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Abstract

In this paper we prove the existence of asymptotic expansions of the error of the spline
collocation method applied to Fredholm integral equations of the first kind with logarithmic
kernels. These expansions justify the use of Richardson extrapolation for the acceleration
of convergence of the method. The results are stated and proven for a single equation,
corresponding to the parameterization of a boundary integral equation on a smooth closed
curve. As a byproduct we obtain the nodal superconvergence of the scheme. These results
are then extended to smooth open arcs and to systems of integral equations. Finally we
prove that such expansions also exist for the Sloan iteration of the numerical solution.

1. Introduction

In this paper we consider the numerical solution of some boundary integral equations
(BIE). Boundary integral methods provide a useful tool for dealing with linear homo-
geneous boundary value problems (BVP) by means of a representation formula for
the set of solutions of the differential equation plus an integral equation. In this way
the dimension of the problem is reduced by one (thus, plane problems are converted
into 1-dimensional integral equations) and we are allowed to deal with BVP in some
unbounded domains.

The general BIE we analyse here may be written in the form

f (A( •, a) log (sin2(7T( • - s))) + B(-, s)) g(s)ds = / . (1)
Jo
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414 Ricardo Celorrio and Francisco-Javier Sayas [2]

This equation actually corresponds to the parameterization of a BIE. We have thus
transformed a problem on a curve into a periodic problem on the real line.

Different Galerkin schemes (with piecewise polynomials, including smoothest
splines, with trigonometric polynomials, etc.) for a wide class of periodic integral
equations have been analysed in the literature. Moreover, their properties are not only
well understood but also good enough from the point of view of the order of con-
vergence. However, collocation-type methods are those most used in the engineering
world, because of the simplicity of implementation and of the clarity of the ideas
involved.

The analysis of collocation methods for logarithmic integral equations such as (1)
follows from a series of papers in the mid and late eighties, [1] and [11] marking the
most complete contributions. In more recent times, this work has been extended to
the integral equations arising from problems on open arcs and domains with corners,
although much is still undone, especially as regards extending these results to problems
on surfaces.

One important aspect of the analysis of any numerical method is the existence of
an asymptotic expansion of the error. If we are approximating an unknown quantity
or function To by T(h), depending on a unique discretization parameter h -> 0+, an
asymptotic expansion of the error (AEE in the sequel) is an expression of the form

T{h) = T0+TpW + Tp+lh
p+l + --- , (2)

where the series must be understood in a formal sense (that is, limited to a finite number
of terms plus a remainder) and in some norm. The applicability of (2) is twofold. On
one hand, we can use the solutions in two different discretization levels, say h and h!,
to obtain by a simple linear combination an approximation of the principal part of the
error, namely Tph

p. On the other hand, using several solutions (for hi, h2, h3,...)
we can cancel the first terms of the AEE and hence obtain a numerical approximation
of higher order. This procedure for the acceleration of convergence is often called
Richardson extrapolation.

In this paper we consider spline collocation methods for (1) and prove the existence
of several kinds of AEE. A precedent of this can be found in [12], where in the
terminology of pseudodifferential equations, error expansions are proven to exist not
for the solution itself but for the action of a smoothing functional applied to it. In
the terminology of BIE, this means for instance that we obtain pointwise AEE for the
solution of the associated B VP via the representation formula on the boundary.

With very different techniques and with the logarithm playing a significant role, we
prove the existence of expansions of the form

gh = Qhg + h" Q h g p + h p + 1 Q h g p + l + ••• , ( 3 )
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where g is the solution of (1), gh is its approximation by the spline collocation
method and Qh is the interpolation operator associated with the spline space. Similar
expansions for the spline Galerkin method appear in [6]. From this we are able to
derive, for instance, AEE for the potentials uniformly on compact sets and also for the
Sloan iteration of the solution [8].

The structure of the paper is as follows. In Sections 2 and 3 we introduce the
equation of intersect and the collocation method. Sections 4, 5 and 6 are devoted to
proving the existence of expansions in the form of (3). These expansions are stated
in Section 4 and proven in the following sections. As a consequence we prove a
new nodal superconvergence result. Part of the analysis is reduced to the proof of
a non-standard Euler-Maclaurin formula for functions with a logarithmic singularity.
This is left for the Appendix.

A particular case is examined in Section 7, namely when coefficients and data in
(1) are even functions of all their variables. This corresponds to integral equations on
open curves after the cosine change of variable [19].

Finally in Section 8, we extend these results to systems of BIE with some side
conditions and prove how (3) transfers into proper AEE of some postprocesses applied
to the numerical solution.

