(x)−a‖<ε JF(x)p dx,

where JF is the Jacobian of the mapping F.
Under these conditions, we will be able to show that the mapping F is identically

equal to a provided the set E ⊂ ∂Bn, where for each x ∈ E there are a curve γ ⊂ Bn

ending at x and a sequence of points {bk}
∞
k=1 ⊂ γ tending to x with limk→∞ F(bk) = a,

has positive p-capacity.
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[4] Uniqueness theorems for mappings of finite distortion 415

As a consequence of that, we will show that those sets E ⊂ ∂Bn have ‘small’
Hausdorff dimension. Meaning that, if the mappings F are nonconstant, the size of
the sets E ⊂ ∂Bn where F has the same weak limit a along a curve γ ⊂ Bn ending at
x ∈ E is ‘small’.

Let us remark here that the results of Koskela [11], Mizuta [15] and Miklyukov and
Vuorinen [14] are for real-valued functions, while our results are more in the spirit
of the initial results of F. and M. Riesz, Beurling and Jenkins, where they considered
mappings from the complex plane into the complex plane.

Let us remark also that although our results are established for mappings defined
on the unit ball Bn ⊂ Rn, they also hold for mappings defined on a sufficiently smooth
open connected set Ω for which the corresponding Sobolev and capacity extension
results hold.

2. Preliminary definitions and results

In this section we will present several definitions and known results that will be
needed in the rest of this paper, as well as the main result of the paper.

Let us start by recalling the definition of monotone function (in this paper we
consider only continuous monotone functions).

Definition 2.1. Let Ω ⊂ Rn be an open set. A continuous function u : Ω→ R is
monotone (in the sense of Lebesgue) if

max
D̄

u(x) = max
∂D

u(x)

and
min

D̄
u(x) = min

∂D
u(x)

hold whenever D is a domain with compact closure D̄ ⊂ Ω.

The Sobolev space W1,p(Bn;R) consists of functions u : Bn → R that have first
distributional gradient ∇u such that∫

Bn
(|u(x)|p + |∇u(x)|p) dx <∞.

For a domain D ⊂ Rn and a pair of disjoint, nonempty, compact sets E, F ⊂ D̄, the
triple (E, F,D) is called a condenser. Its p-capacity is defined by

capp(E, F; D) = inf
u∈L

∫
D
|∇u|p dx,

where the infimum is taken over all the functions in the class

L = L(E, F; D) = {u ∈ L1
p(D) ∩C(D ∪ E ∪ F) : u|E ≤ 0, u|F ≥ 1}.

Here L1
p(D) denotes the Sobolev space of measurable functions u : D 7−→ R̄

satisfying
∫

D |∇u|p dx < ∞. Recall that W1,p(D) = Lp(D) ∩ L1
p(D) and that L1

p(D) ⊂
W1,p(D) if ∂D is sufficiently smooth. In particular, this is true for Bn. For a general set
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E and a compact F, we define the p-capacity as

capp(E, F; D) = sup
K⊂E
{capp(K, F; D)}.

We say that a compact set E is of p-capacity zero if capp(E, ∂D; D) = 0 for some
bounded (and hence for each bounded) domain D such that E ⊂ D̄. This is the case
(see [22, 23]) if the p-modulus of the family of curves in Rn joining E to the boundary
of some open ball not intersecting E is zero.

Next, we will state slight variations of two Lindelöf-type theorems that were proved
in [12, 13], respectively, and that we will need in the proofs of Theorems 2.5 and 4.2.

A close examination of the proofs of those theorems in [12, 13] shows that for each
locally rectifiable curve γ : [0, 1) 7−→ Bn ending at E (that is, limt→1 γ(t) exists and
is equal to b for some b ∈ E), we can assume that our mapping F(x) is absolutely
continuous on each closed subcurve of γ. In particular, in the proof of Theorem 2
in [12, 13] (it might be necessary in those proofs to take two subsequences of the two
original sequences), there will be a closed subcurve γk ⊂ γ ∩ B

n(x0, |x0 − bk|) where
|F(x)| < |α| + η and letting E = γk ∩ Hk the following hold.

Theorem 2.2. Let u be a continuous monotone function in W1,p(Bn). Suppose that
n − 1 < p ≤ n. Then, for every ε > 0, there is an open set Uε in Rn with capp(Uε) < ε
with the property that if γ is a curve ending at x0 ∈ ∂B

n\Uε and {bk}
∞
k=1 ⊂ γ a sequence

of points in Bn tending to x0 so that

lim
k→∞

u(bk) = α,

then u(x) has nontangential limit α at x0.

