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Congruences on distributive
pseudocomplemented lattices

William H. Cornish

et BL,CB, €CB., <€ ...&CB ... CB be all the non~trivial
0 1 2 n w

varieties of distributive pseudocomplemented lattices

(L; v, A, *, 0, 1) considered as algebras of type

(2, 2, 1, 0, 0) . A subset J of such an algebra L is a
congruence-kernel if and only if it is a lattice-ideal and

x** € J for each x € J . The smallest congruence having J
as its kernel is ©O(J) , where a = b (O(J)) , la, b €L) if
and only if a A e* =b A ¢* for some c¢ € J . For given
0=n=<=w, let Zn(J) be the smallest congruence having J as

its kernel and such that the associated quotient algebra is in

Bn . Of course, Zw(J) O(J) and the main result of this

paper shows that for 1 =n<w,

r()=ne(@, nP,n...nPJ):JCP

2 n *? Pn <L

l’ P2’
are minimal prime ideals}
It is also shown that Zw(J) is the smallest congruence on the

lattice (L; v, A, 0, 1) having J as its kernel for each

congruence kernel J if and only if L € Bl . On the other
hand, for any congruence kernel J , ZO(J) is always the

largest congruence on the lattice (L; v, A, 0, 1) having J

as its kernel and so ZO(J) is the unique congruence with J

as its kernel and such that quotient algebra is boolean.
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1. Congruence-kernels

A congruence O on a distributive pseudocomplemented lattice
(Ly v, A, *, 0, 1) is a congruence of the lattice (L; v, A, 0, 1) which
also has the substitution property for the *-operation. At times it will
be convenient to refer to such a congruence as a *-congruence. For such a
congruence O , ker(0) = {x € L: = =0{(0)} and
coker(0) = {x € L : =z = 1(0)} are called, respectively, the kernel and
cokernel of © . A subset J of L 1is called a congruence-kernel
(respectively econgruence-cokernel) if J = ker(®) (respectively

J = coker(®) ) for some *-congruence © on L .

The purpose of this section is to characterize the congruence-kernels
of a given algebra (L; Vv, A, *, 0, 1) and also to describe the smallest
and largest congruences on L which have a given congruence-kernel as
their common kernel. The necessary prerequisite information on the variety
of all distributive pseudocomplemented lattices can be obtained from
Chapter 3 of Gratzer's recent book [4]. We begin with some preliminary
results on distributive lattices which will be useful both in this section

and in the later sections.

Let J be an ideal in a distributive lattice L . Then a prime ideal
P in L 1is called a minimal prime ideal belonging to J if P is a
minimal member of the set of all prime ideals in L which contain J . If
L has a smallest member, O , then a minimal prime ideal of L is simply
a minimal prime ideal belonging to the zero-ideal (0] . The following

lemma summarizes some useful information which appears in the literature.

LEMMA 1.1. The following results hold in a distributive lattice L .
(i) A prime ideal P containing an ideal J is a minimal prime
ideal belonging to J <if and only if, for each x € P , there
exists y € L\P such that x ANy €J .

(11) Suppose that O € L. and that @ is a prime ideal in L .
Then, 0(Q) ={x €L :x Ay =0 forsome y €L\Q} 1is the
intersection of all the minimal prime ideals of L[ which are

contained in Q .

(iiZ) If L 1is pseudocomplemented then a prime ideal P 1is a
minimal prime ideal if and only if x** € P for each zx € P ;
and the set of all minimal prime ideals of L endowed with the
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hull-kernel topology, is a compact Hausdorff space.
Proof. (7} follows from [7, Lemma 3.1] and the distributivity of L .
(i1) is established in [/, Proposition 2.2].

The first part of (iii) follows from (%), see also [4, Lemma 5,
p. 1691, while the second part is a consequence of [9, Proposition 3.2]. O

If J is an ideal in a distributive lattice I then eLat(J) and

R(J) will be used to respectively denote the smallest congruence and the
largest congruence on L possessing J as a congruence class. It is

well-known that z 2y (OLat(J)) , (x,y €L) , if and only ‘if

xVa=yVa forsome a€dJ ,while =y (R(J)) , (z,y €L) , if ana
only if, for any b €L , x Ab €J if andonly if y A b €J . For
detailed information on OLat(J) and R{(J) we refer respectiveiy to [4]

and [10]. In [10, Proposition 4.1] it is shown that if 1 € I then

{e €L : z21(R(J))} is the filter D(J) where

Dg) = {a €L : J:a=4J} and J:a is the ideal {b €L : a A b €dJ} .
When O €L , R will be used to denote R((0]) and D will be used to

y (R) ,
(x, y € L) , if and only if a** = y** and D = {x € L : z** = 1} , the

mn

denote D((0]) . If L is pseudocomplemented then =

filter of dense elements.