NOTATION. Throughout the paper we will deal with spaces of complex-valued
functions of one or two real variables, which are 1-periodic in each variable. We
will denote by *if * the space of k times continuously differentiate functions, with
the above periodicity properties. We will not indicate whether a function is defined
on R or R2, since such effect will be clear from the context. As usual we define

2. The integral equation

We are interested in the numerical solution of

(A(a, s)\og (sin2(7r(<7 - s))) + B(a, s)) g(s)ds = f (a), V a, (4)i:
where A, B : R2 - * C are smooth 1-periodic functions, say A,B € i?°°, and
/ : R -*• C is 1-periodic and continuous. We assume that

A(<r,cr)^O, V<r€R. (5)

EXAMPLE 1. Let F be a smooth simple Jordan curve parameterized by means of
a ^°° 1-periodic function x : R -> T C R2 such that Ix'(s)! 56 0, for all 5 and
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x(cr) j£ x(s), for 0 < \a — s\ < 1. Consider the Dirichlet problem for Laplace's
equation

JA« = 0, inR2\r,
[u|r = «o

and the single-layer model associated with the problem

«(y) :=—^j

By the continuity of the single-layer across the boundary and parameterizing the
integral on F we obtain an equation like (4) where

g(s) := ~q(x(s))\*!(s)\, /(a) := «o(x(ff)).

. 1.
sm2(n(a-s))J

A(a,s):=l, B(a,s):= log

This equation is uniquely solvable provided that the logarithmic capacity of the curve
differs from 1 (see [17] for example).

EXAMPLE 2. Let f and x be as in the previous example. Consider the Dirichlet
problem for the Helmholtz equation

I Au + X2u = 0, in R2\I \

«lr = «o,

where X ^ 0, ImA. > 0. Assume also that —X2 is not an eigenvalue of the Laplacian
in the interior of I \ Let #0

0) : C\(iR") -> C (with R" := {r e R : r < 0}) be the
Hankel function of the first kind and order 0. Note that H^ can be decomposed as

H™(z) = Mz) + i-Mz) logz + ia(z2), (7)

where a is an entire function, Jo is the Bessel function of order 0 and log denotes
the holomorphic determination of the logarithm in C\(iR~) which extends the real
logarithm. The single layer

: = l- f
^ Jr

-z\)q(z)dy(z), y ^ T , (8)
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gives a solution of the Helmholtz equation satisfying Sommerfeld's radiation con-
ditions at infinity (see [4] for instance). When taking the limit as y -> F and
parameterizing, the resulting BDE is

ffo
(1)(X|x(a) - x(s)|)*(s) ds=f (a),

where we define g := q(x(-))\x'(-)\andf := «0(x(-))- Because of (7), the previous
equation can be easily written in the form of (4).

The usual functional frame where equations like (4) are studied is that of periodic
Sobolev spaces. For r e R we consider the norm

\
I

1/2

where

u(k):= / u(s)e-™"sds
/o

are the usual Fourier coefficients. The completion of the space of 1-periodic infinitely
differentiable complex-valued functions with the previous norm is denoted by H'.
For all r e R, Hr is a Hilbert space whose inner product will be denoted by (•, • )r.
The space H° can be identified with L2(0,1). Moreover, the inner product

t,v)0= I
Jo

(u,v)0= / u(s)v(s)ds
Jo

can be extended to represent the duality between Hr and H~r for all r. Note that the
spaces Hr can also be understood as spaces of periodic distributions [20].

We denote

V{o, s) := A(a, s)\og (sin2(7r(a - s))) + B(a, s).

Then the integral operator

Vg:= f V(-,s)g(s)ds
Jo

can be extended to a continuous map from Hr to Hr+1 for all r. Moreover, by simple
properties of logarithmic operators, it can be easily verified that V : Hr -*• Hr+1 is
Fredholm of index 0, that is, bijectivity follows from injectivity.

HYPOTHESIS 1. We assume that V : Hr -*• Hr+l is an isomorphism for all r.
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Obviously this is equivalent to demanding that V is one-to-one for all r. Moreover,
given the special structure of the kernel, this is equivalent to injectivity for any single
value of r. If the previous hypothesis does not hold, one can always extend the
equation to a uniquely solvable system by the addition of a finite number of linear
integral restrictions and complex unknowns (see [4] and [13]). These systems are
included in those treated in Section 7.

We then consider the operator equation

Vg=f. (9)

Since we are going to apply a collocation method, we assume that/ € H'foxr > 1/2
and is thus continuous by the Sobolev embedding theorem.

3. The collocation method

In this section we introduce the spline collocation method on a uniform mesh. Given
a positive integer N we define the discretization parameter h := \/N; a uniform mesh
st, i € Z (that is, s, — Sj = (i —j)h for all i, j ) ; and a partition of the real line where
the midpoints of the intervals are the points of the mesh /, := (s, — h/2, s, + h/2),
/eZ.

Let m > 0 be an integer and let us consider the space V̂  of the smoothest periodic
splines of degree m with respect to the partition [Ij }Jez. That is, if m = 0 we have the
space of 1-periodic piecewise constant functions

Vh:={uheH°:uh\ll€F0,Vi}

and for m > 1

V» :={«*€ V - 1 : «i*|7, e P . , Vi},

where Pm is the space of polynomials with complex coefficients of degree less than
or equal to m. The points {s,- -f h/2) are often referred to as knots of the splines.
Obviously Vh is a subspace of Hm.

For m even, we consider the points z, := sf, whereas for m odd we denote z, :=
si — h/2. For u € ̂ ° there exists a unique Qhu eVh such that

Qhu{Zi) = u(zi), Vi,

by the Schoenberg-Whitney theorem (see [7]). Since the points {z,} are taken as
interpolation nodes, we will call them nodes.

