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Abstract

The St. Petersburg Paradox is a famous economic and philosophical puzzle that has generated numerous conflicting
explanations. To shed empirical light on this phenomenon, we examined subjects’ bids for one St. Petersburg gamble
with a real monetary payment. We found that bids were typically lower than twice the smallest payoff, and thus much
lower than is generally supposed. We also examined bids offered for several hypothetical variants of the St. Petersburg
Paradox. We found that bids were weakly affected by truncating the gamble, were strongly affected by repeats of the
gamble, and depended linearly on the initial “seed” value of the gamble. One explanation, which we call the median
heuristic, strongly predicts these data. Subjects following this strategy evaluate a gamble as if they were taking the
median rather than the mean of the payoff distribution. Finally, we argue that the distribution of outcomes embodied
in the St. Petersburg paradox is so divergent from the Gaussian form that the statistical mean is a poor estimator of
expected value, so that the expected value of the St. Petersburg gamble is undefined. These results suggest that this
classic paradox has a straightforward explanation rooted in the use of a statistical heuristic.

Keywords: St. Petersburg paradox, risk, risk aversion, heuristics, median heuristic, expectation heuristic.

1 Introduction

In the St. Petersburg paradox, originally proposed in
1738, the house offers to flip a coin until it comes up
heads. The house pays $1 if heads appears on the first
trial; otherwise the payoff doubles each time tails ap-
pears, with this compounding stopping and payment be-
ing given at the first heads (Bernoulli, 1738; shown in
Figure 1). By conventional definitions, the St. Petersburg
gamble has an infinite expected value; nonetheless, most
people share the intuition that they should not offer more
than a few dollars to play. Explaining why people offer
such small sums to play a gamble with infinite expected
value is an important question in economics and philos-
ophy (Datson, 1988; Samuelson, 1977; Martin, 2008;
Gigerenzer & Selten, 2002).

The St. Petersburg paradox has attracted explana-
tions from many well-known thinkers, including Daniel
and Niklaus Bernoulli, Cramer, de Morgan, Condorcet,
Euler, Poisson, and Gibbon, and economists including
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Marschack, Cournot, Arrow, Keynes, Stigler, Samuel-
son, von Mises, Ramsey and Aumann (Arrow, 1951; Au-
mann, 1977; Dutka, 1988; Keynes, 1921; Samuelson,
1960). The earliest discussions of the St. Petersburg para-
dox led to the idea of utility curves, now a central con-
cept in economics (Dutka, 1988). Moreover, Menger’s
discussion of the paradox sparked von Neumann’s inter-
est in utility, which in turn influenced Von Neumann and
Morgenstern’s foundational book Theory of Games and
Economic Behavior (Morgenstern, 1976; Von Neumann
& Morgenstern, 1944). Despite the importance of the
St. Petersburg paradox, there is no widely accepted ex-
planation for the low values most people place on this
theoretically priceless gamble (Martin, 2008; Samuelson,
1977). Moreover, there is precious little empirical data on
the St. Petersburg Paradox (but see Bottom, Bontempo,
and Holtgrave, 1989; Rivero, Holtgrave, Bontempo, and
Bottom, 1990; Kroll and Vogt, 2009; Cox, Sadiraj, and
Vogt). In the present study, we review several major
classes of explanations, and then provide empirical data
designed to test these explanations.

1.1 Diminishing marginal utility

Daniel Bernoulli was the first to argue, in his explana-
tions of the St. Petersburg paradox, that the marginal
value of money to an individual diminishes as his wealth

256

https://doi.org/10.1017/S1930297500003831 Published online by Cambridge University Press

https://doi.org/10.1017/S1930297500003831


Judgment and Decision Making, Vol. 4, No. 4, June 2009 The median and the St. Petersburg paradox 257

H

$1

$2

$4

$8 ...