We say that a nonnegative measurable function w is a Muckenhoupt Ap(Ω) weight
if

sup
B⊂Ω

{ 1
|B|

∫
B

w dx
}{ 1
|B|

∫
B

w1/(1−p) dx
}p−1

<∞,

where B is any ball in Ω and |B| stands for its volume. Then we have the following
result.

Theorem 2.3. Let u be a continuous monotone function in W1,p(Bn; w), where w is in
the class Aq for some q in the range 1 ≤ q < p/(n − 1). Suppose that n − 1 < p ≤ n.
Then, for every ε > 0, there exists an open set Uε in Rn with capp(Uε) < ε with the
property that if γ is a curve ending at x0 ∈ ∂B

n\Uε and {bk}
∞
k=1 ⊂ γ a sequence of

points in Bn tending to x0 so that

lim
k→∞

u(bk) = α,

then u(x) has nontangential limit α at x0.
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The limitation p > n − 1 in the two previous theorems appears in a module estimate
on (n − 1)-dimensional spheres.

Let us remark here that it is well known, see [6], that each of the component
functions of a mapping F ∈ W1,n

loc (Bn) of finite distortion 1 ≤ K(x) = |DF(x)|n/JF(x) is
continuous and monotone; and thus Theorems 2.2 and 2.3 apply to the component
functions of these mappings assuming that the mappings are in the corresponding
Sobolev spaces.

We need Theorems 2.2 and 2.3 because in our main uniqueness results we are going
to require that our mappings have the same weak limit α along a curve γ in Bn ending
at x0 ∈ E ⊂ ∂Bn. That is, there is a sequence of points {bk}

∞
k=1 ⊂ γ tending to x0 with

lim
k→∞

u(bk) = α,

rather than having the same weak boundary limit on the set E, as required in [11].
According to [11], a function u has a weak boundary limit α at a point x0 in the set
E ⊂ ∂Bn if for every rectifiable curve γ ∈ Bn ending at x0 there is a sequence of points
in γ for which u tends to α. This last assumption seems to us a very strong one, and a
necessary one, in the absence of a Lindelöf-type theorem as was the case in [11].

Let us continue with some standard notation that will be used throughout the paper.
The open ball centered at x0 with radius r is denoted by Bn(x0, r). By c(α, β, . . .), we
denote a constant that depends only on the parameters α, β, . . . and that may change
value from line to line.

Let Γ be a family of curves in Rn. Denote by F (Γ) the collection of admissible
metrics for Γ. These are nonnegative Borel measurable functions ρ : Rn → R ∪ {∞}
such that ∫

γ

ρ ds ≥ 1

for each locally rectifiable curve γ ∈ Γ. For p ≥ 1, the p-module of Γ is defined by

Mp(Γ) = inf
ρ∈F (Γ)

∫
Rn
ρp dx;

if F (Γ) = ∅, we set Mp(Γ) =∞. In a similar way, we define the weighted p -module as

Mw
p (Γ) = inf

ρ∈F (Γ)

∫
Rn
ρpw(x) dx,

where w is a positive weight defined in Rn: for a more detailed discussion of these
topics, see [13, 16, 18, 21]. Upper bounds for moduli are obtained by testing with a
particular admissible metric.

Before we state the main result in this paper, let us recall some further definitions.
Let Ω ⊂ Rn, n ≥ 2, be a domain and F : Ω→ Rn be a mapping. We will say that the

mapping F is in the Sobolev space W1,n
loc (Ω;Rn) if each of its component functions is

in the Sobolev space W1,n
loc (Ω;R). We can think of F as a deformation of some material
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whose initial configuration is Ω. The differential of F at a point x is denoted by DF(x),
its norm is

‖DF(x)‖ = sup{|DF(x)h| : h ∈ Rn, |h| = 1}

and its Jacobian determinant is JF(x) = det DF(x). The distortion of F at a point x is
defined by the ratio

K(x) =
‖DF(x)‖n

JF(x)
.

If K(x) ∈ L∞(Ω;R), then F is said to be a quasiregular mapping. We will say that F
is a mapping of finite distortion if

1 ≤ K(x) <∞ for a.e. x ∈ Ω,

that is, except for a set of measure zero in Ω, JF(x) ≥ 0, which implies that F is
orientation preserving.