The spline collocation method for (9) is the discrete problem

(PH) gh € Vh,

Vgh(Zi) = f (Zd, i = l , . . . , AT.
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Note that we could equivalently demand that Qh Vgh = Q/J • In [1] it is shown that
(Ph) is uniquely solvable for h sufficiently small. Then we can define the collocation
operator Ch : Hr -^ Vh, for r > —1/2, as the operator mapping g to the unique
solution of

Ckg € V*.

QkVChg=QhVg.

Stability and convergence of the method follow from [1]: for s e [—1, m + 1/2) and
s<t<m+l,t> - 1 /2 , there exists C = C(s, t) such that for h small enough

for all g € H'. Consequently the operators Ch: H° -*• H° are uniformly bounded for
h < h0. Moreover, in [11] the following optimal convergence result in weak norms is
proven: for m even and g e Hm+2,

\\Chg - g\U < Chm+3\\g\U2.

4. Asymptotic expansion of the error

We will use the Landau symbol 6: given f(h; •) depending on the discrete
parameter h or on a continuous version of it (with the common feature that h —• 0+),
we write f(h;-) = &(hk) if h~kf (A; •) remains bounded as h -*• 0+. Uniformity in
the other variables in / is not assumed unless explicitly stated. We will also use the
modified symbol &„: given a vector ah — (ai aN)T e RN(h = 1/N) we denote
a, = *.(**) if max.s,^ |a,| = 0{hk).

We also denote

\m + 2, if mis even,
P(m) :=\ . (10)

l̂ m + 1, if mis odd.

As a first step we formulate an error expansion, whose proof will be given in the next
section. This expansion is essentially a consistency result, the presence of the operator
Ch under the integral operator V not being necessary.

PROPOSITION 1. Let g e <if°o and f € [—1/2,1/2). Then there exists a sequence
of functions {ek,() C <&*>0 such that for all M

M

- Qh)g{s, + £ h) = 5 3 hkeu(s, + Sh) + 0.(hM+1). (11)
k=p(m)
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We now reformulate the discrete problem as a Petrov-Galerkin expression by the
use of a set of Dirac delta distributions. For i = 1 , . . . , N and for r < —1/2, let
Si € Hr be given by the relation

(«,, «)0 = u(zd, V u € ^°°.

Consider then the discrete W-dimensional space Th := C(SU . . . . SN). Then (Ph) is
equivalent to the problem

8h € H ' (12)
V t T

The following result, proven in Section 5, is a consequence of the stability of the
method.

PROPOSITION 2. There exist P > 0 and h0 > 0 sucA that for all h < /j0> i>A € VA,

KVvjh, rA>0| >^f|v*lloll<*B-i- (13)

We then obtain a kind of asymptotic expansion of the error of the collocation
method.

THEOREM 3. Let g e c€°°. Then there exists a unique sequence of functions
lfk} C if00 such that for all M

Chg -Qng- J2 hkQhfk = #{hM+l) (14)
*=/>(m)

uniformly in R Moreover, the bound also holds for derivatives up to order m.

PROOF. Take £ = 0 if m is even and f = —1/2 if m is odd in Proposition 1 and
denote g* := V~lek-i. By Lemma 9, there exists a constant C independent of h such
that for all th = £ £ , , f,Sy € TA,

. 7 = 1

Then, by Proposition 1, it follows readily that for all th e Th

M

(Vg - VQhg, th)0 = J2 hk(vCngk, **)o + ^(AJ#+I)ll**ll-i. (15)
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To obtain (IS) we have to take an additional term in Proposition 1 which tends to the
remainder by the continuity of V and the stability of Ch.

From here on, the proof follows exactly as the proof of Theorem 2 in [6], by simple
applications of expansions (IS), of Proposition 2 and of bounds of different norms
in the spline spaces. Uniqueness follows from the convergence of the interpolation
operator.

REMARK 4. If g e Hn+1 and A, B e 1fn+3, then there exists an asymptotic expan-
sion like (14) up to the term M = n — m — 3. The smoothness of the functions in the
expansion is now limited. It can be proven that/* e if~* for all k.

COROLLARY 5. For m even and g smooth enough we have

. max \g(Zi) - Chg(Zi)\ = #(hm+2),

that is, a superconvergence phenomenon in the midpoints of the mesh.

5. Spline interpolation and the logarithmic operator

In this section we are going to prove Proposition 1. The proof will be done in several
steps. For fixed ? € R, we are interested in obtaining an expansion of V(/ — Qh)g in
the points s, + £ h, i e Z. Notice that by periodicity, £ can be taken in [—1/2,1/2)
and i varies only in {1 , . . . , N}. From [14, Section 5] we have a local expansion of
the interpolate

g - &*u =

uniformly in /,, where Pk are fixed real polynomials of degree exactly k and such that
Pk(-t) = (-l)kPk(t). This expansion is valid for all g e 1fM+l. We denote

ri/2
ak := / Pk(t)dt. (17)

J-l/2

Obviously ak = 0 if k is odd.
For simplicity, as in the statement of Proposition 1, we will assume that g 6

We also consider the splitting V = VQ + Vj where

Vog:= f A(-,s)log(sin2(;r(• -s)))g(s)ds, Vlg := f B(•,s)g(s)ds.
Jo Jo
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Let us define the functions

f Pk ( ^ - ^ - ) A(<r, s)log (sin2(n(<r - s)))gw(s)ds.