H

H

H T

T

T

A B

T

1
2

4
8

16
32

64
128

256

0

.1

.2p
ro

b
a

b
ili

ty

.3

.4

.5

512
1024

2048

outcome ($)

Figure 1: The St. Petersburg paradox.
A. Outcome tree for St. Petersburg gamble. The St. Petersburg gamble consists of a series of coin flips offering a 50%
chance of $1, a 25% chance of $2, a 12.5% chance of $4, and so on. The gamble may continue indefinitely.
B. The probability of each possible outcome decreases as a function of outcome size. The probability of large outcomes
is very low, but not zero.

rises (Bernoulli, 1738). This hypothetical concept is now
known as utility (Friedman & Savage, 1948; Von Neu-
mann & Morgenstern, 1944). The concavity of the util-
ity function guarantees that, while the expected value
of the gamble is infinite, its expected utility is finite.
Thus, “any fairly reasonable man would sell his chance,
with great pleasure, for twenty ducats” (Daniel Bernoulli,
quoted in Baron, 1998). In some more recent discussions,
a requirement that the utility curve have finite bounds
has been added (Aumann, 1977; Martin, 2008; Menger,
1934; Samuelson, 1977; Vickrey, 1960). This require-
ment deals with super-St. Petersburg paradoxes (see be-
low) and is psychologically plausible (Samuelson, 1977).

The utility curve explanation is widely held up as the
explanation for risk aversion in the St. Petersburg para-
dox (e.g. Aumann, 1977; Friedman & Savage, 1948;
Real, 1996; Schoemaker, 1982; Von Neumann & Mor-
genstern, 1944). Indeed, the St. Petersburg paradox is
often used in introductory courses to motivate the idea of
utility functions (e.g. Baron, 1998; Mas-Colell, Whin-
ston, & Green, 1995; Camerer, 2005). Despite its wide
acceptance, the utility curve explanation has been dis-
credited several times, mainly because it over-predicts
bids (Lopes, 1981; Martin, 2008; Menger, 1934; Moritz,
1923; Samuelson, 1960, 1977). (This is not to say that
marginal utility does not diminish, just that this factor
is not sufficient to explain the paradox.) Replacing ex-
pected utility with more modern variants, such as cumula-
tive prospect theory (CPT) does not help either, as empiri-

cally fit values strongly over-predict bids in the St. Peters-
burg paradox (Blavatskyy, 2005; Rieger & Wang, 2006;
Camerer, 2005).

An early strong critique of the utility explanation came
from Karl Menger, who introduced the idea of the Su-
per St. Petersburg paradoxes (Menger, 1934). In these
variants, the value of the gamble increases much faster
than doubling on each round. The change function can be
chosen so as to rise fast enough to overtake any reason-
able utility function. Despite these richer payoffs, peo-
ple intuitively feel that they would not pay more than a
modest sum for any of these super-St. Petersburg gam-
bles (Menger, 1934; Samuelson, 1977).

An elegant demonstration of the weakness of this ex-
planation comes from a recent experiment involving ma-
nipulations of delays instead of monetary rewards. Peo-
ple, like animals, are risk-seeking for delays, and so pre-
sumably have convex utility curves for time (Bateson &
Kacelnik, 1996). Nonetheless, human subjects choose
low values in a variant of the St. Petersburg paradox
in which it is potential delays, not money, that doubles
(Kroll & Vogt, 2009). This pattern reveals that something
other than a concave utility function explains how people
value the gamble.

1.2 Finitude of resources

Another well-known explanation is that since the amount
of money in the world is finite, the gambler must doubt
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the ability of the house to pay the large outcomes of the
gamble. A related argument is that time is finite, and
the gambler, knowing he or she cannot play the gamble
forever, bids less than the expected value of the gamble.
This argument has been expressed, in various forms, by
Poisson, Catalan, Pringsheim, von Mises, Czuber, Buf-
fon (Dutka, 1988) and others (Savage, 1954; Tversky &
Bar-Hillel, 1983; Vickrey, 1960). Camerer proposes that
belief in finite resources, when combined with loss aver-
sion, provides a parsimonious explanation for risk-averse
behavior in the St. Petersburg paradox (Camerer, 2005).
In this particularly well developed treatment, Camerer ar-
gues that if the maximal payoff is $1 billion, and the loss
aversion coefficient is 2, the maximal buying price will be
$17.55 (assuming a seed value of $2). Even if the max-
imal payout is raised to $1 trillion, the bid will rise only
to $22.71. These values are close to the 20 ducats that
Bernoulli thought was reasonable.

