THE GENERALIZED INVERSE $A_{T, S}^{(2)}$ OF A MATRIX OVER AN ASSOCIATIVE RING

YAOMING YU ${ }^{\text {² }}$ and GUORONG WANG

(Received 6 July 2006; revised 3 January 2007)

Communicated by J. Koliha

Abstract

In this paper we establish the definition of the generalized inverse $A_{T . S}^{(2)}$ which is a $\{2\}$ inverse of a matrix A with prescribed image T and kernel S over an associative ring, and give necessary and sufficient conditions for the existence of the generalized inverse $A_{T . S}^{(1.2)}$ and some explicit expressions for $A_{T . S}^{(1.2)}$ of a matrix A over an associative ring, which reduce to the group inverse or $\{1\}$ inverses. In addition, we show that for an arbitrary matrix A over an associative ring, the Drazin inverse A_{d}, the group inverse A_{g} and the Moore-Penrose inverse A^{+}. if they exist. are all the generalized inverse $A_{T .5}^{(2)}$.

2000 Mathematics subject classification: primary 15A33, 15A09.

1. Introduction

It is a well known that, over the field of complex numbers, the Moore-Penrose inverse, the Drazin inverse, the group inverse and so on, are all the generalized inverse $A_{T . S}^{(2)}$, which is a $\{2\}$ inverse of a matrix A with prescribed range T and null space S (see [2,10]). Y. Wei in [11] gave an explicit expression for the generalized inverse $A_{T, S}^{(2)}$ which reduces to the group inverse.

There are some results on generalized inverses of matrices, such as the Drazin inverse, the group inverse and the Moore-Penrose inverse, over an associative ring (see, for example, [3-8]). These results include necessary and sufficient conditions for the existence of these generalized inverses. In [8], Corollary 1 implies that over an associative ring, a von Neumann regular matrix A has a group inverse if and only if $A^{2} A^{(1)}+I-A A^{(1)}$ is invertible, if and only if $A^{(1)} A^{2}+I-A^{(1)} A$ is invertible. Recently,

[^0]similar results about the Moore-Penrose inverse and the Drazin inverse appeared in [6,7$]$. This is a motivation for our research.

Throughout this paper, R denotes an associative ring with identity 1 and $R^{m \times n}$ denotes the set of $m \times n$ matrices over R. In particular, we write R^{m} for $R^{m \times 1}$ and $M_{n}(R)$ for $R^{n \times n}$, the ring of square $n \times n$ matrices over R. By a module we mean a right R-module. If S is an R-submodule of an R-module M then we write $S \subset M$.

Let $A \in R^{m \times n}$. We denote the image of A (that is $\left\{A x \mid x \in R^{n}\right\}$) by $R(A)$ and the kernel of A. (that is $\left\{x \in R^{n} \mid A x=0\right\}$) by $N(A)$.

An $m \times n$ matrix A over R is said to be von Neumann regular if there exists an $n \times m$ matrix X over R such that
(1) $A X A=A$.

In this case X is called a $\{1\}$ inverse of A and is denoted by $A^{(1)}$.
An $n \times n$ matrix A over R is said to be Drazin invertible if for some positive integer k there exists a matrix X over R such that
(2) $A^{k} X A=A^{k}$,
(3) $X A X=X$,
(4) $A X=X A$.

If X exists then it is unique and is called the Drazin inverse of A and denoted by A_{d}. If k is the smallest positive integer such that X and A satisfy (2), (3) and (4), then it is called the Drazin index and denoted by $k=\operatorname{Ind}(A)$. If $k=1$ then A_{d} is denoted by A_{g} and is called the group inverse of A.

Let $*$ be an involution on the matrices over R. Recall that an $m \times n$ matrix A over R is said to be Moore-Penrose invertible (with respect to $*$) if there exists an $n \times m$ matrix X such that (1) and (3) hold and
(6) $(A X)^{*}=A X$,
(7) $(X A)^{*}=X A$.

If X exists then it is unique and is called the Moore-Penrose inverse of A and denoted by A^{\dagger}. If a matrix X satisfies condition (3) then X is called a \{2\} inverse of A.

In Section 2 we shall establish the definition of the generalized inverse $A_{T . S}^{(2)}$, which is a $\{2\}$ inverse of a matrix A over an associative ring with prescribed image T and kernel S, and show that for an arbitrary matrix A over an associative ring the Drazin inverse A_{d}, the group inverse A_{g} and the Moore-Penrose inverse $A^{\dot{ }}$, if they exist, are all the generalized inverse $A_{T . S}^{(2)}$. In Section 3, we give necessary and sufficient conditions for the existence of the generalized inverse $A_{T, S}^{(1,2)}$. In Section 4 we study some explicit expressions for $A_{T . S}^{(1.2)}$ of a matrix A over an associative ring, which reduce to the group inverse or $\{1\}$ inverses, and some equivalent conditions for the existence of $A_{T, S}^{(1,2)}$.

2. The generalized inverse $\boldsymbol{A}_{\boldsymbol{r}, \mathrm{S}}^{(2)}$

Suppose that $L, M \subset R^{n}$ and $L \oplus M=R^{n}$. Then every $x \in R^{n}$ can be uniquely written as $x=x_{1}+x_{2}$, where $x_{1} \in L, x_{2} \in M$. Thus

$$
P_{L . M} x=x_{1}
$$

defines a homomorphism $P_{L . M}: R^{n} \rightarrow R^{n}$ called the projection of R^{n} on L along M. This homomorphism can be represented by a matrix with respect to the standard basis of R^{n}, since the module R^{n} is free. The symbol $P_{L, M}$ is used to denote the matrix as well.

