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Abstract. Two-sided bounds are obtained for the maximal eigenvalue of a positive
matrix by iterating computations of row sums. The result provides an algorithm for
approximating the maximal eigenvalue of a nonnegative matrix.

1. Introduction. An nXn real matrix A = (a,-,) is called nonnegative (A s:0) if all
a,y ^ 0; A is positive (A > 0) if all a,-, > 0. In 1907 Perron showed that every nonnegative
matrix A has an eigenvalue r such that r>|A|, for every eigenvalue A of A. The
eigenvalue r is called the maximal eigenvalue of A. Since then the theory of nonnegative
matrices has developed and occurred in various parts of mathematics such as the Theory
of Stochastic Process, numerical analysis and dynamic programming. It is well known
(see, for example, [4]) that the maximal eigenvalue has bounds:

min r^r^ max rt, (1)
/ i

n

where r, = rt(A) = 2 ait. There have been a number of interesting papers on finding the

bounds for the maximal eigenvalue of a nonnegative matrix ([1], [2], [5]). In this paper, we
find two-sided bounds for the maximal eigenvalue of a nonnegative matrix by an Iterative
algorithm. Furthermore, the algorithm can be used to estimate the maximal eigenvalue.
Suppose that A has positive row sums ru..., rn, and let D = diagfo,..., rn). Then the ith

1 "row sum of the matrix D 1AD is - 2 aur,. Since D lAD and A have the same

eigenvalues, we replace A by D~lAD in inequality (1), and obtain

(1 " \ / I " \

~ 2 aitrt) — r - max I - 2 auh )• (2)
1r=l / < \ 1 r = l /

For any positive numbers q\,...,qm and real numbers P\,..-,pm, we have the
inequality (see [3, p. 26])

mm —< s m a x - . (3)

Moreover, the equality holds on either side of (3) if and only if pi/q, is constant for all
i = 1,2,..., m. Suppose A has positive row sums. Applying (3) to the right-hand side of
(2), we obtain

/ I * \ ia"ri

max I - X aitr, I = max s max rt. (4)
/ \rn=1 I i « (

Z a
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/I " \
Similarly, we have min r, ̂  min I - 2 a^r, . Thus

/ / \r,r=i /

(1 " \ /I " \

- X oitr,) ^ r ̂  max I - Y a,/, I s max r,.
rj,=i / i \r,,=1 / /

Hence (2) gives a sharper bound for r than (1).
We shall iterate the process described in (2), and obtain sequences of two-sided

bounds for the maximal eigenvalue. Furthermore, we show that the sequences converge
to the maximal eigenvalue for a positive matrix in Theorem 4, and nonnegative matrix of
the type described in Theorem 5.

2. Preliminaries. Let A E Mn be a nonnegative matrix with positive row sums. For
convenience, we give some symbols and definitions. First, we initialize Ai0) = A - (af}),

r{°> = 2 af, and r<°> = [r[0)r^... r™]'. Moreover, set D(0> = D. We define, by

induction, the diagonal matrices Dw with the (i,i)th entry being the /th row sum of the
matrix

for k = 1,2, Next, for k = 0 ,1 ,2 , . . . , set the recurrence

^ + 1 ) = (D(k)yiAwDw m ( f lp>). (5)

Then

(D<*>)-M<*> = ( ^ ) , (6)

and

where r(k) = £ a f . Let r w = [r[k) rik) ... r{k)]'. By (7) we have

- _ - Zar±y (8)
r=i 1=1 ' /

By (6), the vector form of (8) becomes

r(*+i) = ( 7 y*) ) - U (* v « ( ^ 0 , 1 , 2 , . . . ) . (9)

Two matrices A = (a,y) and B = (by) of the same size are said to have the same zero
pattern if a,y = 0 whenever by = 0. As a consequence of (6) and (7), the matrices A, Aw,
and (D(k))~iAlk) (k = 0,1,2,.. .) all have the same zero pattern.

The next result expresses the row sums of the iterative matrix Aik) in terms of the
row sums of Ak.

THEOREM 1. Let A e Mn be a nonnegative matrix with nonzero row sums. Then for
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every i = 1,2,... ,n, r\k) = ri{Ak+l)lri{Ak) {k = 1,2,...) and the sequence {max/f0}* is

decreasing, the sequence {min/f0}* is increasing and both are convergent, where rt(A
k) is

the ith row sum of the matrix Ak.