Several critics have noted the weaknesses in these ar-
guments. Bertrand argues that even if the house cannot
pay the money, units of currency can be replaced with
something that is much more plentiful, such as grains of
sand, inches, or molecules of hydrogen, and the risk aver-
sion remains (Dutka, 1988). By similar logic, the pay-
ment may even be purely hypothetical or it may be psy-
chological (Aumann, 1977; Martin, 2008). Furthermore,
the house’s payment can remain fixed while the gambler’s
is cut in half at each round (Keynes, 1921; Samuelson,
1960, 1977). Finally, common sense shows that the bids
are much lower than they would be if the maximal payout
of the gamble was limited only by the supply of money
in the world. Indeed, even though Bernoulli felt comfort-
able offering 20 ducats, our intuition is that a lower value
would be more reasonable. Nonetheless, this hypothesis
remains to be tested empirically.

1.3 Ignoring low probabilities and risk
aversion

D’Alembert argued that probabilities less than 1/10,000
are essentially equal to zero. Buffon and Condorcet
appear to have agreed (Samuelson, 1977). Niklaus
Bernoulli set the cutoff at a more conservative 1/100,000
(Dutka, 1988). The arbitrariness of these cutoffs was crit-
icized by contemporaries, including Condorcet (Dutka,
1988), and by more recent thinkers (Arrow, 1951). Re-
garding D’Alembert’s view, Gibbon said, “if a public lot-
tery were drawn for the choice of an immediate victim,
if our name were inscribed on one of the 10,000 tick-
ets, should we be perfectly easy?” (quoted in Samuelson,
1977). Contemporary thinkers recognize that small prob-
abilities may be discounted psychologically (Menger,
1934; Sennetti, 1976; Weirich, 1984).

This de minimis argument is subject to a counterar-
gument that is similar to Menger’s super-St. Petersburg
approach. If low probabilities are systematically dis-
counted, then payoff can be increased to counterbalance
this effect. Nonetheless, people will still presumably of-
fer finite sums for the St. Petersburg gamble (Martin,
2008). Moreover, small probabilities are often exagger-
ated (Blavatskyy, 2005; Kahneman & Tversky, 1979),
rather than being discounted, making this explanation un-
likely.

1.4 Is the expected payoff of the St. Peters-
burg gamble infinite?

In a rare application of empirical methods, Buffon in
1777 hired a child to flip a coin until it came up heads,
and to do so 2048 times. In 1838, Augustus De Mor-
gan added another 2048 data points (Moritz, 1923). De
Morgan and Buffon both argued that actual experience
demonstrates that the true expected value of the gamble is
quite low, justifying the low value placed on the gamble.
In more recent times, computers have made it possible to
simulate coin flips more rapidly, and although estimated
values are higher, the fundamental result does not change
(Ceasar, 1984; Hinners-Tobraegel, 2003; Liebovitch &
Scheurle, 2000; Lopes, 1981). Importantly, the results
of these empirical studies are generally greater than bids
people intuitively offer.

A few writers have suggested that the root of the para-
dox lies in the definition of expected value (Gigerenzer
& Selten, 2002; Liebovitch & Scheurle, 2000; Lopes,
1981). Statistically, expected value is the central ten-
dency of the distribution embodied in a risky gamble.
For highly non-gaussian distributions the mean is not
considered a valid estimator (Hinners-Tobraegel, 2003;
Liebovitch & Scheurle, 2000; Vivian, 2003). The set
of outcomes for the St. Petersburg gamble is infinitely
positively-skewed, and thus highly deviant from this as-
sumption or normality. Because the statistical mean is
considered invalid for distributions highly non-normal
distributions, the true expected value of the St. Petersburg
gamble is undefined, not infinite (Liebovitch & Scheurle,
2000; Lopes, 1981).