PROPOSITION 6. For all integer M > m,

V(g - Qhg)(o) = f^h" (&(or; h) + at V,g<V)) + 0(hM+l) (18)
*=m+l

uniformly in a € R.

PROOF. Consider the function ph e H° given by

PH\I, :=g-QHg-J2 hkPk (^^p) gik\ i = l N.

By the Sobolev embedding theorem, the continuity of V and (16), we have that

max \Vph(a)\ <

and thus

= Y\hk I fo{a; h) + J]fpk (S—r^-) B(v, s)gw(s) ds)

uniformly in a € R.
With the change of variable t = (s — Sj)/h and by the Euler-Maclaurin formula it

follows that

f1 Pk(t) (h Y] B(a, sj + h t)gw(sj + h r) ) dt
J-V2 \ frT /

= ak / B{a, s)gik)(s) ds + 0(hr), (19)

for all r, uniformly in a. The result is then proven.

We now turn our attention to studying pk(-;h) — otk Vog
ik) at the points st + £/i.

Notice that the kernel of Vo is not smooth and the simple arguments leading to (19)
do not apply here.
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PROOF OF PROPOSITION 1. Consider first the error functional for the displaced
trapezoidal rule for periodic functions

J+u))- f fOc)dx.

Let now ck(cr, s) := A(p, s)glk)(s) and dk(a, s) := ck(a, a +s) Iog(sin2(;rs)). By a
change of variables

1/2 / JL \
h Y, ct(*. + ̂  *i + *h)log {sin2(n(^_, + (/ - ?)/»)))) dt\ in /

/•1/2
I Pk(t)Ep[dk(Si + th,-),t- {, h] dt. (20)

J-l/2

•1/2

A straightforward application of Proposition 20 in the Appendix yields

•1/2/•1

/ Pk{t)Ep[dk{y,-),t-K,h\dt
J-l/2

T - l

uniformly for all y € R. We then obtain the result by combining Proposition 6, (20)
and (21). Indeed, if we denote

t—IB— 1

= ^2 Cpk_hJ(,-Z)—{A(o, -)glk~j))U) (cr)

(the functions ajt are smooth and periodic), we easily obtain

V(g - Qhg)(Si + Zh)= J2 «*** V8lk)(si + ?A)

k=m+l

M-l

+ 5Z hk+lWte>8Ksi + Sh) + 0.(hM+l). (22)

Notice that ak = 0 if k is odd, and then the expansion begins at Am+2 if m is even.
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REMARK 7. In fact, considering f = —1/2 if m is odd and f = 0 if m is even,
we have obtained expansions for V(g — QhgKzi). We remark that by properties
of the coefficients C>t,((£) (notice that Pk is even/odd if k is even/odd and applying
Lemma 17 in the Appendix), it follows that

l/2, -) = 0, if it is odd.

Therefore in (22) the first group of addenda includes only even powers of h (and
derivatives of g of even order), whereas the second one includes only odd powers of A.

6. An inf-sup condition

In this section we prove a uniform infimum-supremum condition from which Propo-
sition 2 follows readily. We will also prove an estimate on the || • || _i norm of elements
ofTft.

Let us consider the vector space of periodic polygonal functions

I.-l«.6*0:nUePi1 Vi}.

We remark that the knots of these functions are displaced with respect to the knots
of the splines if m is even, since knots are placed on nodes. Let us consider the
hat-function basis of Xh, {fa,... , \jrN], where Vi € Xh is such that fa(zj) = &ut
for all i, j , Sij being the Kronecker symbol. The interpolation operator onto Xh,
QN : Hl C if0 -> Xh C H1, is then trivially given by the relation

N N

Notice that the collocation solution to Vg = f is the unique function gh e Vh such
that QN Vgh = QNf. Consider then the adjoint operator of QN, Q*N : H~l -*• H~l.
We therefore have that (QNu, v)0 = («, Q*Nv)o, for all u € Hl, v e H~l. Then for
aUteH-1

N

Siit = E ( ^ ' t ) o S i e T»-
1=1

PROPOSITION 8. 77iere exutt f$ > 0 such that for h small enough

M sup
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PROOF. The proof of this result is based on [5]. Given vk e Vh, we define to* :=
QN Vvk. Since (2^ = GAT, we have

QNVvh = wh= QNwh = QNV(V-l

and therefore

By the uniform boundedness of the operators C* : H° -*• H° for h small enough it
follows that

Moreover

\\u>hh= sup —— = sup
ll'll

= sup
ll'll-l 0#/e«-' 11 * I I — X

from whence the result follows, since \\Q^\\ = || QATII < C for all Af.