About $P_{L, M}$, we have the following results, whose proof is analogous to that over the field of complex numbers.

LEMMA 2.1. If $L, M \subset R^{n}$ and $L \oplus M=R^{n}$ then
(i) $P_{L . M} A=A$ if and only if $R(A) \subset L$,
(ii) $A P_{L, M}=A$ if and only if $N(A) \supset M$.

We now characterize the $\{2\}$ inverse of a matrix A over R with prescribed image T and kernel S. The proof of the following theorem is analogous to that of [13, Theorem 1].

THEOREM 2.2. Let A be an $m \times n$ matrix over an associative ring R with identity and $T \subset R^{n}$ and $S \subset R^{m}$. Then the following conditions are equivalent.
(i) There exists some $X \in R^{n \times m}$ such that

$$
\begin{equation*}
X A X=X, \quad R(X)=T, \quad N(X)=S \tag{2.1}
\end{equation*}
$$

(ii) $A T \oplus S=R^{m}$ and $N(A) \cap T=\{0\}$.

If these conditions are satisfied then X is unique.
Proof. (i) \Rightarrow (ii) Since $X A X=X, A X$ is an idempotent homomorphism from R^{m} to R^{m}. So, by [1, Lemma 5.6],

$$
R(A X) \oplus N(A X)=R^{m}
$$

It is easy to see that $R(A X)=A R(X)=A T$ and $N(A X)=N(X)=S$. Hence

$$
A T \oplus S=R^{m}
$$

Next we will show that $N(A) \cap T=\{0\}$. Let $x \in N(A) \cap T$. Then $A x=0$ and there exists a $y \in R^{m}$ such that $x=X y$. So $x=X y=X A X y=X A x=0$. Therefore we have $N(A) \cap T=\{0\}$.
(ii) \Rightarrow (i) Obviously $\left.A\right|_{T}$ is an epimorphism from T to $A T$. Since $N\left(\left.A\right|_{T}\right)=$ $N(A) \cap T=0,\left.A\right|_{T}$ is a monomorphism and so $\left.A\right|_{T}$ has an inverse $\left(\left.A\right|_{T}\right)^{-1}: A T \rightarrow T$. From $A T \oplus S=R^{m}$, we know that any $y \in R^{m}$, can be uniquely written as $y=y_{1}+y_{2}$, where $y_{1} \in A T, y_{2} \in S$. So we define $X: R^{m} \rightarrow R^{n}$ by $X y=\left(\left.A\right|_{T}\right)^{-1} y_{1}$. Obviously X is a homomorphism and satisfies

$$
\begin{cases}x y=\left(\left.A\right|_{T}\right)^{-1} y, & \text { if } y \in A T \tag{2.2}\\ X y=0, & \text { if } y \in S\end{cases}
$$

Because R^{m} and R^{n} are both free modules, there exists a matrix of the homomorphism X with respect to the standard bases of R^{m} and R^{n}, and we write X for the matrix as well. It is easy to see that $R(X)=T$ and $N(X)=S$ by $A T \oplus S=R^{m}$.

For every $y \in R^{m}=A T \oplus S$ we have $y=y_{1}+y_{2}$ where $y_{1} \in A T, y_{2} \in S$. Then

$$
X A X y=X A X y_{1}=X A\left(\left.A\right|_{T}\right)^{-1} y_{1}=X y_{1}=X y .
$$

This implies that $X A X=X$.
Now we prove the uniqueness. Suppose that X_{1} and X_{2} both satisfy (2.1). Then $X_{1} A$ and $A X_{2}$ are idempotent matrices of order m and n respectively, and

$$
\begin{aligned}
& X_{1} A=P_{R\left(X_{1} A\right), N\left(X_{1} A\right)}=P_{R\left(X_{1}\right), N\left(X_{1} A\right)}=P_{T, N\left(X_{1} A\right)}, \\
& A X_{2}=P_{R\left(A X_{2}\right), N\left(A X_{2}\right)}=P_{R\left(A X_{2}\right), N\left(X_{2}\right)}=P_{R\left(A X_{2}\right), S} .
\end{aligned}
$$

By Lemma 2.1, we deduce that

$$
X_{2}=P_{T . N\left(X_{1} A\right)} X_{2}=\left(X_{1} A\right) X_{2}=X_{1}\left(A X_{2}\right)=X_{1} P_{R\left(A X_{2}\right) . S}=X_{1}
$$

A matrix $X \in R^{n \times m}$ is called the generalized inverse which is a $\{2\}$ inverse of a matrix A over R with prescribed image T and kernel S if it satisfies the equivalent conditions in Theorem 2.2, and is denoted by $A_{T, S}^{(2)}$.

By (2.2), we have that

$$
\begin{equation*}
A_{T . S}^{(2)}=\left(\left.A\right|_{T}\right)^{-1} P_{A T . S} \tag{2.3}
\end{equation*}
$$

From the proof of uniqueness in the theorem above and Lemma 2.1, we have the following corollary.

Corollary 2.3. Let A and G be matrices over an associative ring R. If the generalized inverse $A_{T, S}^{(2)}$ exists, then
(i) $A_{T . S}^{(2)} A G=G$ if and only if $R(G) \subset T$;
(ii) $G A A_{T, S}^{(2)}=G$ if and only if $N(G) \supset S$.