The median, an alternative estimator of central ten-
dency, is robust to noise and is often favored for highly
skewed distributions (like the St. Petersburg). The me-
dian of the distribution associated with the St. Peters-
burg gamble is between $1 and $2, and is set by con-
vention at $1.50 (Weissstein, 2008). Theoretical consid-
erations therefore support the idea that gambles in the
St. Petersburg paradox reflect the application of the me-
dian. The median is mathematically similar to the ex-
pectation heuristic, by which people estimate the trial on
which heads is most likely to appear, and bid accordingly

https://doi.org/10.1017/S1930297500003831 Published online by Cambridge University Press

https://doi.org/10.1017/S1930297500003831


Judgment and Decision Making, Vol. 4, No. 4, June 2009 The median and the St. Petersburg paradox 259

(Treisman, 1983). Importantly, the expectation heuristic
is supported by empirical data, although these data may
also support a median heuristic (Bottom, Bontempo, &
Holtgrave, 1989; Rivero, Holtgrave, Bontempo, & Bot-
tom, 1990).

To distinguish between these two models, as well as
to contribute more empirical data on this phenomenon,
we collected responses of 200 individuals to several hy-
pothetical variants of the St. Petersburg gamble and re-
sponses of 20 individuals to a real-stakes version of the
St. Petersburg gamble. Our results support the idea that
people estimate the value of the gamble using the median,
thus endorsing this simple explanation of the St. Peters-
burg Paradox.

2 Methods
We performed one study using real stakes with twenty
subjects. These subjects were recruited from the under-
graduate and graduate student population at Duke Univer-
sity. Subjects were provided with either $10 or $5 (ran-
domly chosen) one week before the survey took place.
We introduced this delay in order to increase the feeling
of ownership and thus to prevent subjects from feeling
like they were gambling with “house money.” We used a
variant of the Becker-DeGroot-Marschak auction (Becker
& Brownson, 1964) to obtain valuations. In our variant,
an outcome value from the St. Petersburg distribution was
chosen at random, and then was augmented or decreased
by one cent (randomly chosen, to reduce the likelihood
of a tie). The subject’s bid was compared to this random
number. If the bid was greater, the subject paid the value
of the number and the gamble commenced; if the bid was
lower, the gamble did not occur. We explained the details
of the gamble and the auction carefully (see Supplement
for details).

We performed a second study investigating hypothet-
ical responses of 200 subjects to several variants of the
St. Petersburg Paradox. An article by John Tierney about
Dan Ariely in the New York Times offered readers the
option to submit their email addresses and receive future
surveys. We sent invitations to take web-based surveys to
700 of these email addresses. Of these recipients, 200 re-
sponded within two weeks, at which point we closed the
survey. The population of subjects thus consists of peo-
ple who were sufficiently motivated to provide their email
addresses for future studies, and to then respond to a sub-
sequent request for an additional survey. The first 100
respondents took survey 1 while subsequent respondents
took survey 2, both available in the Supplement.1 The
survey consisted of a simple series of html documents

1The Supplement is included with the present article in this issue of
the journal: http://journal.sjdm.org/vol4.4.html.

using PHP for dynamic content and access to a database
to store the results.