LEMMA 9. There exist two positive constants Q, Ci, independent ofh, such that

PROOF. By the Sobolev embedding theorem it follows that

and therefore

1*11-.= sup 1
II

Consider now uh := J2t=

On the other hand

AT / N \ 1/2
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By the explicit polynomial expression of uh,

\\u\2-\r u s ds2 fl «' s 2ds<5h-1^r t2
Uh 1 ~ \Jo Jo U" S S ~ £ f

and hence it follows that

h x—

7. The even case

In this section we consider the particular case of (4) with even data and coefficients,
looking for even solutions. That is, consider (4) with A, B smooth 1-periodic and
even in both variables, A satisfying (5) and / even. This kind of equation arises from
BIE on smooth open arcs with the cosine change of variable (see [19] and Examples 3
and 4 below).

Consider the even periodic Sobolev spaces [20]

t - # / := {ueHr: «(*) = u(-k), V*}.

Then Hr
e is a closed subspace of Hr. The space H° corresponds to the periodization

of functions in L2(0,1) such that «(1 - t) = u(t) almost everywhere. Finally, the
identification of //e° with its dual can be extended to give a representation of the duality
between Hr

e and H~r for all r e R. It is easy to show that V : Hr
e - • # ; + I is bounded

for all r e R, if A and B are even. We then assume the following.

HYPOTHESIS 2. The operator V : i / ; -»• # ; + 1 is an isomorphism for allreR, or
equivalently, its kernel is null for a single and arbitrary value ofr.

For a discussion on this hypothesis see the comments at the end of this section.
Given/ e H'e, with r > 1/2, we consider the operator equation,

se//;-', Vg=f, (23)

whose solution is going to be approximated by a collocation method.
Consider now the discrete space Vh as in Sections 2-5 and define Vh-e := Vh D H°,

its subspace of even splines. In order for this space not to be trivial (equal to P<j) it
is necessary that the origin x = 0 is either a knot or a midpoint of the grid (that is,
Si — h/2 = 0 or stF = 0 for some i). With the choice So = 0, the dimension of VKe is
[N/2] + 1. For a detailed discussion, restricted to the case when N is even, see [13].
Moreover, if Qh : %, -* Vh is the interpolation operator defined in Section 2, it can
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be proven by a simple uniqueness argument (see [13]) that if u e <if0 is even, then
QHU 6 Vh,e.

We then consider the collocation approximation to (23)

gh e Vh%e,

QhVgh = Qkf = QhVg,

or equivalently Vg(z,) = / (z,) for i = 1 , . . . , N although not all these equations are
linearly independent

The analysis of collocation methods in the even case follows from [19], where the
results are just stated for A(a, s) = Ao € R, and in some specific norms. However,
with the same proofs plus some standard arguments it can be easily proven that for h
small enough, the problem (P/.,«) is uniquely solvable; the even collocation operator
Ch,e '• H't -*• Vhie is well defined for t > —1/2 and has boundedness properties
identical to those for Ch; for - 1 < s < t < m + 1, s < m + 1/2, / > - 1 / 2 ,

I* - Ch.eg\\s < Ch'-'\\g\\t, Vge H'e.

For a Petrov-Galerkin formulation like (12) to be given it is necessary to do some
simple adaptations. If we consider a Dirac delta distribution Sx € H'1 such that

(8x,u)0 = u(x), VueH1,

then (8X + <S_,)/2 € H~l. This fact together with the symmetry of the nodes [zi\
permits us to give a basis of Th,e := Th D H'1. Then (Ph,e) is equivalent to

&h *= vhte*

( Vgh ,th)0 = (f, th)0, V th € Tk,t.

Then we can prove a similar result to Proposition 2 for the even case. We can also
prove the consistency result.

PROPOSITION 10. Let g e. 1f°° be even. Then there exists a sequence of even
Junctions {ek} c &00 such that for all M

M

V(I - Qh)g(Zi) = J2 hk£^Zi) + ^ ( f t M + 1 ) - (24)
k=p(.m)

PROOF. We apply Proposition 1 with f = 0 if m is even and f = — 1 /2 if m is odd.
We remark that we can have even functions in the expansion by simply noticing that
V(I - Qh)g is even if g is even and then ek(s) := (ekj(s) + ekj(-s))/2 satisfies the
same equality in the nodes, since z, = s,•,+ f h is a node if and only if —z,- is a node.
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We then can state and prove the theorem corresponding to Theorem 3 for the even
case without any difficulty.

THEOREM 11. In the hypotheses of this section, Theorem 3 holds for the even
collocation operator Ch%e.

EXAMPLE 3. Let P be a smooth open arc, given by a parameterization x : [—1,1] -*•
F c R2,suchthat|x'(s)| > 0 for all 5 andx(cr) ^x(5)foralla j^s. We are interested
in the integral equation

- z|)9(z) dy (z) = «o(y), y € I \ (25)

where H^ is the Hankel function (see Example 2) and A. e C. The single layer (8)
then gives a solution of (6). Now let a : R -*• P be such that

a(s) := \(cos(2ns))

and

g(s) := 27tq(a(s))\^(cos(27Ts))\ \ smQxs)\, f (s) :=

1 fl/2

- / H0
(1)(A.|a( •) - a(s)\)g(s) ds = / . (26)

8 J-l/2

Then (25) is equivalent to

.1/2

-1/2

By (7) and since

log |a(a) - a(s)\2 - C(o, s) + log | cos(2?ra) -

= C(o, 5)+log4+log (sin2(^(a-j)))+log (sin2(:r(a+s))),

with C smooth and even, the symmetries of the functions involved allow us to write
(26) in the form of (4) with even coefficients and data.