Definition 2.4. Let F : Bn → Rn be a mapping. We define the multiplicity function of
F at some point y ∈ Rn with respect to some domain D ⊂ Bn as

N(y, F,D) = #{x ∈ D : F(x) = y}.

Let us remark that although our results are going to be stated for mappings defined
on the unit ball Bn of Rn, they also hold for mappings defined in domains Ω ⊂ Rn

for which we have both capacity and Sobolev extension theorems. We state our main
result.

Theorem 2.5. Let F ∈ W1,n
loc (Bn; Rn) ∩ W1,α(Bn; Rn) be a nonconstant mapping for

α = p̄ − (1 − η)2 with 0 ≤ η < 1/2 small and p̄ = (1 − η)n. In addition, let the mapping
F have finite distortion K ∈ L p̃ for p̃ = n − 1 + η ≥ n − 1.

Let E ⊂ ∂Bn be the set where for each x0 ∈ E there are a curve γ ⊂ Bn ending at x0

and a sequence of points {bk}
∞
k=1 ⊂ γ tending to x0 with

lim
k→∞

F(bk) = a

and Bε = {x ∈ Bn : |F(x) − a| < ε}. Suppose, moreover, that for every small ε0 ≥ ε > 0,∫
Bε

JF(x) dm(x) =

∫
{y:|y−a|<ε}

N(y,Bn, F) dm(y) ≤ Cεn
(
log

(1
ε

))n(( p̄−δ)/p̄)
,

where δ = n/(n − 1 + η). This condition implies that the
(
p̄ − (1 − η)2)-capacity of

the set E ⊂ ∂Ω is zero and thus its Hausdorff dimension is less than or equal to
n − p̄ + (1 − η)2.

In other words, if E has positive ( p̄ − (1 − η)2)-capacity with 0 ≤ η < 1/2, then the
mapping F is identically equal to a.
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Remark 2.6. Our assumption that our mapping F in Theorem 2.5 is in the Sobolev
space W1,α(Bn;Rn) for some α < n is necessary because we are considering our set
E ⊂ ∂Bn to be the set on the boundary of Bn where a ‘very weak’ limit exists.
This assumption would not be necessary if we were to consider radial limits or
nontangential limits.

Observe also that by Hölder’s inequality, the integrability condition on Theorem 2.5
implies that ∫

Bε

JF(x)p̄/n dm(x) ≤ Cε p̄
(
log

(1
ε

))p̄−δ
.

It is well known that by [6, Theorem 2.3, page 405], the component functions of
every mapping in the Sobolev space W1,n

loc (Bn;Rn) of finite distortion are monotone.
In order to apply the Lindelöf-type Theorem 2.2 in the proof of Theorem 2.5, we
need to require that F ∈ W1,α(Bn;Rn) for α = p̄ − (1 − η)2 with 0 ≤ η < 1/2 small and
p̄ = (1 − η)n.

Before we pass to the proof of Theorem 2.5, let us examine how it is related to the
results of Koskela [11], Mizuta [15] and Miklyukov and Vuorinen [14]. Let us observe
that their covering conditions on Bε are integral conditions involving the gradient of
the real function u to some power p. For example, Koskela’s condition requires that

I(ε) =

∫
Bε

|∇u|p dm ≤ Cε p
(
log

1
ε

)p−1

for 1 < p ≤ n. Since the function u is a real function, this covering condition is for an
interval (−ε, ε) about zero. This condition should be replaced in the case of mappings
from Bn into Rn by an integral condition on some power of the norm of the differential
matrix ‖DF‖ or the Jacobian JF .

The two extra conditions we impose on the mapping F come naturally. First
the integrability of the distortion function K(x) and second the monotonicity of the
components of the mapping F. Yet, the second condition can be removed if we
consider that the limits at the set E ⊂ ∂Bn are fine boundary limits; see [2, 4] for
the definition of this type of limits.

Observe that the length of the gradient vector of the functions u in the work of
Koskela [11], Mizuta [15] and Miklyukov and Vuorinen [14] should be replaced by
J1/n

F in the case of a mapping F. Thus, Koskela’s condition on Bε translates to∫
Bε

JF(x)p/n dm(x) ≤ Cε p
(
log

1
ε

)p−1
.