A preamble to the survey stated that “The probability
of heads on the first toss is 50%; the probability of heads
on the second toss is 25%; the probability of heads on the
third toss is 12.5%, and so on.” The purpose of the pream-
ble was to orient the subject to the general format of the
questions. The first question was as follows: “Consider
the following gamble: You may flip a coin. If it comes
up heads, you receive $1. If it comes up tails, you will
flip it again. If it comes up heads, you receive $2. If it
comes up tails, you will flip it again. If it comes up heads,
you receive $4. This process repeats until the coin comes
up heads, with the payoff for heads doubling each time
it comes up tails. If the opportunity to play this gamble
was on sale, what is the maximum amount of money that
you would pay for it?” By combining the preamble with
the questions, we believe that we presented the puzzle as
clearly as possible and removed, as much as possible, the
potential for confusion. Twenty additional respondents
answered the first question only. These subjects were un-
dergraduate students in an introductory psychology class
offered at Duke University. Survey recipients received a
URL that linked to a webpage containing instructions for
the survey.

In one analysis, we showed that the median payoff of
the St. Petersburg gamble depends systematically on the
number of times the gamble is repeated. We did this by
use of a bootstrap simulation (Figure 3D). Each point on
the graph represents the mean outcome per repetition that
a gambler can expect (ordinate) in a string of St. Peters-
burg gambles repeated r times (abscissa). To determine
the ordinate for each value of r, we repeated the St. Pe-
tersburg r times, and took the mean payoff. We then re-
peated this process 10,000 times, and took the median
of these 10,000 generated numbers. Thus each point on
the line represents the outcome of (10,000 · r) individual
St. Petersburg gambles. The mean of these numbers does
not depend on the number of times the gamble is repeated
(see Samuelson, 1963).

3 Results

3.1 The standard St. Petersburg gamble
The median bid of subjects (n=20) faced with the real-
world version of the St. Petersburg gamble was $1.75.
The median bid of subjects faced with a hypothetical
St. Petersburg gamble was $1.50 (n=220). These bids did
not differ significantly (Wilcoxon rank-sum test, p>0.4).
This match between these two groups confirms that dif-
ferences in the method of elicitation do not strongly in-
fluence choices. This first group of 20 subjects then an-
swered the first survey (see Appendix). These subjects’
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Figure 2: Histogram of bids offered for the standard
St. Petersburg paradox. Although the expected value of
the gamble is infinite, all bids were finite. The median
bid was $1.50. The distribution was bimodal, with large
modes at $1 and $2.

choices did not differ significantly from those made by
our internet subjects, confirming that these two groups
had overlapping preferences (Wilcoxon rank-sum test,
p>0.15 in all cases).

Bids for the hypothetical St. Petersburg gamble ranged
from zero to $50,000 (Figure 2). The median bid was
$1.50, and the distribution of bids had strong modes at $1
and $2. Of the 220 responses, 14 (6.4%) refused to gam-
ble, 26 (11.8%) offered positive values less than $1, and
68 (30.9%) offered $1, the modal bid. 13 (5.9%) offered
between $1 and $2 and 7 (3.18%) offered the median bid
($1.50). 43 (19.6%) people offered $2, and 56 (25.5%)
offered more than $2.

We made every effort to ensure that our subjects un-
derstood the task. To verify this, we asked a probe ques-
tion of the 20 human subjects who performed the real Pe-
tersburg gamble. We asked them to indicate what they
believed the probabilities were of obtaining $1, $2, $4,
$8, $16, $32, and $64. These subjects all performed cor-
rectly, indicating that they understood the probabilities,
and suggesting that the majority of the other subjects also
understood the probabilities.

On all questions, subjects were offered the option to
explain their rationale. We received 254 comments (me-
dian bid for these subjects, $1.50). We coded all re-
sponses based on which explanation best matched. A
strong plurality related to the median argument (Table 1).
Explanations in this category referred to the probabilities
of obtaining specific outcomes as being the critical fac-
tor influencing options (as also found by Lopes, 1996).

Collectively, these comments support the notion that sub-
jects make use of the median in estimating the value of
the St. Petersburg gamble.