LEMMA 1.2. Let n(J) denote the set of all minimal prime ideals
belonging to a given ideal J 1in a distributive lattice L . Then

(¢) R(J) = {RrR(P) : P € n(J)) , and

(i%) OLat(J) = n{oLat(P) : P €h(J)} .

Proof. (%) Suppose that z, y € L and z =y (R(J)) . If
z € P € h(J) then, according to Lemma 1.1 (¢), x A 2 € J for some
2 €L\P. Then y A3 €J and so y € P . By symmetry, we conclude that
x € P if and only if y € P , that is, xz =y (R(P)) . Thus,
R(J)cn{R(P) : P eh(s)} . But J=n{P : P €h(J)} andso J is a
congruence class of L modulo N{R(P) : P € h(J)} . Hence
N{R(P) : P € h(J)} < R(J) . Part (i) is now proved.

(iZ) For any P € h(J) , it is clear that eLat(J) S-eLat(P)
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Suppose that x, y €L and x ¥y (O ,(J)) and consider

Lat
F={a€L :xzva=yval. Then F is non-empty since z Vy € F , and
F is a filter. By the hypothesis on x and y , it follows that J and
F are disjoint. Using the Birkhoff-Stone Theorem and the dual form of
Zorn's Lemma, it follows that there exists @ € h(J) such that @ and F
are disjoint. Hence, x ¥y (0(Q)) . The equality asserted in (iZ) is now
readily established. o

If F is a filter in an arbitrary lattice L then the relation Y¥(F)
y (¥(F)) (x, y €L) if and only if 2 A f=y A f for

some f € F , is always an equivalence relation. When L is a

defined by: «x

distributive lattice, Y(F) is the smallest congruence having F as a
congruence class. Special cases of the following lemma are well-known,
for example, [5, Lerma 7, p. 361 and [6, Theorem 2]; we include & simple
direct proof.

LEMMA 1.3. For any two filters Fy and F, in a lattice L , the

equivalence relations ‘J’[Fl) and ‘P(Fe) are permutable.

Proof. Suppose that x, y € L and that z = y [‘i’[Fl] ° W[Fz))
Then,:z:/\fl=z/\fl and z/\f2=y/\f2 for some zEL,fIEFl
and f, €F, . ‘I’hus,x/\fl/\f2=y/\fl/\f2. Put

w (x A f2) v (y A fl) . Then

:z:=:x:v(folAf2)=xv(yAflAf2)

= (‘”"fe) v [y /\fl) =w [“’(Fz)) s

I

an w=(fo2]v(yAfl) (folAfg)Vy=y(‘{/[Fl)). That is,

z =y (W[Fe) ° ‘i’[Fl)] . The lemma now follows from symmetry. a

The next result describes congruence-cokernels in a distributive

pseudocomplemented lattice; it will be useful throughout the entire paper.

PROPOSITION 1.4. Let (L; v, A, *, 0, 1) be a distributive pseudo-
complemented lattice. A subset F of L 18 a congruence-cokernel if and
only if F is a filter in L . Moreover, the smallest *-congruence

having a given filter F as its cokernel is Y¥(F) .
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Proof. It is sufficient to prove that, for a given filter F , Y¥(F)
has the substitution property for the *-operation. Thus suppose that
z,y €L and z = y(¥(F)) , that is, z A f=y Af for some f €F .
Then x** A f** = (z A f)*2t = (y A f)** = y** A f4* 50 that
x* v f* = y* v f* in the skeleton (S(L); Vv, A, *, 0, 1) of L . Then
x* A fAt = y* A fA* | gince S(L) is a boolean algebra, and hence
AN Ff=yr*Af. a

If J 1is an ideal in a distributive psuedocomplemented lattice L ,
let J,={x €L : x2a* for some a €J} . It is easy to see that J,

is a filter. We now come to our first characterization of congruence-

kernels.

THEOREM 1.5. Let J be a non-empty subset of a distributive pseudo-
complemented lattice (L; v, A, *, 0, 1) . Then the following conditions
are equivalent:

(i) J 1is a congruence-kernel,

(i1) J is an ideal of the lattice L and x** € J for each
x €d,

(ii1) J 1is an ideal of the lattice L and each minimal prime ideal

belonging to J 18 a minimal prime ideal,

(Zv) J 1is an intersection of minimal prime ideals of the lattice
L.