This is the case under the hypothesis of our theorem on the integrability of the
multiplicity function N(y,Bn, F). We are trying to find an upper bound of the integral∫
Bε

JF(x)p/n dm(x). By Hölder’s inequality,∫
Bε

JF(x)p/n dm(x) ≤ C
(∫
Bε

JF(x) dm(x)
)p/n

.
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For the mappings under consideration, the following change of variable formula
holds; see [6, Theorem 1.1, page 400]:∫

Bε

JF(x) dm(x) =

∫
{y:‖y‖<ε}

N(y,Bn, F) dm(y).

Thus, our integrability conditions on the Jacobian JF(x) or, which is equivalent,
on the multiplicity function N(y,Bn, F) basically say that in order to have uniqueness
theorems, the mappings cannot cover ‘too much’ of a small ε-neighborhood of the
limiting value a. This is clearly a geometric condition on the mappings, making our
results intuitively geometric in nature.

In our proof, it will become clear how conditions similar to the ones in Mizuta [15]
and Miklyukov and Vuorinen [14] can be used as the integrability conditions for the
multiplicity function N(y,Bn, F) to obtain similar results to the ones in those two
papers.

Our results generalize the previous results related to the original F. and M. Riesz’s
uniqueness theorem in two directions. Namely:

(1) our results are for mappings;
(2) when restricted to functions, that is, J1/n

F replaced by |∇u|, we obtain
results similar to the ones by Koskela [11], Mizuta [15] and Miklyukov and
Vuorinen [14].

Lastly, we examine the role of the monotonicity condition in our results. In our
theorems we state that our function ‘approaches’ the same weak limit a along a curve
γ in Bn ending at x0 ∈ E ⊂ ∂Bn. That is, there is a sequence of points {bk}

∞
k=1 ⊂ γ

tending to x0 with
lim
k→∞

u(bk) = a

on a set E on the boundary ∂Bn. As will become clear in our proof, we need the
monotonicity condition for the Lindelöf-type Theorems 2.2 and 2.3 to hold. Thus,
being able to say that for every locally rectifiable curve γ in Bn ending at a point in E:
either the limit of the mapping F along this curve does not exist or else the limit exists
and is equal to a.

3. Proof of Theorem 2.5

We now pass to prove Theorem 2.5. Let us point out here that our proof was inspired
by the techniques used in the proofs of similar results in [11].

Proof. Without loss of generality, we may assume that a = 0. Suppose that F is not
identically zero and fix a closed ball B j0 ⊂ B

n of positive radius such that |F(x)| ≥ 2− j0

for all x ∈ B j0 and 2− j0 < ε0 for some positive integer j0. Write

B j = {x ∈ Bn : 2− j−1 ≤ |F(x)| < 2− j}
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for j = j0, j0 + 1, . . . , define ρ(x) = 2 j/( j log j)‖DF(x)‖ for x ∈ B j and set ρ to be zero
elsewhere in Rn. Then ρ is Borel measurable (see, for example, [18, Theorem 26.4])
and

T (α, ρ) =

∫
Rn
ρα(x) dm(x)

=

∞∑
j= j0

∫
B j

2 jα

jα(log j)α
‖DF(x)‖α dm(x).

Multiplying and dividing inside the above integral by JF(x)β for some positive β > 0
to be determined later, we see that

T (α, ρ) ≤
∞∑

j= j0

2 jα

jα(log j)α

∫
B j

‖DF(x)‖α

JF(x)β
JF(x)β dm(x).

Applying Hölder’s inequality to each of the integrals in the series above for the
conjugate values p, p′ and finding the values of α and β such that αp = np̃, βp = p̃,
βp′ = 1 − η, where p̃ = n − 1 + η, and letting p̄ = n(1 − η) yields

T (α, ρ) ≤
∞∑

j= j0

2 jα

jα(log j)α

(∫
B j

(K(x))n−1+η dm(x)
)1/p(∫

B j

JF(x) p̄/n dm(x)
)1/p′

.

Clearly we have that α = (1 − η)(n − 1 + η), β = (1 − η)(n − 1 + η)/n, p = n/(1 − η)
and p′ = n/(n − 1 + η). These observations lead to

T (α, ρ)≤
(∫
Bε

(K(x))n−1+η dm(x)
)1/p

×

∞∑
j= j0

2 jα

jα(log j)α

(∫
B j

JF(x)1−η dm(x)
)(n−1+η)/n

for some ε < ε0. If we now apply the hypothesis of the theorem to the integrals in the
series above,

T (α, ρ)≤
(∫
Bε

(K(x))n−1+η dm(x)
)1/p

×

∞∑
j= j0

2 jα

jα(log j)α
((2− j)n(1−η) j(n(1−η)−δ))(n−1+η)/n.