3.2 Changing the seed value
To probe the robustness of the median heuristic, we
examined responses in several variants of the standard
St. Petersburg gamble. In one set of questions, we manip-
ulated the gamble’s “seed value,” but kept the structure of
the gamble the same (Figure 3A). We tested four seeds:
$0.01 (1 cent), $0.50, $1 (the standard gamble), and $4
(Figure 3A). If the median outcome is a driving factor in
valuations, then bids should follow the average of the first
two outcomes (i.e. the median). If instead concave util-
ity curves are a major factor, gambles with smaller stakes
would elicit larger bids relative to the seed value (since
possible outcomes are lower and must be less discounted;
see Samuelson, 1960). Similarly, if the gambler believes
the house’s wealth has a particular limit, then gambles
with lower stakes must elicit greater relative bids. How-
ever, relative bids did not vary with seed, and were nearly
identical to the median in all cases (Wilcoxon rank sum
test, p>0.2).

3.3 The truncated St. Petersburg gamble
In the truncated variant of the St. Petersburg gamble,
coin-flipping stops if some predetermined maximum pay-
out is achieved (Figure 3B). This finite variant circum-
vents any question about the ability of the house ability to
pay, as well as any arguments concerning the strangeness
of infinity (Martin, 2008). We examined bids for the
St. Petersburg gamble truncated at 3 flips (maximum $8,
EV: $2.50), 5 flips (maximum $32, EV: $3.50), 8 flips
(maximum $256, EV: $5), 10 flips (maximum $1024, EV:
$6) and 15 times ($32,768, EV: $8.50). In all cases, the
median value of the gamble was identical (between $1
and $2). Bids for these gambles were either $1.50 or $2,
and did not covary with expected value (Wilcoxon rank-
sum test, p>0.05 for all pairs).

3.4 The repeated St. Petersburg gamble
According to the Law of Large Numbers, the average
value of a stochastic variable repeatedly drawn from al-
most any distribution will eventually converge on a single
value. This property applies to almost all gambles we en-
counter, a fact that allows us to assign an expected value
to any gamble. A simple consequence of this fact is that
casinos and insurance agencies cannot predict whether a
single gamble or car trip will produce a profit or a loss,
but can reliably predict the profitability of a group of
gambles or drives. However, a few distributions deviate
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Table 1: Explanations for gamble offers. We coded responses into 6 categories, corresponding to the major theories
explaining St. Petersburg offers. The most common class of explanations focused on the chance of a given outcome
occurring. Actual examples are given for each category.

Category Comment type Example # %

1 Utility Curve $10 — “If my utility function were not concave I’d rather pay an infinite
amount of money.”

8 3.2

2 Finitude/trust $0 — “I would never expect to be offered this gamble, and if offered it
would not play, suspecting a trick.”

8 3.2

3 Risk/gambling
aversion

$1.5 — “A completely rational person would pay anything to play the
game, because the expected utility is infinite. . . I’m risking less than that
because I’m risk (or loss) adverse.”

29 11.4

4 Performed simula-
tion

$2 — “Determined by flipping a coin in my pocket a few times - took 30
seconds . . . it’s quicker than figuring the math.”

13 5.12

5 Median / chance of
given outcome

$8 — “I would have a 12.5% chance of at least breaking even, and a
6.25% chance of at least doubling my money.”

105 41.3

6 Other / irrelevant “I’d be interested to see the results of this survey.” 91 35.8

so strongly from the assumptions of the Law of Large
Numbers that repeated samples do not converge on any
value. The St. Petersburg Paradox is one such distribu-
tion. The expected value of such distributions is not de-
fined. It is fallacious therefore to argue that the St. Pe-
tersburg paradox has an infinite expected value.

One consequence of this degenerate behavior of the
St. Petersburg distribution is that the median payoff of
the gamble depends on the number of times the gamble
is repeated. This strange property of the median is a con-
sequence of the fact that the repeated gamble may occa-
sionally lead to long strings of tails that give extremely
large rewards (Liebovitch & Scheurle, 2000). To confirm
this counterintuitive result, we ran a simple Monte Carlo
simulation (Figure 3D). Each point on the abscissa corre-
sponds to a number of repeats of the gamble, while each
point on the ordinate shows the expected payoff per gam-
ble obtained from 10,000 independent simulations.