About the generalized inverse, we also have the following property.

THEOREM 2.4. Let A be a matrix over R. If $A_{T, S}^{(2)}$ exists and there exists a matrix G over R satisfying $R(G)=T$ and $N(G)=S$ then there exists a matrix W over R such that

$$
\begin{equation*}
G A G W=G \tag{2.4}
\end{equation*}
$$

$$
\begin{equation*}
A_{T, S}^{(2)} A G W=A_{T, S}^{(2)} \tag{2.5}
\end{equation*}
$$

Proof. Suppose $A_{T . S}^{(2)}$ exists with $R(G)=T$ and $N(G)=S$ for a matrix G. Then $A R(G) \oplus N(G)=R^{m}$ and so there exists an epimorphism $R^{m} \rightarrow N(G) \rightarrow 0$. By [1, Theorem 8.1], $N(G)$ has a finite spanning set whose elements constitute a matrix, denoted by L. Thus $G L=0$, and the columns of $(A G, L)$ generate R^{m}, that is, there exists a matrix $\left(W^{T}, W_{1}^{T}\right)^{T}$ such that

$$
A G W+L W_{1}=I_{m}
$$

If we multiply the left hand side by G and $A_{T . S}^{(2)}$ respectively, then we obtain (2.4) and (2.5).

The following theorem shows that for an arbitrary matrix A over an associative ring, A^{\dagger}, A_{d} and A_{g}, if they exist, are all the generalized inverse $A_{T . S}^{(2)}$.

THEOREM 2.5. (i) Let A be an $m \times n$ matrix over R and let $*$ be an involution on the matrices over R. If A^{\dagger} exists, then $A^{\star}=A_{R\left(A^{*}\right), N\left(A^{*}\right)}^{(2)}$.
(ii) Let A be an $n \times n$ matrix over R, and $k=\operatorname{Ind}(A)$. If A_{d} exists, then $A_{d}=A_{R\left(A^{k}\right), N\left(A^{k}\right)}^{(2)}$.
(iii) Let A be an $n \times n$ matrix over R. If A_{g} exists, then $A_{g}=A_{R(A), N(A)}^{(2)}$.

Proof. (i) Since $A^{\dagger} \in A\{1,2\}$ and $A^{* *} \in A^{*}\{1,2\}$, we easily see that

$$
\begin{aligned}
& R\left(A^{\dagger}\right)=R\left(A^{\dagger} A\right)=R\left(\left(A^{\dagger} A\right)^{*}\right)=R\left(A^{*} A^{\dagger *}\right)=R\left(A^{*}\right) \\
& N\left(A^{\dagger}\right)=N\left(A A^{\dagger}\right)=N\left(\left(A A^{\dagger}\right)^{*}\right)=N\left(A^{\dagger *} A^{*}\right)=N\left(A^{*}\right),
\end{aligned}
$$

and $N(A)=N\left(A^{\dagger} A\right)$.
Since $A A^{\dot{ }}$ and $A^{\ddagger} A$ are idempotent, we have

$$
R^{m}=R\left(A A^{\dagger}\right) \oplus N\left(A A^{\dagger}\right)=A R\left(A^{\dagger}\right) \oplus N\left(A A^{+}\right)=A R\left(A^{*}\right) \oplus N\left(A^{*}\right)
$$

and

$$
N(A) \cap R\left(A^{*}\right)=N\left(A^{\star} A\right) \cap R\left(A^{\star} A\right)=\{0\}
$$

by [1, Lemma 5.6]. So, by Theorem 2.2, $A_{R\left(A^{*}\right), N\left(A^{*}\right)}^{(2)}$ exists and $A^{\dagger}=A_{R\left(A^{*}\right), N\left(A^{*}\right)}^{(2)}$
(ii) Firstly, we shall show that

$$
R\left(A_{d}\right)=R\left(A A_{d}\right)=R\left(A^{l}\right) \quad \text { and } \quad N\left(A_{d}\right)=N\left(A A_{d}\right)=N\left(A^{l}\right)
$$

for any positive integer $l \geq k$. Since

$$
R\left(A_{d}\right)=R\left(A A_{d}^{2}\right) \subset R\left(A A_{d}\right)=R\left(A_{d} A\right) \subset R\left(A_{d}\right)
$$

we have $R\left(A_{d}\right)=R\left(A A_{d}\right)$ and so

$$
R\left(A A_{d}\right)=A R\left(A_{d}\right)=A R\left(A A_{d}\right)=A^{2} R\left(A_{d}\right)
$$

It is easy to obtain inductively that $R\left(A A_{d}\right)=A^{h} R\left(A_{d}\right)$ for any positive integer h. This gives us that $R\left(A_{d}\right)=R\left(A A_{d}\right)=R\left(A^{\prime}\right)$ for any positive integer $l \geq k$. Also, since for any positive integer $l \geq k$,

$$
N\left(A_{d}\right) \subset N\left(A^{\prime+1} A_{d}\right)=N\left(A^{\prime}\right) \subset N\left(A_{d}^{\prime} A^{l}\right)=N\left(A_{d} A\right) \subset N\left(A_{d}^{2} A\right)=N\left(A_{d}\right)
$$

we get that $N\left(A_{d}\right)=N\left(A A_{d}\right)=N\left(A^{\prime}\right)$.
Since $A A_{d}$ is idempotent, by [1, Lemma 5.6], we have

$$
R^{n}=R\left(A A_{d}\right) \oplus N\left(A A_{d}\right)=A R\left(A^{k}\right) \oplus N\left(A^{k}\right)=R^{n}
$$

Since

$$
N(A) \cap R\left(A^{k}\right) \subset N\left(A^{k}\right) \cap R\left(A^{k+1}\right)=\{0\}
$$

$A_{R\left(A^{k}\right), N\left(A^{k}\right)}^{(2)}$ exists and $A_{R\left(A^{k}\right), N\left(A^{k}\right)}=A_{d}$ by Theorem 2.2.
(iii) Take $k=1$ in (ii).