Proof. The proof is by induction on k. Suppose that k = l. Then by (8) we have

r f rt{A) •

Suppose that the assertion is true for d<m, From (5) and (8),

£ ^

where D(m) = diag(rim), r^> , . . . , r^). By (5) we have

Then a<,m) = (i-}"-")-1^1""2*)"1

hypothesis, we compute that

£ fl(m)r(m)

V ^ - • • rlm-2)rfn~1). By the induction

r,(Am) r^ r,(A) '' r

r,(Am+l)
r,(Am~2)r,{Am-') r,{Am)

This completes the induction. Next, by inequality (3), we have

rt{Ak+2) ,()
- m a x /^x = m a x r

https://doi.org/10.1017/S0017089500032213 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500032213


278 LINA YEH

It follows that max r,(*+1) s max r\k\ The sequence {max r\k)}k is then decreasing and thus
i i i

convergent. The proof that the sequence {min r\k)}k is increasing is similar. D

The iterative matrix Aik+1) in (5) is similar to A; it has the same maximal eigenvalue
as A and hence

min/f+ 1 )<r<max/f+ 1 ) . (10)
/ i

Taking the limit on both sides of (10), we obtain

lim min r,<*+1) < r < lim max /f+1). (11)

Two matrices A and B are permutationally equivalent if there exists a permutation
matrix P such that B = P'AP. We show in the following that the inequalities (10) and (11)
are invariant under permutation equivalence.

THEOREM 2. Let A,B e Mn be permutationally equivalent nonnegative matrices with
nonzero row sums. Then, for k = Q,\,2,...,we have

max r(ik\A) = max r\k\B) and min rf\A) = min rf\B),
i t i t

where r)f\A) and r\k\B) are the /th row sums ofAw and Bik) respectively.

Proof. Suppose B = P'AP, for some permutation matrix P. Then, for every
i = 1,2,... ,n, there exists j such that r,-(£) = r}(A). The index ; is determined by the
permutation P. By Theorem 1 we have

max rf\B) = max r\k\P'AP) = max-1^P'A^—)

i i

r,(P'/l*+1P)

The minimum can be proved similarly. •

3. Approximation of the maximal eigenvalue. The inequality (11) gives two-sided
bounds for the maximal eigenvalue, the question arises if the equality holds in (11). First
we give a positive lower bound for nonzero entries of (Z)(fc))~I/l(*).

THEOREM 3. Let A E Mn be a nonnegative matrix and let q be a given positive integer.
If A has q positive columns and n — q zero columns, then there exists a positive number d
with d ^ 1/q such that every nonzero entry of (D(^k)y1A(k) is not less than d, for all
k = 0,l,2,....

Proof. The proof will be by induction on k. Let rffl denote the maximum row sum of
^(0) t j j e minimum of nonzero entries of A(0\ m\0) the minimum of nonzero entries of

the /th column of A®\ and M\0) the maximum of nonzero entries of the /th column of
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Am. Set a = min—™, where / runs over all q positive columns of A. We prove first, by

induction, that for every nonzero entry a}*\

•£->»l<°)/y (k — 0 1 2 1
(LI m a \ K u> ^i ^> • • •/>

where the minimum t is taken over all indices of positive columns of Aw.
It is trivial that the induction hypothesis holds when k = 0. Suppose the induction is

true for k. If atf+l) is nonzero, then a\P is nonzero. By (7) we have

min-^ = aW-2— min 7TT= a / mm-f r r> m(0)a.

This proves the assertion.
Suppose now that a^ is nonzero. From (7) and (8), we deduce that

Since A and A(*"2) have the same zero pattern, by the hypothesis, both the ith row and
;th row of A^k~2) have exactly q nonzero entries that locate on the same columns. Thus
the sums in the denominator and numerator of (12) have q nonzero terms with the same t
indices. Apply those nonzero q terms to the inequality (3). We obtain

where the minimum runs over those q indices. This proves that every nonzero entry of
A(k) is not less than m(0)a, for all k = 0,1,2

Finally, for any nonzero entry of (D^)"1/!***, we obtain
m(0)

The last inequality follows from the fact that the sequence {r^}k is decreasing by

Theorem 1. Define the positive number d - —J57-. Since the ith row of A has q nonzero

elements, we have _ m

Thus d^l/q, and the proof is complete. D
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Suppose that A e Mn is positive. Then the hypotheses of Theorem 3 are obviously
satisfied. Define the iterative matrix

(* = 1,2,...), (13)

where Pw = (Dm)~lAm. We obtain the following approximation.