We hypothesized that subjects would intuitively recog-
nize these facts, and bid more as more gambles are of-
fered. In contrast, the utility curve explanation, and most
of its variants, necessarily predict decreasing valuations
as the gamble is repeated (since marginal utility declines,
the multiplying of payouts associated with repeated gam-
bles would dampen enthusiasm for multiple gamble).
Similarly, the finitude argument predicts decreasing val-
uations as more gambles are offered (since the house’s
limit is more likely to be reached with more gambles).
We offered subjects 1, 10, 100, and 1000 repeats of the
St. Petersburg gamble (Figure 3C). We found systemati-
cally greater offers with greater number of repeats, with
bids closely tracking the expected median (these bids dif-
fered significantly, Wilcoxon rank-sum test, p<0.01 in all

cases). Overbidding for the 100 and 1000 repeat condi-
tion may reflect failures to perform the complex calcu-
lations needed to estimate the expected median, or they
may reflect the contribution of other factors.

4 Discussion
The St. Petersburg paradox has generated abundant spec-
ulation but very few empirical data. (Martin, 2008, pro-
vides the best summary of the theories.) This paucity of
data has obscured the fact that most proffered explana-
tions are poor predictors of bids for this gamble. Our data
set, consisting of 20 real bids and 220 hypothetical bids
for each of several variants, addresses this lack of data.
We present three main findings.

1. Observed bids for the original form of the St. Pe-
tersburg gamble are much lower than is commonly
supposed. Specifically they are lower than twice the
smallest payoff. This finding is inconsistent with the
majority of proffered explanations, but is consistent
with a median heuristic.

2. Bids are only weakly affected by truncating the gam-
ble, are strongly affected by repeating the gamble,
and depended linearly on the initial ‘seed’ value of
the gamble. These findings are inconsistent with the
majority of proffered explanations, but are consis-
tent with a median heuristic.

3. Contrary to popular belief, the expected value of the
St. Petersburg gamble is not infinite, but is instead
undefined. The St. Petersburg gamble’s infinite vari-
ance, a consequence of its fractal nature, means that
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Figure 3: Bids in variants of the St. Petersburg paradox.

A. When the stakes are varied, bids (blue dashed line) closely track the median (red solid line). Expected value (mean)
is infinite for all variants.

B. When the St. Petersburg gamble is truncated, the median remains $1.50 (gray shadow), but the mean grows with
the truncated value. Bids remain low, close to the median. The standard St. Petersburg gamble has an infinite expected
value, and is the rightmost point on the graph.

C. As the St. Petersburg gamble is repeated, offered bids per gamble grow. The offer bids closely tracks, but over-
estimates, the expected median value of the series of gambles. Means do not change as the gamble is repeated.

D. Median outcome per gamble of repeated St. Petersburg gamble increases as a function of number of repeats.
The more repeats the gambler faces, the greater the value of each gamble. Although the function is concave, it is
unbounded.
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it violates a critical assumption of the law of large
numbers.

Because the St. Petersburg gamble has no expected
value, we conjecture subjects instead use the median,
which provides a well-defined, robust, estimator of cen-
tral tendency, instead. The median is an appealing tool
for decision-makers. It is simple, cognitively plausible,
and is less susceptible to noise, error, and outliers than
the mean. These data are not explained by any of the ma-
jor alternative approaches outlined above, although other
psychologically plausible mechanisms may also explain
the data.

We thus argue that true root of the St. Petersburg Para-
dox lies in the definition of expected value (Gigerenzer
& Selten, 2002; Liebovitch & Scheurle, 2000; Lopes,
1981). Expected value is the central tendency of the dis-
tribution embodied in a given gamble. For a Gaussian dis-
tribution, the central tendency is given by its mean. For
highly non-gaussian distributions, such as the St. Peters-
burg gamble, the mean provides a poor estimate (Hinners-
Tobraegel, 2003; Liebovitch & Scheurle, 2000). Con-
sequently, the true expected value of the St. Petersburg
gamble is not infinite, but is undefined, so no bid is incon-
sistent with theory, and there is no paradox (Liebovitch &
Scheurle, 2000; Lopes, 1981). Indeed, misapplication of
the mean to non-Gaussian disrtibutions may cause several
other fascinating paradoxes (Blyth, 1972; Hacking, 1980;
Schwitzgebel & Dever, 2008).