3. The generalized inverse $A_{T, S}^{(1,2)}$

If the generalized inverse $A_{T, S}^{(2)}$ satisfies $A A_{T, S}^{(2)} A=A$ then it is called the generalized inverse which is a $\{1,2\}$ inverse of a matrix A over R with prescribed image T and kernel S, and is denoted by $A_{T . S}^{(1,2)}$. (Its uniqueness is guaranteed by the following theorem.)

THEOREM 3.1. Let A be an $m \times n$ matrix over an associative ring R with identity and $T \subset R^{n}$ and $S \subset R^{m}$. Then the following conditions are equivalent.
(i) $A T \oplus S=R^{m}, R(A) \cap S=\{0\}$ and $N(A) \cap T=\{0\}$.
(ii) $R(A) \oplus S=R^{m}, N(A) \oplus T=R^{n}$.
(iii) There exists some $X \in R^{n \times m}$ such that

$$
A X A=A, \quad X A X=X, \quad R(X)=T, \quad N(X)=S
$$

If these conditions are satisfied then X is unique.

Proof. (ii) \Longrightarrow (i) It is obvious that $R(A) \cap S=\{0\}$ and $N(A) \cap T=\{0\}$. To obtain $A T \oplus S=R^{m}$, it suffices to prove $A T=R(A)$.

Obviously, $A T \subset R(A)$. For any $x \in R(A)$, we have $x=A y$, where $y \in R^{n}$. Since $N(A) \oplus T=R^{n}$, we can write $y=y_{1}+y_{2}$, where $y_{1} \in N(A), y_{2} \in T$. Thus,

$$
x=A y=A y_{1}+A y_{2}=A y_{2} \in A T
$$

and therefore $R(A) \subset A T$. Consequently, $A T=R(A)$.
(i) \Longrightarrow (iii) By Theorem 2.2, from $A T \oplus S=R^{m}$ and $N(A) \cap T=\{0\}$, we know that $X=A_{T, S}^{(2)}$ exists and that $R(X)=T$ and $N(X)=S$. We shall show $A X A=A$.

Since $X A X=X$, we have $X A X A=X A$ and then $X(A X A-A)=0$. So

$$
R(A X A-A) \subset R(A) \cap N(X)=R(A) \cap S=\{0\}
$$

Hence $A X A=A$.
(iii) \Longrightarrow (ii) From (iii), we have $(A X)^{2}=A X,(X A)^{2}=X A$, and

$$
\begin{array}{rlrlll}
N(X) \subset & N(A X) & \subset & & N(X A X) & =N(X), \\
N(X A) \subset & N(A X A) & = & N(A) & \subset N(X A), \\
R(X A) \subset & R(X) & = & R(X A X) & \subset R(X A), \\
R(A X) \subset & R(A) & = & R(A X A) & \subset R(A X)
\end{array}
$$

So

$$
\begin{array}{ll}
N(A X)=N(X)=S, & N(X A)=N(A) \\
R(X A)=R(X)=T, & R(A X)=R(A)
\end{array}
$$

By [1, Lemma 5.6] and the four equations above, we reach (ii).
By Theorem 2.2, X is unique.
The next result is concerning the equivalent conditions in Theorem 3.1.
THEOREM 3.2. Let A be an $m \times n$ matrix over an associative ring R with identity and $T \subset R^{n}$ and $S \subset R^{m}$.
(i) If $N(A)+T=R^{n}$ then $A T=R(A)$.
(ii) If $A T \oplus S=R^{m}$ then

$$
A T=R(A) \quad \text { if and only if } \quad R(A) \cap S=\{0\}
$$

Proof. (i) From the proof of the theorem above (ii) implies (i).
(ii) Suppose that $R(A) \cap S=\{0\}$. Obviously, $A T \subset R(A)$. Now we will show the inclusion in reverse. For any $x \in R(A)$,

$$
x=x_{1}+x_{2} \in R^{m}=A T \oplus S
$$

where $x_{1} \in A T, x_{2} \in S$. By $A T \subset R(A), x_{1} \in R(A)$. So

$$
x_{2}=x-x_{1} \in R(A) \cap S=\{0\} .
$$

Therefore, $x_{2}=0$ and then $x=x_{1} \in A T$. Hence $R(A) \subset A T$.
Conversely, suppose that $A T=R(A)$. Since $A T \oplus S=R^{m}$ and $A T=R(A)$, we have $R(A) \cap S=A T \cap S=\{0\}$.

We denote the maximal order of a nonvanishing minor of A over a commutative ring R by $\rho(A)$. This is called the determinantal rank of A. Obviously $\rho(A B) \leq$ $\min \{\rho(A), \rho(B)\}$ (see [9, Theorem 2.3]). When R is the complex number field, $\rho(A)=\operatorname{rank}(A)$.