Moreover, if J satisfies any of the equivalent conditions (i)-(iv)
then the smallest congruence on (L; v, A, *, 0, 1) having J as its
kernel is O(J) , where z =y (0(J)) (x, y € L) if and only if
zAat*=y Aa* for some a €J . Thus, ©(J) = Y¥(J,).

Proof. (%) = (ii). Suppose that J = ker(0Q) for some *-congruence
©@ . Then J is certainly a lattice-ideal end, for x €J , x« =0 (0) ,
so that x** = 0#%* = 0 (0) , and hence (ZZi) holds for J .

(i¢) = (7). From (ii) and Proposition 1.4, ¥(J,) is a
*-congruence. Because z** €J for z €J , ker(¥(J,)) =J . If ¢ is
a *-congruence with ker(¢) =J then x Aa*=y Aag* for a €J
implies « = y (®) since a* = 0* =1 (¢) . Thus, (iZ) = (Z), and we have

also described the smallest #*-congruence having J as its kernel.
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The implication (Zv) = (ii) follows from Lemma 1.1 (ZZ%) so that it

remains to establish that (ZZ) = (Z4Z) and (Z27) = (iv).

(i) = (iiZ). Let J satisfy (77) and suppose that P is a minimal
prime ideal belonging to J . let « € P . By Lemma 1.1 (Z), x A3 €J
for some =z € L\P . Then a** A z** = (z A 2)** € J and so x** € P ,
since P is prime and =2 = z** ., Then, by Lemma 1.1 (¢iZ), P is a
minimal prime ideal.

(1i1) = (iv). Each ideal in a distributive lattice is the inter-

section of all the minimel prime ideals belonging to it. Hence (Zv)

follows from (7727). a
THEOREM 1.6. Let J be a given congruence-kernel in a distributive
pseudocomplemented lattice (L; v, A, *, 0, 1) . The following conditions

relating to an equivalence relation ¢ on L are equivalent:
(i) & <is the largest *-congruence such that J = kerd ,
(ii) & = R(J) ,
(iii) for any =z, y €L , = =y () <if and only if
x** A a* = y** A a* for some a €J ,
(iv) & = O(J) VR in the lattice of (*-)congruences,

(v) foramy x,y €L, z =y (®) <if and only if
xA(bvb*)Aa* =y (bvb*) Ag* forsome b €L and

ae€ed,

(vi) ¢ 18 the smallest *-congruence with J = ker® and such that

L/® is a boolean algebra,

(vii) ¢ <s the unique *-congruence with J = ker® and such that

L/® is a boolean algebra.

Proof. (i) e (7i). By Theorem 1.5, each minimal prime ideal
belonging to J is a minimal prime ideal. Hence, by Lemma 1.1, R(P) is
a *-congruence for each P € k(J) and so Lemma 1.2 implies that R(J) is

a *-congruence. It is now evident that (Z) and (ZZ) are equivalent.

(Z21) <= (v). Because (b VDb*)** =1 for each b € L , (iii)
follows from (v). On the other hand suppose that «** A g* = y** A a* for

some a €J . Since z vzx* and y v y* are dense,
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(x va*) A (y vy*) =b v b* for some b € L and then

z A (b vb*)Aat= (x** A (xvaxt)) A(bVDb*) Aat
=z A (bvbr)Aa* =y** A (b vb*) Aa*=y A (bvb*) aat.

Thus, (i71) and (v) are equivalent.

(iv) = (v). Because L 1is pseudocomplemented, R = ¥(D), (ef. [10,

Proposition 5.4]). Thus, from Theorem 1.5,
O(J) vR=Y¥(J,) v¥D) =¥J, vD) ,
where
J,vD={x €L : x=bnAad, b €d,, d€D}

is the Join of J, and D in the lattice of filters on L . Hence (iv)

and (v) are equivalent.

(12) = (ii1). Because of the equivalence of (i), (itv), and (v) it
is clear that the relation ¢ of (Z4ZZ) is a #*-congruence with kerd = J

and hence & € R(J) . It remains to establish the reverse inequality.