EXAMPLE 4. For the Laplace equation (see Example. 1) with Dirichlet data on a
open arc, the same arguments apply to transform the boundary integral equations into
an equation of the form of (4) with A{a, s) = 1. This kind of equation has been
widely studied from the theoretical and numerical point of view: see [19] and [20].

Instead of the invertibility hypothesis on the even spaces HT
e, we could assume the

more demanding Hypothesis 1. If A (a, s) == A0(a), both hypotheses can be shown to
be equivalent, but this is not the case in the general situation. If Hypothesis 1 holds,
then it can be proven that Ch = Ch,e, that is, the collocation solution is even if the data
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and coefficients are even (and the grid respects this symmetry). The analysis given in
this section is then trivial, as is in general the analysis of the collocation method under
this hypothesis. However, for equations like those arising from the single-layer model
for the Helmholtz equation, it is possible that the operator V has a kernel formed by
smooth odd functions with no physical basis.

8. Other aspects

8.1. Systems All of the preceding analysis can be extended to systems of integral
equations with logarithmic principal part coupled with some integral side conditions
and with the addition of a finite number of scalar unknowns. We simply state the kind
of systems for which the analysis is valid.

We denote by Cpxq the set of p x q complex matrices. Let n and p be integers
satisfying n > 1, p > 0. Now let A, B : R2 -*• C x " be matrix-valued functions,
1-periodic in both variables and if00. Assume also that

detA(a,cr) ^ 0 , VCT.

Let M : R ->• Cnxp and L : R -» Cp*n also be smooth and 1-periodic. Finally
let R € C ' " ' . Then we consider the following system of integral equations: given
f € (Hr+1)n and b e O \ find g € (Hr)n and c € C such that

(log (sin2(;r( • - s))) A( •, 5) + B( •, s)) g(s)ds + M c = f, (27)

4-Rc = b, (28)
o

where integration is understood componentwise. Considering the product Sobolev
spaces Jf?r := (Hr)n x C one can build the matrix operator

~{I R) :•*"
where V is the integral operator in (27) and L is the functional in (28). If we
assume that Y is an isomorphism, then the collocation method associated with the
space (Vh)

n x C is stable and convergent (see [1]) and we can follow step by step
all the analysis given in Sections 3-5. We simply remark that the extension of the
interpolation operator Qh to this situation is simply componentwise interpolation for
the functional part and the identity for the scalars.

A wide set of examples where systems (27)-(28) appear can be found in [9] and [13].
These include: the Dirichlet problem for the Laplace equation outside a set of non-
intersecting smooth closed curves (one could easily adapt the analysis in case some
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of them are open arcs as in Section 6); the first fundamental problem of planar linear
elasticity; the Hsiao-MacCamy asymptotic approach to the exterior Stokes problem
for viscous fluid flows around a cylindrical object; and a problem in electromagnetism
related to the skin-effect taken from [16]. To these we could easily add the Dirichlet
problem for the Helmholtz equations in the exterior of a group of smooth curves.

8.2. Potentials In this section we show how the asymptotic expansions of Theorem 3
can be used to prove the existence of asymptotic expansions of the error of the action
of some operators on the approximate solution of the BIE. In fact, the aim of solving
equations in the form of (4) is often the numerical solution of an associated B VP (see
examples above). Once we have solved the BEE we put our solution as a density on
the boundary in the representation formula for the solution of the BVP. This gives
an exact solution of the differential equation approximately satisfying the boundary
conditions.

What we do in these situations is insert the numerical solution into an integral
operator

-J:Tg(y):= I F(y,s)g(s)ds, (29)

where F : R 2 \ r x R —*• C is smooth and periodic in its second variable. We
will restrict our attention to calculation 'far enough' from the boundary, that is, to
F : fixR ->• C such that F e ^°°(?2xR). To avoid the insertion of adequate weights
to deal with the behaviour of F at infinity, we will assume that £2 is a bounded set of
R2 (in applications such as those from Examples 1 and 2, Q is such that £2 D F = 0).

Then let X := <&*(&) for some k, endowed with its natural norm. Then T :
H~2 -> X is linear and bounded, so it profits from the best convergence estimates of
the collocation method: in norm || • ||_2 if m is even and || • ||_i otherwise.

We introduce the symbol ffx to have the following meaning: when we write
a{h) = &x(h

k), we mean that \\a(h)\\x = 0(hk). We recall the definition of the
parameter p (m) in (10) and of the coefficients otk in (17).