Theorem 3.3. Let A be an $m \times n$ matrix over an integral domain R and $T \subset R^{n}$ and $S \subset R^{m}$ be free submodules. If $A T \oplus S=R^{m}$ then the following conditions are equivalent.
(i) $N(A) \cap T=\{0\}$ and $R(A) \cap S=\{0\}$,
(ii) $\operatorname{dim}(T)=\rho(A)$ and $\operatorname{dim}(S)=m-\operatorname{dim}(T)$.

Proof. Suppose that (i) holds and let the columns of U be a basis of T. From the proof of [13, Theorem 2], we have $\operatorname{dim}(T)=\operatorname{dim}(A T)=\rho(A U) \leq \rho(A)$ and $\operatorname{dim}(S)=m-\operatorname{dim}(T)$. By Theorem 3.2, $A T=R(A)$. Thus there exists a matrix X over R such that $A=A U X$. Thus $\rho(A) \leq \rho(A U)=\operatorname{dim}(A T)$. Therefore $\rho(A)=\operatorname{dim} A T=\operatorname{dim}(T)$.

Conversely, suppose that (ii) holds. We have that $\operatorname{dim}(T)=\operatorname{dim}(A T)$ from the proof of [13, Theorem 2]. Thus $\rho(A)=\operatorname{dim}(T)=\operatorname{dim}(A T)$. By [12, Lemma 1], the maximal number of linearly independent columns of A is $\operatorname{dim}(A T)$. Since $A T \subset R(A), R(A)+S=R^{m}$. Over the quotient field F of $R, A T=R(A)$ because $\rho(A)=\operatorname{dim}(A T)$, and $R(A) \oplus S=R^{m}$. Therefore x and y are linear independent over F for any $x \in R(A), y \in S$.

On the other hand, over an integral domain R, suppose that $0 \neq z \in R(A) \cap S$. Then there exist $r_{i} \in R, i=1, \ldots, s$, such that

$$
\begin{equation*}
z=\sum_{i=1}^{s} \beta_{i} r_{i}, \tag{3.1}
\end{equation*}
$$

where $\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{s}\right\}$ is a basis of S and $s=\operatorname{dim}(S)$. But Equation (3.1) is true over F. This is in contradiction to the above reasoning. Hence $R(A) \cap S=\{0\}$.

The remainder of the proof is obtained from [13, Theorem 2].
Remark 1. A module over the field of complex numbers is a vector space. So when R is the field of complex numbers, the above theorem ensures that Theorem 3.1 extends [2, Corollary 2.10].

4. Explicit expressions for $A_{T, S}^{(1,2)}$

We now consider some explicit expressions for $A_{T, S}^{(1.2)}$, which reduce to the group inverse or $\{1\}$ inverses. Firstly we shall prove the following lemma. In the proof, we use the following fact.

PROPOSITION 4.1. If e is idempotent in a ring R with identity l and $x, y \in e R e$ then $x y=e$ if and only if $(x+1-e)(y+1-e)=1$.

Lemma 4.2. Let A be an $m \times n$ von Neumann regular matrix over R and G an $n \times m$ matrix over R. Then $U=A G A A^{(1)}+I_{m}-A A^{(1)}$ is invertible if and only if $V=A^{(1)} A G A+I_{n}-A^{(1)} A$ is invertible.

Proof. If U is invertible then there exists an X such that $U X=X U=I_{m}$. That is,

$$
\left(A G A A^{(1)}+I_{m}-A A^{(1)}\right) X=I_{m} \quad \text { and } \quad X\left(A G A A^{(1)}+I_{m}-A A^{(1)}\right)=I_{m}
$$

Multiplying on the left by $A^{(1)} A A^{(1)}$ and the right by A and, since $A=A A^{(1)} A$, we have

$$
\left(A^{(1)} A G A\right)\left(A^{(1)} A A^{(1)} X A\right)=A^{(1)} A \quad \text { and } \quad\left(A^{(1)} A A^{(1)} X A\right)\left(A^{(1)} A G A\right)=A^{(1)} A
$$

Since $A^{(1)} A G A=A^{(1)} A(G A) A^{(1)} A$ and $A^{(1)} A A^{(1)} X A=A^{(1)} A\left(A^{(1)} X A\right) A^{(1)} A$, we know that $A^{(1)} A G A$ has the inverse matrix $A^{(1)} A A^{(1)} X A$ in $A^{(1)} A M_{n}(R) A^{(1)} A$. Thus $V=A^{(1)} A G A+I_{n}-A^{(1)} A$ has the inverse matrix

$$
A^{(1)} A\left(A^{(1)} A A^{(1)} X A\right) A^{(1)} A+I_{n}-A^{(1)} A \quad \text { in } M_{n}(R)
$$

The proof of the converse is analogous.
Next we shall show the main result of this section. The following theorem not only shows some explicit expressions for $A_{T . S}^{(1,2)}$ which reduce to the group inverse or $\{1\}$ inverses, but also gives some equivalent conditions for the existence of $A_{T . S}^{(1.2)}$.

THEOREM 4.3. Let A be an $m \times n$ matrix over R and G an $n \times m$ matrix over R. Then the following conditions are equivalent.
(i) A is von Neumann regular, $U=A G A A^{(1)}+I_{m}-A A^{(1)}$ is invertible and $N(A) \cap R(G)=\{0\}$.
(ii) A is von Neumann regular, $V=A^{(1)} A G A+I_{n}-A^{(1)} A$ is invertible and $N(A) \cap R(G)=\{0\}$.
(iii) $A_{R(G), N(G)}^{(1.2)}$ exists.