THEOREM 4. Let A E Mn (n 2: 2) be a positive matrix. Then P(k) converges to a matrix

Ic, c2 .. O
I C j C 2 . . . Cn

\c , c2 . . . cni

for some positive numbers cu c 2 , . . . , cn, and

r = lim max r(k) = lim min rjk) = lim r̂ *) =

Proof. For & = 1,2,... we have from (13)

Since (D(*))~1y4(Ar) is positive, it follows from (14), that the matrix P(*+1) is positive. Let
m[k) and M(

1*
) denote respectively the smallest and the largest elements of the first

column of P<k\ We show first that for k = 1,2,...

(\-d) and M\k+i)<m[k)d + M\k)(l - d). (15)

Let />(*+1) = (pf/+1)) and ( D ^ ) - 1 / ^ = (&{,*>). By equation (6), we have 2 £>{,*> = 1, and

by Theorem 3, we have every entry b\k)^.d for some positive number d^l/n. For
simplicity, assume that m[k) = p\k) and M\k) = p%\ Computing the first column entry of
the matrix (13), we obtain
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Hence M|*+1) £ m[k)d + (1 - d)M[k), and this proves the second part of (15). On the other
hand

£> - m|*>)

(1 - d)m{k).

Thus mi*+1) > MiA)rf + (1 - d)m\k\ and the first part of (15) is proved. Now by (15), we
have Ml*"1) - m|*+1) < (1 - 2d)(M[k) - m\k)). and thus

M|*+1> - m{k+l) < (1 - 2d)*(MiX) - mi"). (16)

Hence M|*+1) - m|*+1)-» 0 as k -^ ». Notice that 0 < 1 - Id < 1, by Theorem 3. Further-
more, by Theorem 1, the sequence {M(k\ decreases and {m\k\ increases. Therefore both
sequences converge to the same limit, and thus the first column of P(k) converges to a
column of the form [cj cx ... c j ' , for some positive number cr.

Applying the same argument to the remaining columns of P(*), we conclude that
converges to a matrix

: cn)

for some positive numbers c,, c2,..., cn. From the recurrence relation (9), we obtain
r w = />(*)r(0). (17)

Then {r(k)} converges to 5r(0), and hence for each i, {rjk)}k converges to r = c1rf) +
c2rf> + ...+ cnr

l°\ This completes the proof. •

We reduce the positivity in Theorem 4 to certain pattern of matrices, and obtain the
following weaker version of Theorem 4.

THEOREM 5. Let A e Mn be a nonnegative matrix and let q be a given positive integer.
If A is permutationally equivalent to a matrix with q positive columns and n— q zero
columns, then

r = lim max r\k) = lim min r\k) = lim r\k).

Proof. By Theorem 2 we may assume the positive columns of A appear in the first q
columns and zeros elsewhere. Let P(*+1) be the matrix defined in (14). Now A and
(/jc*))-'/^*) have the same zero pattern; i.e., the first q columns of {D(k))~xA(k) are
positive and other columns are zeros. Thus the first q columns of P(k+i) are positive and
other columns are zeros. Suppose that q s 2. Apply the arguments of the proof in
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Theorem 4 to the first column of P(*\ We obtain the inequality (16) with 0 < 1 - Id < 1.
Repeating this process to the next q -1 columns of P(*\ we see that the first q columns of

converge to a matrix
c2 ...