The hypothesis K ∈ Ln−1+η and α = (1 − η)(n − 1 + η) now imply that

T (α, ρ)≤C
∞∑

j= j0

2 j(1−η)(n−1+η)

j(1−η)(n−1+η)(log j)(1−η)(n−1+η)

× ((2− j)n(1−η) j(n(1−η)−δ))(n−1+η)/n
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and further

T (α, ρ) ≤ C
∞∑

j= j0

j(n(1−η)−δ)(n−1+η)/n

j(1−η)(n−1+η)(log j)(1−η)(n−1+η) .

Now, since δ = n/(n − 1 + η), substituting in the above inequality finally gives us

T (α, ρ) ≤ C
∞∑

j= j0

1
j(log j)(1−η)(n−1+η) <∞

since (1 − η)(n − 1 + η) > 1 for small positive η.
Let ∆(B j0 , E;Bn) consist of the family of curves in Bn joining B j0 and E. We will

show that Mα(∆(B j0 , E;Bn)) = 0. From this, it will follow that Mα(∆(B j0 , E;Rn)) = 0
for the family of curves in Rn joining B j0 and E.

Let us now show that the chosen metric ρ(x) is admissible for the family
of curves ∆(B j0 , E; Bn) by showing that for each locally rectifiable curve γ ∈
∆(B j0 , E;Bn),

∫
γ
ρ ds ≥ 1.

Fix a locally rectifiable curve γ ∈ ∆(B j0 , E;Bn). There are two cases to consider:
first, if the limit of F(x) as x ∈ γ approaches E does not exist, we will say in this case
that γ ∈ ∆(B j0 , E;Bn)NL. Second, if the limit of F(x) as x ∈ γ approaches E exists, that
is, γ ∈ ∆(B j0 , E;Bn)L, then, by our Lindelöf Theorem 2.2, this limit has to be equal
to 0.

Remark 3.1. Let us remark here that in order to apply our Lindelöf Theorem 2.2,
we need to consider first that for every ε > 0, there is an open set Uε in Rn with
capp(Uε) < ε such that the Lindelöf theorem holds for x0 ∈ ∂B

n\Uε , and then pass
to the limit when ε goes to 0 to conclude that Mα(∆(B j0 , E;Bn)L) = 0. Thus, in our
arguments below we can consider without loss of generality that the Lindelöf condition
holds in the whole set E.

We will show next that without loss of generality we can assume from here on that
for every γ ∈ ∆(B j0 , E;Bn), limx∈γ,→x0∈E F(x) = 0. Write

∆(B j0 , E;Bn) = ∆(B j0 , E;Bn)NL ∪ ∆(B j0 , E;Bn)L

as the disjoint union of two sets of curves.
By Theorem 2.2, for every γ ∈ ∆(B j0 , E;Bn)NL, the limx∈γ,→x0∈E F(x) does not exist

and for every γ ∈ ∆(B j0 , E;Bn)L, the limx∈γ,→x0∈E F(x) = 0.
By the subadditivity of the α-modulus,

Mα(∆(B j0 , E;Bn)) ≤ Mα(∆(B j0 , E;Bn)NL) + Mα(∆(B j0 , E;Bn)L).

We pass now to show that Mα(∆(B j0 , E;Bn)NL) = 0 by choosing ρ̃(x) = ‖DF(x)‖ for
each x ∈ Bn. It follows that ρ̃ is a Borel measurable metric for which∫

γ∈∆(B j0 ,E;Bn)NL

ρ̃(x) ds(x) =

∫
γ∈∆(B j0 ,E;Bn)NL

‖DF(x)‖ ds(x) =∞;
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thus, ρ̃ is admissible for the family of curves ∆(B j0 , E; Bn)NL. Now, since F ∈
W1,α(Bn;Rn), ∫

Bn
ρ̃α(x) dm(x) =

∫
Bn
‖DF(x)‖α dm(x) <∞.

It follows that Mα(∆(B j0 , E;Bn)NL) = 0. Hence, we can assume from now on that
for every γ ∈ ∆(B j0 , E;Bn), limx∈γ,→x0∈E F(x) = 0.