LEMMA 12. Letf e <^2M+2. Then

T(f-Qhf)=
*=/>(m)/2

PROOF. The proof of this result follows from the proof of Theorem 10 in [15]. It
can be easily proven by the application of expansions (16) with the same techniques
as in the proof of Proposition 6.

We now use this lemma to prove the existence of asymptotic expansions of the
potentials calculated by means of the solutions of the collocation method. For the
sake of simplicity we state the result for g very smooth.
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THEOREM 13. LetgG. <i"°. Then there exist functions gk € X such that

pim) U

T(Chg-g)= J2 "2k+182M+i+ J2 hk8' + 0x(hU+l)- (30)
i=2p(m)+2

PROOF. By the best convergence result we can prove that

T(Chg -g) = \\g\\p(n)^x(h"^+1).

Applying this and Theorem 10 in [15] we obtain the expansion

We now show that gk = 0 for k even, k < 2p(m). By (22) and Remark 7, plus the
usual boundedness arguments and Proposition 2, we obtain

nC-Qh)g= J2 <*»h*TChgw+ f;
t=p(m)/2 k=p(m)/2

for some smooth / ; . Subtracting the expansion in Lemma 12 we obtain

nChg-g)= £ h2k+1Tf2k+1+ f^
k=p(m)/2 t=P(m)/2

*=P("i)/2

This expression gives an alternative proof of the fact that T(Chg — g) = dx(.h
plm)+1)

for g smooth enough. Then

T{Chg-g)=
k=p(m)/2

and thus the result is proven.

As an example, Theorem 13 proves that for m = 0 (collocation with piecewise
constant functions)

TChg = Tg + h3g3 + hsg5 + h6g6 + • • • ,

which agrees with a similar result in [12], although there T was a functional, that is,
evaluation of the potential was taken in a single point.

https://doi.org/10.1017/S1446181100012037 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100012037


432 Ricardo Celonio and Francisco-Javier Sayas [20]

8 3 . The Sloan iteration We finish our analysis with a proof that the Sloan iter-
ation for logarithmic equations defined in [8] inherits the existence of an asymptotic
expansion of the error. We now restrict the scope of (4) to the case where A (a, s) = 1.
Consider then the Bessel operator

Ag:= f Iog(4e-'sin2(;r(- -s)))g(s)ds,
Jo

which is an isomorphism between Hr and Hr+l for all r [20]. Moreover, since A is
a convolution operator the basic trigonometric polynomials e2**'' are eigenfunctions
of A.

The equation Vg = f is then equivalent to

where L := A~x{ V — A) : Hr -*• Hs is compact for all r, s. The Sloan iteration of
the collocation solution to Vg = f is then defined as

g*h:=A-'f -LQg.

Notice that V — A is an integral operator with a smooth kernel.

THEOREM 14. Letg € <e°°. Then there exist functions uk € 'if00 such that

St~8= E h2k+lu^2+ £ hkuk + 0(hM+1), (31)
*=p(m)/2 k=2p(m)+2

where the equality is valid in HT for all r.

PROOF. Notice that A(gl -g) = (V- A)(g - Chg), where

(V-A)g= [ F(-,s)g(s)ds,
Jo

where F : R2 -*• R is periodic in both variables and infinitely often differentiable.
With very much the same proof as that of Theorem 13, the result follows.

We remark that our result shows the existence of a full asymptotic expansion of the
Sloan iterate of the collocation solution, instead of the simpler single-term expansion
for the particular case m = 0 in [8]. The result draws a strong parallelism with
the Sloan iterate for the numerical solution of equations of the second kind with
smooth kernels, proven in [10]. For practical implementation of the Sloan iterate for
logarithmic equations, see [8].

https://doi.org/10.1017/S1446181100012037 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100012037


[21] Extrapolation and collocation for boundary integrals 433

8.4. Final comments Once we have obtained asymptotic expansions of the error
(pointwise as in Theorem 3 or under the application of some operators as in Theo-
rems 13 or 14) we are allowed to apply polynomial Richardson extrapolation to the
limit This procedure, which can be consulted in any text of basic numerical analysis
(for instance, [18]) is of great use for acceleration of convergence and to obtain a
posteriori error estimates. The extrapolation thus constitutes a good alternative to
using complicated numerical schemes (implementation difficulties increase as m in-
creases), since it combines the advantages of implementing a simple method (m = 0
for example) with the higher convergence of more complicated methods.

We do not include numerical experiments, since the collocation method is not a
ready-to-implement method without an additional effort of numerical integration. In
[2] there is analysis of some possibilities of full discretizations of the collocation
method which keep the advantages of giving asymptotic expansions of the error.
Some numerical tests are shown there. A full and compact analysis of those full
discretizations appears in [3].

Appendix: Euler-Maclaurin formulae for functions with a logarithmic
singularity

Let us consider the error functional for the trapezoidal rule in the whole of R,

E[f;u,h]:=hf^f(h(j+u))-f f(x)dx,
y=-oo J-°°

depending 1-periodically on the parameter u. As a straightforward consequence of
the classical Euler-Maclaurin formula we obtain the following result.

PROPOSITION 15. / / / € i f (R) is compactly supported, then E[f;u, h] = 0(hr)
uniformly in u € R.