C\ C% . . .

for some positive numbers cu c2, • • •, cq. Since the last n - q columns of P(fc) are zeros, it
follows that, as k —* °°, P(k) converges to

/ci c2 ... c 0

c2 . . . c, 0 . . . 0/

By (17) we conclude that {r(t)} converges to Srm, hence for each /, {rlk)}k converges to
r = c1r

(°) + c2r2
0) + ...+cqrf\ and the conclusion follows. When q = \, it is clear that

an and 0 are the eigenvalues of A and so r = an. By (5) we have

\au 0 . . . 0/

It follows that A(k) = Aa) for all it = 2,3 Therefore r\k) = an, and thus r = an =
lim r\k) for all i, completing the proof. D
k-

Theorem 4 provides an Iterative algorithm for approximating the maximal eigenvalue
of a positive matrix. In general, let A = (a(y) E Mn be a nonnegative matrix, and r be the
maximal eigenvalue of A. Given a positive number e, define a matrix / I , e Mn as follows:

, if fly = 0.

Then At is positive, and the maximal eigenvalue rt of At is estimated according to
Theorem 4. Since eigenvalues are continuous functions of entries of the matrix, it follows
that Ae -* A and rt -* r as e -»0. Hence, if e is small enough then an estimation of r can be
achieved by computations of rt. We summarize the Iterative algorithm.

STEP 1. Initialize.

Letk = 0, A(0) = A = (af\ r\O) = £ af for i = 1,2,..., n and 5 = tolerance.

STEP 2. Find min and max row sums: r^ = min r\k\ and rffl = max r{A).

STEP 3. 7esf.
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Order.

100
200
300
400
500
600
700
800
900
1000

Power method.

12/4963-6238537076
12/9881-5030429984
11/14792-7146278852
11/19719-9743999372
10/24686-1864859857
10/29632-9292683024
10/34591-5996879745
10/39545-8711650438
10/44489-6491412335
10/49451-5229094011

T A B L E 1.

Iterative algorithm.

12/4963-6238537076
11/9881-5030429984
11/14792-7146278852
10/19719-9743999372
10/24686-1864859858
10/29632-9292683025
10/34591-5996879745
10/39545-8711650439
10/44489-6491412336
9/49451-5229094011

Matlab.

4963-6238537076
9881-5030429984
14792-7146278852
19719-9743999372
246861864859857
29632-9292683024
34591-5996879745
39545-8711650439
44489-6491412336
49451-5229094010

If \rffl - r^l < 8, then we obtain an approximation for the maximal

and r j k + 1 » = i < + l ) , i = 1,2,... ,n.
=1

eigenvalue or else
Replace k by it + 1. Go to step 2.

The test condition Step 3 may be replaced by |r$+1) - r^\ < 8 or |r<*+1) - r£>| < 8.
We run MATLAB programs on the DEC Alpha Sever-2100, and list in Table 1 the
numbers of iterations required to estimate the maximal eigenvalue by the Power method
and the Iterative algorithm for nonnegative matrices of order 100 to 1000 with
5 = 1.0xl0~10. In Table 1, there are two values in the Power method column and
Iterative algorithm column. The first value is the number of iterations, the second value is
the approximated maximal eigenvalue, and the Matlab software evaluates the maximal
eigenvalue in the last column. The entries of a sample run matrix for the Iterative
algorithm are generated by the following formula:

A = rand(n);
if A(iJ) < 0-1, then A(iJ) = eps =
or else A{i,j) = A{i,j) x 100.

• 2-2 x 10"16 (A(i,j) = 0 for Power Method)

From the experiment, the number of iterations required to approximate the maximal
eigenvalue by the Iterative algorithm is close to that of the Power method with initial
vector x = [1]. This similarity also happens to tridiagonal matrices and matrices whose
maximal eigenvalue are relatively dense, such as the tridiagonal matrix W^ = (w,y) e A/2]

(see [6, 5.45]), where wu = 11 - i (i = 1 , . . . , 11), wu = i - 11 (i = 12 , . . . , 21) and wl/+, =
wi+ii= 1 0 = 1 , . . . ,20). The matrix W$\ has an eigenvalue which is quite close to the
maximal eigenvalue. The Power method takes 136 iterations to approximate the maximal
eigenvalue 10-7461941835 of W^u and 135 iterations for the Iterative algorithm. However,
for certain matrices we may obtain fewer iterations by using the test condition

r(^\ < 8. For example, consider the matrix

The eigenvalues of A are 3, 3, 1. The Iterative algorithm needs only 3 iterations to
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approximate the maximal eigenvalue 3-00000000000, but more than 1000 iterations, with
estimation 3-00230769231, are needed for the Power method to do the job. This is simply
because A has double eigenvalue 3.
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