When these conditions are satisfied we have

$$
\begin{align*}
A_{R(G), N(G)}^{(1.2)} & =G(A G)_{g}=(G A)_{g} G \tag{4.1}\\
& =G(G A G)^{(1)} G \tag{4.2}\\
& =G(A G)^{(1)} A(G A)^{(1)} G \tag{4.3}\\
& =G U^{-2} A G=G U^{-1} A V^{-1} G=G A V^{-2} G \tag{4.4}
\end{align*}
$$

Proof. (i) and (ii) are equivalent by Lemma 4.2.
To show that (ii) implies (iii), set $B=A V^{-2} G$. Using $U A=A G A=A V$, we have $B=(A G)_{g}$ because

$$
\begin{aligned}
B(A G) & =A V^{-2} G A G=U^{-2} A G A G=U^{-1} A G=A V^{-1} G=A G A V^{-2} G \\
& =(A G) B \\
B(A G) B & =U^{-1} A G\left(A V^{-2} G\right)=A V^{-2} G=B \\
(A G) B(A G) & =(A G) A V^{-1} G=A G
\end{aligned}
$$

Analogously, we deduce that $(G A)_{g}$ exists and $(G A)_{g}=G U^{-2} A$. Let $X=G(A G)_{g}$. It is obvious that

$$
\begin{equation*}
X A X=X \tag{4.5}
\end{equation*}
$$

Since

$$
A G=(A G)^{2}(A G)_{g}=A G A X
$$

we have $A(G-G A X)=0$ and then

$$
R(G-G A X)=R(G(I-A X)) \subset N(A) \cap R(G)=\{0\}
$$

Therefore

$$
\begin{align*}
G & =G A X \tag{4.6}\\
& =G A\left(G(A G)_{g}\right)=G(A G)_{g} A G \\
& =X A G \tag{4.7}
\end{align*}
$$

Using (4.6) and (4.7), we have

$$
\begin{equation*}
R(X)=R(G) \quad \text { and } \quad N(X)=N(G) \tag{4.8}
\end{equation*}
$$

Since $A V=A G A$, we get

$$
A=A G A V^{-1}=A G(A G)_{g} A G A V^{-1}=A X A
$$

Using the equation above, together with (4.5) and (4.8), we deduce that $A_{R(G), N(G)}^{(1,2)}$ exists and $A_{R(G), N(G)}^{(1,2)}=X=G(A G)_{g}$ by Theorem 3.1.

To show that (iii) implies (i), we use Theorem 2.4 to obtain

$$
\begin{align*}
\left(A G A A^{(1)}\right)\left(A G W^{2} A A^{(1)}\right) & =A G A G W^{2} A A^{(1)}=A G W A A^{(1)} \\
& =A A_{R(G), N(G)}^{(1.2)} A G W A A^{(1)}=A A_{R(G), N(G)}^{(1,2)} A A^{(1)} \\
& =A A^{(1)} \tag{4.9}
\end{align*}
$$

Therefore,

$$
\left(A G A A^{(1)}\right)\left(A G W^{2} A A^{(1)}\right)\left(A G A A^{(1)}\right)=A A^{(1)}\left(A G A A^{(1)}\right)=A G A A^{(1)}
$$

and then

$$
A G\left(\left(A G W^{2} A A^{(1)}\right)\left(A G A A^{(1)}\right)-A A^{(1)}\right)=0
$$

By Theorem 3.1, $R(A) \cap N(G)=\{0\}$ and $N(A) \cap R(G)=\{0\}$ and so

$$
R\left(G\left(\left(A G W^{2} A A^{(1)}\right)\left(A G A A^{(1)}\right)-A A^{(1)}\right)\right) \subset R(G) \cap N(A)=\{0\}
$$

Thus

$$
G\left(\left(A G W^{2} A A^{(1)}\right)\left(A G A A^{(1)}\right)-A A^{(1)}\right)=0
$$

From this, we have

$$
R\left(\left(A G W^{2} A A^{(1)}\right)\left(A G A A^{(1)}\right)-A A^{(1)}\right) \subset R(A) \cap N(G)=\{0\}
$$

and then

$$
\begin{equation*}
\left(A G W^{2} A A^{(1)}\right)\left(A G A A^{(1)}\right)=A A^{(1)} \tag{4.10}
\end{equation*}
$$

By (4.9) and (4.10), $A G A A^{(1)}$ is invertible in $A A^{(1)} M_{m}(R) A A^{(1)}$ and so is U in $M_{m}(R)$. Also, obviously, A is von Neumann regular.

Now we shall prove that $(4.1) \sim(4.3)$. Since

$$
G(A G)_{g}=G\left(A V^{-2} G\right)=G U^{-1} A V^{-1} G=\left(G U^{-2} A\right) G=(G A)_{g} G
$$

we have $A_{R(G) . N(G)}^{(1.2)}=(G A)_{g} G$ and (4.4).
Next we will prove (4.2). Since

$$
G A G=G A G\left((A G)_{g}\right)^{2} A G A G
$$

$G A G$ is von Neumann regular and then

$$
\begin{aligned}
A G & =U^{-1} U A G=U^{-1} A G A G=\left(U^{-1} A\right) G A G(G A G)^{(1)} G A G \\
& =A G(G A G)^{(1)} G A G
\end{aligned}
$$