Let P be a minimal prime ideal and suppose that « = y (R(P)) for
given z,y €L . Then x,y €P or x,y € L\P . In the first case
VY €P and x** A (z vy)t = At Ayr =0 =yttt A (z vy,
while in the second case x Ay € L\P so that (x A y)* € P and
X% A ((x A y)*):e = x** A (x A y)au = xAE A yAr = AR A ((x A y)*)* .

y (B(P)) (x,y €L) if anad
only if x#** A p* = y** Ap* for some p €P .

Thus, for any minimal prime ideal P , x

Now suppose x, y¥ €L and z =y (R(J)) . Let h(J) = {P)‘ : A €A}

be the set of all minimal prime ideals containing J . By Lemma 1.2 and
Theorem 1.5, « =y (R(P,)} for each A € A . It follows from the

preceding paragraph that, for each A € A , there exists p, € PA such
that x** A p} = y** Ap} . Hence, for each P, € ) ,

P, ¢ g[pi) = {@ : @ is minimal prime ideal ana p} £ @} . That is,

{g (pi) : A € A} is an open cover of the closed subset #(J) of the space

of minimal prime ideals. Because of Lemma 1.1 (ZZ%¢), h(J) is compact and
so there exist >‘1’ Ans coesy )‘n € A such that
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*
pi;/\.../\p;\*=[pi V... vpi] En{Q:QEg(pi v...vpi]}
n

cn{g: @ enJg) =J,

by Theorem 1.5. Now x** A pi = y*t oA pi for <
A 7

1, ..., n and so

x*t A {p* X...y_p*]=y**A[p* V... vp*]
Al An Al - Xn

in S(L) . Hence

T A (p;‘* A, /\p’)"\*]* = yit A [pi* AL /\p’i"}‘t
1 n 1 n

and pi* A...Ap3* €J . Thus x =y (¢) , where ¢ is the congruence
1 n

of (747). And (i) and (4771) are equivalent.
Thus conditions (Z) to (v) are equivalent.

(v) <= (vi). If & 1is the congruence of (v) then ker(®) =J and
b v b* € coker(¢) for each b € [ and so L/® is boolean. It is clear
that ¢ is the smallest *-congruence with these properties and so (v) and
(vi) are equivalent.

(vi) = (vii). Since () and (vi) are equivalent, (vii) is equivalent
to (vi).

The theorem has now been established. m}

The preceding theorem shows that the congruence R(J) has a very
simple description when J 1is a congruence-kernel. In fact many of the
properties of the congruence R(J) which are implied by that theorem are

characteristic of congruence-kernels.

THEOREM 1.7. The following conditions on an ideal J of a
distributive pseudocomplemented lattice L are equivalent:

(1) J 18 a congruence-kernel,

(it) R(J) is a *-congruence,
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(iii) for ay =,y €L, =z =y (R(J)) if and only if
x** A a* = yr** A a* for some a €J ,

(iv) forany =x,y €L, =y (R(J)) if and only if

xA(bvb*)Aat=y A (b Vvb*) Aa* for some b €L and
a€d,

(w) R(J) = ¥(D()) ,
(vi) D(J) =D v J, in the lattice of filters,
(vit) D < D(J) ,

(viit) for any filter F , the congruences R(J) and Y¥(F) are
permutable,

(iz) the congruences R(J) and R are permutable,
(x) R< R{J) .

Proof. The equivalence of conditions (), (ZZ), (ZiZ) and (iv) is an

easy consequence of Theorems 1.6 and 1.5.

(iv) = (v). Condition (Zv) implies that R(J) = ‘P(cokerR(J)] , and,

as has been previously mentioned, coker(R(J)) = D(J) .
(v) = (i1). This follows from Proposition 1.L.
(v) = (vi) and (vi) = (vii) are obvious.

(vii) = (7). Suppose that D c D(J) and let x €J . Then
z vx* € D(J) and so z** A (x Vv x*) = x implies x** € J : x =J . Thus
(1) holds.

(v) = (viii) follows from Lerma 1.3.

(viii) = (iz) since R = ¥(D) holds in any psuedocomplemented

lattice.

(iz) = (i). Let z €J . Ten 0=z (R(J)) and =z = x** (R) so
that O = x** (R(J) © R) . By (iz), 0 =z (R) and z = z** (R(J)) .

Hence 2z =0 and so x** € J = ker R(J)

(i2) = (x) is clear and (x) = (i) since x = x** (R) for any x € L .