Thus, ∫
γ

ρ(x) ds(x)≥
∞∑

j= j0

∫
γ∩B j

2 j

j log j
‖DF(x)‖ ds(x)

≥

∞∑
j= j0

2 j

j log j

∫
γ∩B j

‖DF(x)‖ ds(x)

≥C
∞∑

j= j0

1
j log j

=∞.

It is well known that α-almost every curve in Bn is rectifiable; by Fuglede’s
theorem [18, Fuglede’s Theorem 28.2], the α-modulus of the curves γ, for which
F fails to be absolutely continuous on some closed subcurve, is zero. Hence, the
α-modulus

Mα=(1−η)(n−1+η)(∆(B j0 , E;Bn)) = inf
ρ̃∈F (∆(B j0 ,E;Bn))

∫
Bn
ρ̃α dx

≤
1

Mα
T (α, ρ),

for our chosen Borel measurable metric ρ and for every M > 0. Letting M →∞,

Mα=(1−η)(n−1+η)(∆(B j0 , E;Bn)) = 0.

It follows by [20, Lemmas 4.2 and 4.3] that

Mα=(1−η)(n−1+η)(∆(B j0 , E;Rn)) = 0.

Thus, see [23, Theorem 3.8, page 122] and [8, Proposition 2.17, page 11], the
(1 − η)(n − 1 + η)-capacity of E is equal to 0. Therefore, from [7, Lemma 2.25 and
Theorem 2.26], the Hausdorff dimension of E is less than or equal to n − (1 − η)
(n − 1 + η) > 1 for every small positive η since (1 − η)(n − 1 + η) = α < n − 1. Also
observe that for 0 ≤ η < 1/2, we have that 1/2(n − 1) < α = p̄ − (1 − η)2 < p̄. This
shows that the set E has Hausdorff dimension less than (n + 1)/2. �

4. Further results
In this section we are going to state and prove two further results related to the main

result of the paper. We will start with the case when the mapping F is a quasiregular
mapping.

A mapping F is quasiregular if K(x) is an L∞ function; thus, 1 ≤ K(x) ≤ K <∞ for
almost every x and therefore (1/C)JF(x) ≤ ‖DF(x)‖n ≤ CJF(x) for almost every x for
some constant C independent of x. Then we have the following theorem.
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Theorem 4.1. Let F be a nonconstant quasiregular mapping in the Sobolev space
W1,n(Bn;Rn).

Let E ⊂ ∂Bn be the set where for each x0 ∈ E there are a curve γ ⊂ Bn ending at x0
and a sequence of points {bk}

∞
k=1 ⊂ γ tending to x0 with

lim
k→∞

F(bk) = a

and Bε = {x ∈ Bn : |F(x) − a| < ε}. If for each small ε0 ≥ ε > 0,∫
Bε

JF(x) dm(x) ≤ Cεn
(
log

1
ε

)n−1

or, which is equivalent, if∫
{y:|y−a|<ε}

N(y,Bn, F) dm(y) ≤ Cεn
(
log

1
ε

)n−1
,

then the n-capacity of the set E is zero and thus its Hausdorff dimension is zero.

In other words, if E has positive n-capacity then the mapping F is identically equal
to a.

Proof. As in the proof of Theorem 2.5, all we need to show in this theorem is that

Mn(∆(B j0 , E;Bn)) = 0.

From this, it will follow that Mn(∆(B j0 , E;Rn)) = 0 for the family of curves in Rn

joining B j0 and E. The proof of this follows exactly the same steps as the one of
Theorem 2.5 for α = n for the same choice of the admissible metric ρ; thus, we omit
the details.

It then follows that the n-capacity of the set E ⊂ ∂Bn is zero. This implies that its
Hausdorff dimension is zero and this finishes the proof of our theorem. �

Finally, we will consider the case when the mappings F under consideration belong
to some weighted Sobolev space with a positive weight w in Aq(Rn). In this case, our
theorem is stated as follows.

Theorem 4.2. Let F ∈ W1,n
loc (Bn; Rn) be a nonconstant mapping of finite distortion

in the weighted Sobolev space W1,α
w(x)(n−α)/n (Bn;Rn), where w(x) = |1 − |x||η, and such

that (K(x)α/(n−α)|1 − |x||η) ∈ L1(Bn) for some n − 1 < α ≤ n and η positive such that
α/(n − 1) > η((n − α)/n) + 1.