Therefore

$$
A\left(G-G(G A G)^{(1)} G A G\right)=0
$$

Thus

$$
R\left(G-G(G A G)^{(1)} G A G\right) \subset N(A) \cap R(G)=\{0\}
$$

So we obtain

$$
\begin{equation*}
G=G(G A G)^{(1)} G A G \tag{4.11}
\end{equation*}
$$

Since $A_{R(G), N(G)}^{(1,2)}$ exists, using (2.4) and (4.11), it follows that

$$
\begin{align*}
G & =G A G W=G A G(G A G)^{(1)} G A G W \\
& =G A G(G A G)^{(1)} G \tag{4.12}
\end{align*}
$$

Let $Z=G(G A G)^{(1)} G$. Using (4.11) and (4.12), it easily follows that $Z A Z=Z$, $A Z A=A, R(Z)=R(G)$ and $N(Z)=N(G)$. By Theorem 3.1 we have that $A_{R(G), N(G)}^{(1,2)}=Z=G(G A G)^{(1)} G$.

Finally, we will verify (4.3). It is obvious that $A G$ and $G A$ are von Neumann regular. By Proposition 4.1 and the invertibility of V there exists a matrix $P \in$ $A^{(1)} A M_{n}(R) A^{(1)} A$ such that $P\left(A^{(1)} A G A\right)=A^{(1)} A$. Thus

$$
\begin{equation*}
A=A\left(P A^{(1)} A G A\right)=A P A^{(1)} A\left(G A(G A)^{(1)} G A\right)=A(G A)^{(1)} G A \tag{4.13}
\end{equation*}
$$

Using (4.13), we deduce that $(A G)^{(1)} A(G A)^{(1)}$ is a $\{1\}$ inverse of $G A G$. Therefore, using (4.2), we obtain (4.3).

REMARK 2. By (4.4), we can compute $A_{R(G) . N(G)}^{(1.2)}$ using U or V.
REMARK 3. If $G=A$ where A is such that $V=A^{(1)} A^{2}+I_{n}-A^{(1)} A$ is invertible, then $N(A) \cap R(A)=\{0\}$. Indeed, let $x \in N(A) \cap R(A)$. Then there exists a $y \in R^{n}$ such that $x=A y$ and so $A^{2} y=0$. Since V is invertible, there exists a matrix P such that $P V=I_{n}$. Thus $P A^{(1)} A^{3}=A^{(1)} A$ and then

$$
0=P A^{(1)} A^{3} y=A^{(1)} A y
$$

Hence $A y=A A^{(1)} A y=0$. Consequently, $x=A y=0$.
Similarly, if we take $G=A^{*}$, where $*$ is an involution on the matrices over R such that $U=A A^{*} A A^{(1)}+I_{m}-A A^{(1)}$ is invertible, then $N(A) \cap R\left(A^{*}\right)=\{0\}$. Indeed, let $x \in N(A) \cap R\left(A^{*}\right)$. Then there exists a $y \in R^{m}$ such that $x=A^{*} y$ and so $A A^{*} y=0$. Since U is invertible, there exists a matrix Q such that $A A^{*} A A^{(1)} Q=A A^{(1)}$ and thus

$$
0=Q^{*}\left(A^{(1)}\right)^{*} A^{*} A A^{*} y=\left(A^{(1)}\right)^{*} A^{*} y
$$

So $x=A^{*} y=A^{*}\left(A^{(\mathrm{l})}\right)^{*} A^{*} y=0$.

When G takes the value A (respectively A^{*}) in the theorem above, we find that $A_{R(G), N(G)}^{(1,2)}$ is $\dot{A_{g}}$ (respectively A^{\dagger}).

THEOREM 4.4. Let A be an $m \times n$ matrix over R. Then
(i) $A_{R(A), N(A)}^{(1.2)}$ exists if and only if A_{g} exists. Moreover, $A_{R(A), N(A)}^{(1.2)}=A_{g}$.
(ii) If $*$ is an involution on the matrices over R then $A_{R\left(A^{*}\right), N\left(A^{*}\right)}^{(1.2)}$ exists if and only if A^{\ddagger} exists. Moreover, $A_{R\left(A^{*}\right), N\left(A^{*}\right)}^{(1,2)}=A^{\dagger}$.

Proof. To show the existence of $A_{R(A), N(A)}^{(1,2)}$ implies existence of A_{g} in (i), take $G=$ A in (4.1). Then $A_{R(A), N(A)}^{(1,2)}=A\left(A^{2}\right)_{g}=\left(A^{2}\right)_{g} A$ and then $A A_{R(A), N(A)}^{(1,2)}=A_{R(A), N(A)}^{(1,2)} A$. Hence $A_{R\left(A^{*}\right), N\left(A^{*}\right)}^{(1.2)}$ is the group inverse of A.