A few previous studies have used empirical methods
to investigate the St. Petersburg paradox (Bottom, Bon-
tempo, and Holtgrave, 1989; Rivero, Holtgrave, Bon-
tempo, and Bottom, 1990; Cox, Sadiraj, and Vogt, 2008;
Kroll and Vogt, 2009). In two closely-related studies,
subjects chose hypothetical bids and sale prices in ac-
cordance with the “expectation heuristic” (Bottom, Bon-
tempo, & Holtgrave, 1989; Rivero, Holtgrave, Bon-
tempo, & Bottom, 1990). The expectation heuristic ar-
gues that subjects simplify the problem by assuming that
the coin will come up heads on the second flip (i.e., the
expected flip), which is mathematically similar to the me-
dian heuristic (Treisman, 1983). Various results in their
data sets both supported and contradicted this theory, al-
though most supported it (Bottom, Bontempo, & Holt-
grave, 1989). Although similar to the median heuris-
tic, the expectation heuristic predicts bids of $2 in our
statement of the St. Petersburg paradox, while the me-
dian heuristic predicts bids in the range of $1-$2. Thus
our observation that bids are $1.50 (for hypothetical gam-
bles) and $1.75 (for real gambles) are slightly lower than
the expectation heuristic, and the diversity of responses
with strong modes at $1 and $2 is more consistent with
the median heuristic. Moreover, the expectation heuristic
predicts that the prospect of repeating the gamble should

not affect bids, which is inconsistent with our observed
results. Nonetheless, due to the similarities between the
expectation heuristic and the median heuristic, we believe
that these earlier data provide complementary evidence to
that provided here. Thus, the present results build on and
extend these earlier results, showing that preference for
median bids is preserved with additional variants of the
paradox, and is preserved when bids are made with real
stakes.

We do not believe that risky decision-making consists
solely of identifying the median outcome, but we think
that the present data argue that estimating the median,
or some other ordering statistic, is a critical step in the
decision-making process in this task. Instead, we sus-
pect that people choose from several available strategies,
and perhaps combine multiple strategies (Gigerenzer &
Selten, 2002; Payne, Bettman, & Johnson, 1993) based
on specific task demands (Payne, Bettman, & Johnson,
1993). Moreover, we acknowledge that many other mod-
els of risky decision-making may explain these results
as well, although we wish to emphasize that observed
bids are much lower than those predicted by most stan-
dard models in behavioral economics. Thus, we are not
certain that any of the major models can explain all the
results shown here without substantial modifications. In
any case, the median provides a parsimonious and com-
pelling model for risky decision-making.

The present results do not implicate the median heuris-
tic in gambles outside the context of the St. Petersburg
paradox; subsequent studies will be needed to determine
whether this strategy is applicable in a wider array of de-
cisions. We note that use of the median in non-St. Peters-
burg gambles has some empirical support (Lopes, 1996;
Wedell & Boeckenholt, 1994). We would predict that the
median would be especially likely to be used for highly
non-gaussian distributions, including exponential distri-
butions like the St. Petersburg gamble, where the mean
is a poor estimator of central tendency. Interestingly, an-
other familiar non-Gaussian distribution is the standard
two-outcome gamble. Several writers have argued that
expected values are irrelevant for such gambles (Knight,
1921; Lopes, 1981; Weaver, 1963). As Moritz says, “the
mathematical expectation of one chance out of a thou-
sand to secure a billion dollars is a million dollars, but
this does not mean that anyone in his senses would pay
a million dollars for a single chance of winning a billion
dollars” (Moritz, 1923).
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