ON SEMIPERFECT FPF-RINGS

MOHAMED YOUSIF

ABSTRACT. We show that a semiperfect right FPF-ring is right self-injective if and only if $J(R) = Z(R_R)$, extending a well-known result due to Carl Faith on semiperfect right FPF-rings with nil Jacobson radical.

A result of H. Tachikawa [6] asserts that a left perfect right FPF-ring is right self-injective. This result was extended and Tachikawa's proof was simplified by Carl Faith [2] who showed that a semiperfect right FPF-ring with nil Jacobson radical is right self-injective. However, there is an example due to B. Osofsky [5] of a right PF-ring with non-nil Jacobson radical. In this note we show that if R is a semiperfect right FPF-ring, then R is right self-injective if and only if $J(R) = Z(R_R)$. We also show that Faith's result can be regarded as a corollary of our result.

Throughout this paper all rings considered are associative with identity and all modules are unitary right *R*-modules. We write J(M), Z(M) and E(M) for the Jacobson radical, the singular submodule and the injective hull of the right *R*-module M_R respectively. N(R)will denote the nil radical of *R*. For any subset *X* of *R*, $r_R(X)$ represents the right annihilator of *X* in *R*. A ring *R* is called *right* (*F*) PF if every (finitely generated) faithful right *R*-module *M* generates the category of all right *R*-modules.

THEOREM 1. Suppose R is a semiperfect right FPF-ring. Then R is right self-injective if and only if $J(R) = Z(R_R)$.

PROOF. Suppose $J(R) = Z(R_R)$ and let $\{e_1, \ldots, e_m\}$ be a basic set of primitive idempotents for R. As in [1] and [2], if $E_1 = E(e_1R)$ and $\mu \in E_1$ then $(\mu R + e_1R)$ is uniform and $M = (\mu R + e_1R) \oplus e_2R \oplus \cdots \oplus e_mR$ is finitely generated and faithful. Hence M is a generator. By [3, Theorem 1.2B], $(\mu R + e_1R) \oplus e_2R \oplus \cdots \oplus e_mR \cong e_1R \oplus \cdots \oplus e_mR \oplus X$, for some module X_R . By Krull-Schmidt Theorem, since $\operatorname{End}_R(e_1R)$ is local and $e_jR \ncong e_1R$ is uniform, $\mu R + e_1R \cong e_1R$ and hence $\mu R + e_1R$ is a local module. Let σ be an R-isomorphism between $\mu R + e_1R$ and e_1R . If $e_1R \ne \mu R + e_1R$, then $e_1R \subseteq J(\mu R + e_1R)$ and $\sigma(e_1R) \subseteq J(e_1R) = e_1J(R) = e_1Z(R_R) \subseteq Z(R_R)$. Now $r_R(e_1) = r_R(\sigma(e_1))$ which is right essential in R_R , a contradiction. Thus $\mu \in e_1R$, and so e_1R is injective. This completes the proof.

Received by the editors September 29, 1992.

AMS subject classification: Primary: 16A36, 16A52; secondary: 16A51.

[©] Canadian Mathematical Society 1994.

MOHAMED YOUSIF

Next we show that Faith's result is a corollary of Theorem 1.

LEMMA 2. Suppose R is a semiperfect ring. Then $Z(R_R) \subseteq J(R)$ and $Z(R) \subseteq J(R)$.

PROOF. Since R is semiperfect, $Z(R_R)$ lies over a direct summand, *i.e.* $R = eR \oplus (1 - e)R$ such that $e^2 = e \in R$, $eR \subseteq Z(R_R)$ and $Z(R_R) \cap (1 - e)R$ is small in R. Since $Z(R_R)$ does not contain non-zero idempotents, it follows that $Z(R_R)$ is small in R. Thus $Z(R_R) \subseteq J(R)$. Similarly $Z(R_R) \subseteq J(R)$.

LEMMA 3. If R is a right FPF-ring then $N(R) \subseteq Z(R_R)$.

PROOF. This is Lemma 1.2(a) of [4].

COROLLARY 4. Suppose R is a semiperfect right FPF-ring with nil Jacobson radical. Then R is right self-injective.

PROOF. By Lemma 1 and Lemma 2, $Z(R_R) = J(R)$. Now the result follows from Theorem 1.

ACKNOWLEDGEMENT. The author would like to thank the referee for his comments and suggestions.

REFERENCES

- 1. Victor Camillo, How injective is a semiperfect FPF ring?, Comm. Algebra 17(1989), 1951–1954.
- 2. Carl Faith, *Injective Cogenerator rings and a theorem of Tachikawa*, Proc. Amer. Math. Soc. **60**(1976), 25–30.
- 3. Carl Faith and Stanley Page, FPF *Ring Theory*, London Math. Soc. Lect. Notes 88, Cambridge Univ. Press, 1984.
- 4. Theodore G. Faticoni, FPF rings I: The Noetherian Case, Comm. Algebra 13(1985), 2119–2136.

5. Barbara Osofsky, A Generalization of quasi-Frobenius rings, J. Algebra 4(1966), 373-387.

 Hiroyuki Tachikawa, A Generalization of quasi-Frobenius rings, Proc. Amer. Math. Soc. 20(1969), 471– 476.

Department of Mathematics The Ohio State University, Lima Campus Lima, Ohio 45804 U.S.A.

288