To show that existence of $A_{R\left(A^{*}\right) N\left(A^{*}\right)}^{(1,2)}$ implies existence of $A^{\dot{ }}$ in (ii), take $G=A^{*}$ in (4.1). Then $A_{R\left(A^{*}\right), N\left(A^{*}\right)}^{(1,2)}=A^{*}\left(A A^{*}\right)_{g}=\left(A^{*} A\right)_{g} A^{*}$ and then

$$
\left(A A_{R\left(A^{*}\right), N\left(A^{*}\right)}^{(1,2)}\right)^{*}=A A_{R\left(A^{*}\right), N\left(A^{*}\right)}^{(1.2)} \quad \text { and } \quad\left(A_{R\left(A^{*}\right), N\left(A^{*}\right)}^{(1.2)} A\right)^{*}=A_{R\left(A^{*}\right), N\left(A^{*}\right)}^{(1.2)} A
$$

Hence $A_{R\left(A^{*}\right), N\left(A^{*}\right)}^{(1.2)}$ is the Moore-Penrose inverse of A.
The converses follow from Theorem 2.5.
By Theorems 4.3 and 4.4 and Remark 3, we can obtain the following two corollaries, in which the first is equivalent to [8, Corollary 2] and the second is almost the same as [6, Theorem 1]:

COROLLARY 4.5. Let $A \in R^{n \times n}$. The following conditions are equivalent.
(i) A is von Neumann regular and $U=A^{3} A^{(1)}+I_{n}-A A^{(1)}$ is invertible.
(ii) A is von Neumann regular and $V=A^{(1)} A^{3}+I_{n}-A^{(1)} A$ is invertible.
(iii) A_{g} exists.

Moreover,

$$
\begin{align*}
A_{g} & =A\left(A^{2}\right)_{g}=\left(A^{2}\right)_{g} A \tag{4.14}\\
& =A\left(A^{3}\right)^{(1)} A \tag{4.15}\\
& =A\left(A^{2}\right)^{(1)} A\left(A^{2}\right)^{(1)} A \tag{4.16}\\
& =A U^{-2} A^{2}=A U^{-1} A V^{-1} A=A^{2} V^{-2} A \tag{4.17}
\end{align*}
$$

REMARK 4. The above corollary is unlike [8, Corollary 2], but they are equivalent. This is because V is invertible if and only if $T=A^{(1)} A^{2}+I_{n}-A^{(1)} A$ is invertible. Indeed, if V is invertible, then there exists a matrix $P \in M_{n}(R)$ such that $P V=$ $V P=I_{n}$. From this and $V=T^{2}$, we get $(P T) T=T(T P)=I_{n}$. Hence T is invertible in $M_{n}(R)$. The converse is obvious from $V=T^{2}$.

COROLLARY 4.6. Let A be an $m \times n$ matrix over R and let $*$ be an involution on the matrices over R. The following conditions are equivalent.
(i) A is von Neumann regular and $U=A A^{*} A A^{(1)}+I_{n}-A A^{(1)}$ is invertible.
(ii) A is von Neumann regular and $V=A^{(1)} A A^{*} A+I_{n}-A^{(1)} A$ is invertible.
(iii) A^{\dagger} exists.

Moreover,

$$
\begin{aligned}
A^{*} & =A^{*}\left(A A^{*}\right)_{g}=\left(A^{*} A\right)_{g} A^{*}=A^{*}\left(A^{*} A A^{*}\right)^{(1)} A^{*}=A^{*}\left(A A^{*}\right)^{(1)} A\left(A^{*} A\right)^{(1)} A^{*} \\
& =A^{*} U^{-2} A A^{*}=A^{*} U^{-1} A V^{-1} A^{*}=A^{*} A V^{-2} A^{*}
\end{aligned}
$$

Acknowledgements

We would like to thank the referee for valuable suggestions.

References

[1] F. W. Anderson and K. R. Full, Rings and Categories of Modules (Springer-Verlag, New York Heidelberg Berlin, 1973).
[2] A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theony and Applications. 2nd edition (Springer Verlag, New York, 2003).
[3] M. P. Drazin, 'Pseudo-inverses in associative rings and semigroups', Amer. Math. Monthly 65 (1958), 506-514.
[4] M. C. Gouveia and R. Puystjens. 'About the group inverse and Moore-Penrose inverse of a product'. Linear Algebra Appl. 150 (1991), 361-369.
[5] M. Z. Nashed (ed.), Generalized Inverses and Applications (Academic Press, New York. 1976).
[6] P. Patrício, 'The Moore-Penrose inverse of von Neumann regular matrices over a ring', Linear Algebra Appl. 332-334 (2001), 469-483.
[7] R. Puystjens and M. C.Gouveia. 'Drazin invertiblity for matrices over an arbitrary ring', Linear Algebra Appl. 385 (2004), 105-116.
[8] R. Puystjens and R. E. Hartwig, 'The group inverse of a companion matrix', Linear Multilinear Algebra 43 (1997), 137-150.
[9] K. P. S. Bhaskara Rao, The Theory of Generalized Inverses over Commutative Rings, volume 17 of Algebra, logic and Applications Series (Taylor and Francis. London and New York. 2002).
[10] G. Wang, Y. Wei and S. Qiao, Generalized Inverses: Theory and Computations (Science Press, Beijing/New York, 2004).
[11] Y. Wei, 'A characterization and representation of the generalized inverse $A_{T . S}^{(2)}$ and its applications', Linear Algebra Appl. 280 (1998), 87-96.
[12] Y. Yu and G. Wang, 'The existence of Drazin inverses over integral domains', J. Shanghai Normal University(NS) 32 (2003), 12-15.
[13] -, 'The generalized inverse $A_{T . S}^{(2)}$ over commutative rings', Linear Multilinear Algebra 53 (2005), 293-302.

College of Education
Shanghai Normal University
Shanghai 200234
People's Republic of China
e-mail: yuyaoming@online.sh.cn

College of Mathematics Science Shanghai Normal University

Shanghai 200234
People's Republic of China
e-mail: grwang@shnu.edu.cn

[^0]: Supported by Science Foundation of Shanghai Municipal Education Commission (CW0519).
 (c) 2007 Australian Mathematical Society 1446-7887/07 \$A2.00 +0.00