In what follows we will prove convergence in the mean for the trapezoidal rule
for logarithmic-behaved functions. We fix a weight function co € if [—1/2,1/2]. We
denote 0(R) := {<p € 1f°°(R) : supp <p compact}.

LEMMA 16. Let bn(x) := x" Iogx2(p(x) for n>0 and <p € 0 ( R ) such that <p = 1
in a neighbourhood of x = 0. Let £ € [ -1 /2 ,1 /2 ) . Then there exists Ca.n(Z),
independent of<p, such that for all r

f co(t)E[bn; t + $,h]dt = hn+l Q . G )
J-l/2
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PROOF. We follow closely the proof of Lemma 6 in [6]. Denote

fin
yit,h):= / a>(t)E[bH;t + S,h]dt

and notice that y(f, •) e 1f°°(0, oo), since for A > 0, only a finite number of addenda
in the definition of E are non-zero. Moreover,

-£(£,*) = - / 0,(0
l/2 \ .

where r/r(x) :=x"+1<p'(x) log*2 + 2x"<p(x). Since rfr € 0(R), by Proposition 15 and
integration by parts

j=-oo

f
J-o

for all r, uniformly for all / and £. Thus

for all r, uniformly for all f. By the Mean Value Theorem (following exactly the final
part of the proof of Lemma 6 in [6]), it holds that y(£, h) = Ca,nQ;)hn+i + 0(hr),
£-uniformly.

If we consider ^ to be subject to the same conditions as <p, then bn(x) =
x"logx2xlr(x) + f(x), with / € 0(R). By Proposition 15, we get the same ex-
pansion as before, and thus Ca<a(t) does not depend on <p.

LEMMA 17. Ifco is an even Junction, then Ca),n(-l/2) = Ce,,(0) = 0 for all n odd.
Also, ifoi is odd, then Ca)>n(—1/2) = Cffl,n(0) = 0 for n even.

PROOF. In the first case, take <p e 0(R), even and such that <p = 1 in a neighbour-
hood of x = 0. Then by symmetry it follows that

rl/2 -.1/2
/ co(t)E[bn;t,h]dt = 0= a>(t)E[bn;t-1/2, h]dt.

J-l/2 J-l/2-l/2 J-l/2

The result then holds. The other case is similar.
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From Lemma 16 and the classical Euler-Maclaurin formula we can obtain asymp-
totic expansions in the mean for the trapezoidal rule applied to functions of the form
a(x) log*2, with a sufficiently smooth and compactly supported.

PROPOSITION 18. Leta e ifT + 1(R) with compact support, andb(x) := a(x)logx2.
Then

'-1/2 1^0 " !

PROOF. By the Taylor theorem and defining a,, := a(B)(0)/n!, we have that

n=0

Consider then <p € ^(R) such that q> = 1 in an open set containing supp a, so that
b = b<p. Then, by the Euler-Maclaurin formula, E[rT+l<plog -2;u,h] = 0(hT)
w-uniformly. Thus

fl/2 T f

/ <o{t)E[b; r + f.Alrf^Vfl,
J-\n n=Q J-

l/2
co(t)E[bn;

n=Q J-l/

where bn(x) = x" log* V ( * ) as in Lemma 16. Then the result is proven as a simple
consequence of that lemma.

Let us now turn our attention to the periodic case. We define the error functional
for the trapezoidal rule applied to 1-periodic functions to be

depending again 1-periodically on the parameter u.

,1

- f{x)dx,
Jo

PROPOSITION 19. Iff e i f , then Ep[f;u,h] = 0(hr) uniformly for all u.

PROPOSITION 20. Letce VT+\d(x) := c(x) log (sin2(7rx)) and $ e [-1/2,1/2).
Then

/
J-

1/2 T-2 _(ii)/0\
a>(t)Ep[d;t + i, h]dt = T Ll

-1/2 ^=0 « !
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PROOF. Consider first an even smooth cut-off function <p € ^ (R) such that <p = 1
in a neighbourhood of x = 0 and with support included in (—1/2,1/2). Let 0 e if00

be such that <p + <t> == 1 in [—1/2,1/2]. Notice the decomposition

<f(*) = <Hx)d(x) + <p(x)e(x) + c(x)\ogx2<p(x),

with

where 0<i € <ifT+l, whereas <pe € tfr+I(R) has compact support contained in
(—1/2,1/2). By the compactness of the support of <p and the periodicity of d and #,
we have

Ep[d; u, h] = Ep[<f>d; u,h] + E [<pe; u, h] + E[c log • 2<p; u, h].

By Proposition 19, Ep[<t>d;u,h] = &(hT+1) uniformly for all u € R. Likewise
E[<pe; u, h] = &(hT+1) subject to the same conditions by Proposition 15.

Then

/•1/2 rl/2
/ a>(t)Ep[d; t + $,h]dt= / a>(t)E [c log • 2<p\t + £, h] dt -

J-l/2 J-l/2

We are now in the hypotheses of Proposition 18, with a(x) := c(x)<p(x). Notice that
aU)(0) = cU)(0) for all j . The result then follows readily.
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