Let E ⊂ ∂Bn be the set where for each x0 ∈ E there are a curve γ ⊂ Bn ending at x0
and a sequence of points {bk}

∞
k=1 ⊂ γ tending to x0 with

lim
k→∞

F(bk) = a

and Bε = {x ∈ Bn : |F(x) − a| < ε}. If, for every small ε0 ≥ ε > 0,∫
Bε

JF(x) dm(x) ≤ Cεn
(
log

1
ε

)δ
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or, which is equivalent, if∫
{y:|y−a|<ε}

N(y,Bn, F) dm(y) ≤ Cεn
(
log

1
ε

)δ
,

where δ = n − n/α, then the Hausdorff dimension of the set E is less than or equal to
η((n − α)/n) + n − α < α/(n − 1) − 1 + n − α < 1 since n − 1 < α ≤ n.

Remark 4.3. In Theorem 4.2, we need to require that our mapping F is in the
weighted Sobolev space W1,α

w(x)(n−α)/n (Bn;Rn) where w(x) = |1 − |x||η in order to use the
Lindelöf-type theorem [13, Theorem 3]. This theorem holds whenever α/(n − 1) >
η((n − α)/n) + 1.

Considering the case α = n in the above theorem, we obtain the following corollary.

Corollary 4.4. Let {α j}
∞
j=1, {η j}

∞
j=1 be sequences of positive numbers such that

n − 1 < α j, lim j→∞ α j = n, lim j→∞ η j =∞ and, for every j = 1, 2, . . . ,

α j

n − 1
> η j

(n − α j

n

)
+ 1.

Let F be a nonconstant continuous mapping of finite distortion in the Sobolev space
W1,n(Bn;Rn) with

lim
j→∞

∫
Bn

K(x)α j/(n−α j)|1 − |x||η j dx < C <∞,

where C is a constant independent of the sequences.
Let E ⊂ ∂Bn be the set where for each x0 ∈ E there are a curve γ ⊂ Bn ending at x0

and a sequence of points {bk}
∞
k=1 ⊂ γ tending to x0 with

lim
k→∞

F(bk) = a

and Bε = {x ∈ Bn : |F(x) − a| < ε}. If we have that for every small ε0 ≥ ε > 0,∫
Bε

JF(x) dm(x) ≤ Cεn
(
log

1
ε

)n−1

or, which is equivalent, if∫
{y:|y−a|<ε}

N(y,Bn, F) dm(y) ≤ Cεn
(
log

1
ε

)n−1
,

then the Hausdorff dimension of the set E is zero.

Remark 4.5. In [11], Koskela showed that his result is sharp. It will be worth studying
whether his sharpness result could be used to show whether the results in this paper
are in some sense sharp too. It will also be worth pursuing to study the connections
between uniqueness results and results concerning the size of the inverse image F−1(a)
of points a in the image of mappings in our Sobolev spaces with finite distortion K(x)
in some Lp(Bn).
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Proof. As in the proof of Theorem 2.5, all we need to show in this theorem is that

Mw(x)(n−α)/n

α (∆(B j0 , E;Bn)) = 0,

where w(x) = |1 − |x||η is an Ap-weight in Rn for every p > n − 1; see [13]. From this,
it will follow that Mw(x)(n−α)/n

α (∆(B j0 , E;Rn)) = 0 for the family of curves in Rn joining
B j0 and E.

Without loss of generality, we may assume that a = 0. Suppose that F is not
identically zero and fix a closed ball B j0 ⊂ B

n of positive radius such that |F(x)| ≥ 2− j0

for all x ∈ B j0 and 2− j0 < ε0 for some positive integer j0. Write

B j = {x ∈ Bn : 2− j−1 ≤ |F(x)| < 2− j}

for j = j0, j0 + 1, . . ., define ρ(x) = 2 j/( j log j)‖DF(x)‖ for x ∈ B j and set ρ to be zero
elsewhere in Rn. Then ρ is Borel measurable (see, for example, [18, Theorem 26.4])
and

T (α, ρ) =

∫
Rn
ρα(x)[w(x)](n−α)/n dm(x)

=

∞∑
j= j0

∫
j

2 jα

jα(log j)α
‖DF(x)‖α[w(x)](n−α)/n dm(x).

Multiplying and dividing inside the above integral by K(x)β for some positive β > 0
to be determined later,

T (α, ρ) ≤
∞∑

j= j0

∫
B j

2 jα

jα(log j)α
‖DF(x)‖α

K(x)β
K(x)β[w(x)](n−α)/n dm(x).

Applying now Hölder’s inequality to each of the integral terms of this sum for the
conjugate values p = n/α and p′ = n/(n − α) and letting β = α/n,

T (α, ρ)≤
∞∑

j= j0

2 jα

jα(log j)α

(∫
B j

(K(x))α/(n−α)w(x) dm(x)
)(n−α)/n

×

(∫
B j

JF(x) dm(x)
)α/n

,

using now the hypothesis of the theorem, for some ε < ε0,

T (α, ρ)≤
(∫

Bε
(K(x))α/(n−α)w(x) dm(x)

)(n−α)n

×

( ∞∑
j= j0

2 jα

jα(log j)α
(2− jn jn−(n/α))α/n

)
<∞,

since the first integral above is bounded by hypothesis.
Let ∆(B j0 , E; Bn) consist of the family of curves in Bn joining B j0 and E.

We will show that Mw(x)(n−α)/n

α (∆(B j0 , E; Bn)) = 0. From this, it will follow that
Mw(x)(n−α)/n

α (∆(B j0 , E;Rn)) = 0 for the family of curves in Rn joining B j0 and E.
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Fix γ ∈ ∆(B j0 , E;Bn) locally rectifiable. It follows as in the proof of Theorem 2.5
(using now Theorem 2.3) that without loss of generality we can assume that the limit
of F(x) as x ∈ γ approaches E exists and is equal to 0, and thus we conclude that∫

γ

ρ(x) ds(x)≥
∞∑

j= j0

∫
γ∩B j

2 j

j log j
‖DF(x)‖ ds(x)

≥

∞∑
j= j0

2 j

j log j

∫
γ∩B j

‖DF(x)‖ ds(x)

≥C
∞∑

j= j0

1
j log j

=∞.

Hence, the α-weighted modulus

Mw(x)(n−α)/n

α=(1−η)(n−1+η)(∆(B j0 , E;Bn)) = inf
ρ̃∈F (∆(B j0 ,E;Bn))

∫
Bn
ρ̃α dx

≤
1

Mα
T (α, ρ)

for our chosen Borel measurable metric ρ and for each M > 0. Letting M →∞,

Mw(x)(n−α)/n

α=(1−η)(n−1+η)(∆(B j0 , E;Bn)) = 0.

It follows by [13, Lemma 4.7] that

Mw(x)(n−α)/n

α=(1−η)(n−1+η)(∆(B j0 , E;Rn)) = 0.

Let us choose w(x) = |1 − |x||η, which is an Ap(Rn)-weight for p > η + 1; see [13].
Thus, [w(x)](n−α)/n = |1 − |x||η((n−α)/n) is an Aq(Rn)-weight where we choose η to be a
positive number such that α/(n − 1) > q > η((n − α)/n) + 1 whenever n − 1 < α ≤ n.

It is well known, see [13], that the Hausdorff dimension of the set E is less than or
equal to η((n − α)/n) + n − α < α/(n − 1) − 1 + n − α < 1 for n − 1 < α ≤ n.

This shows that the set E ⊂ ∂Bn where the nonconstant mapping F can have
the same nontangential boundary limit is very small in the sense that its Hausdorff
dimension is strictly less than 1. �

In the quasiregular case (Theorem 4.1), one could ask whether the assumption∫
Bε

JF(x) dm(x) ≤ Cεn
(
log

1
ε

)n−1

is necessary. In other words, could the quasiregularity of the mapping F somehow
imply the above inequality? Some results in this direction can be found in Hencl and
Koskela [9], where they estimate the integral∫

Bε

JF(x)
|F(x)|n logn 1

|F(x)|

dm(x)

https://doi.org/10.1017/S1446788717000222 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788717000222


428 E. Villamor [17]

for various mappings of finite distortion. Clearly the assumption∫
Bε

JF(x) dm(x) ≤ Cεn
(
log

1
ε

)n−1

implies the finiteness of the integral∫
Bε

JF(x)
|F(x)|n logn+δ 1

|F(x)|

dm(x)

for all δ > 0. It would also be worth checking whether in our assumptions the exponent
n − 1 in the logarithmic term is sharp for quasiregular mappings.
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