The theorem is proved. a

Some other consequence of Theorem 1.5 will be given in the next

sections.
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2. The congruences zn(J)

Because of Theorem 1.5, the congruence-kernels of a distributive

pseudocomplemented lattice are precisely its o-ideals, in the sense of
£2]. The following lemma is thus an easy consequence of [Z, Propositions
3.2, 3.3]; it is easy to provide a direct proof and so details are

omitted.

LEMMA 2.1. 7The set K(L) of all congruence-kernels of a
distributive pseudocomplemented lattice (L; v, A, *, 0, 1) 1ig a complete
distributive lattice, where the meet tg set-theoretic intersection and the
join of a family {J, : X € A} of congruence-kernels is

\V4Z

* %

A:AEA}={x€L:x5(a}‘ Voo Vaay
1 n

for some a €J, , ..., a, € and A, .. A GA}.
Al )\l )\n )\n 1 n
Moreover, the mape J + {b € S(L) : b = x** for some x € J} and
I>{x €L : 2* €I} are mutually inverse lattice-iscmorphisms between
K(L) and the lattice of ideals of the skeleton (S(L); v, A, *, 0, 1) . O

LEMMA 2.2. Let © be a *-comgruence on a distributive pseudo-
complemented lattice (L; v, A, *, 0, 1) and let © : L + L/® be the
canonical epimorphism. Then the set-function induced by © and the
inverse image map 8" are mutually inverse lattice isomorphisms between
the interval [ker0, L) = {J € K(L) : ker® = J} of the lattice K(L) of
congruence-kernels of L and the lattice K(L/O®) of congruence-kernele of
L/® . Hence the map P + 8(P) 1is a bijection of the set of minimal prime
ideals of L which contain ker@ onto the set of minimal prime ideals of
L/o .

Proof. Let J € K(L) be such that ker® € J and suppose that
x € 670(J) . Hence 6(x) = 8(a) for some a € J , and so
8(x A a*) = 8(x) A 8(a)* = 0 implies that x A a* € ker®c J . If P is
a minimal prime ideal containing J it follows from Lemma 1.1 that x € P .

-
Because of Theorem 1.5, x € J end so 0 8(J) =J .

It is now clear that the first statement of the lemma holds and from

this we immediately obtain the second statement, because Theorem 1.5 and
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Lemma 2.1 imply that the minimal prime ideals of L are precisely the

meet-irreducible elements of X(L) . (]

REMARK. Lemma 2.2 gives an estimate of the way in which the lattice
of congruence-kernels fails to determine the lattice of *-congruences. Of
course, the map O > ker(0) is a bijection (lattice-isomorphism) of the
lattice of *_congruences onto the lattice of congruence-kernels of L if
and only if (L; v, A, *, 0, 1) 1is precisely the skeleton
(S(L); v, A, *, 0, 1] that is, if and only if L is a boolean algebra.
This is because ker(R) = (0] if end only if x = x** for each zx € L .

Let {Bn :0=n<x m} be all the non-trivial varieties of
distributive pseudocomplemented lattices (ef. [4, Chapter 3] and [§]).

Thus BO is the class of boolean algebras, Bl is the class of Stone

lattices and Bw is the class of all distributive pseudocomplemented
lattices. We will need the following characterization of Bn (1 =n<uw)
due to Lee [§, Theorems 4, 5].

LEMMA 2.3. Let (L; v, A, *, 0, 1) be a distributive pseudo-
complemented lattice and let 1 =n < w be a positive integer. Then the

following conditions are equivalent:

() L ¢ Bn S

, x €L satisfy the identity

(i1) any Ty Ty eees &,

n * n
* % =
AEAAVA (@, Aevenrm ATiAZ AL A ) =1,
=1 1=1
(ii1) each prime ideal in L contains at most n distinct minimal
prime ideals. (]

LEMMA 2.4. Let (L; v, -, *, 0, 1) be a distributive pseudo-
complemented lattice. Then
(2) for any n (not necessarily distinct) minimal prime ideals
P, Py «o.s Poin L, L/O(P, aPyn...nP) €B ,

(i1) foray 1 =n<w, L € B, implies that
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n{O(Pl nP,n...nP ):P,P s P are n minimal prime ideals}

n h - L
= w,
(the smallest congruence on L ).
Proof. (i) L/O(P, nP, n ... n Pn) has, at most, 7 distinct
minimal prime ideals. This follows from Lemma 2.2 since Pl’ P2, e Pn
are the only minimal prime idesals of L containing Pl n P2 n... n Pn .

Thus part (Z) follows from Lemma 2. 3.
(i2) The dual of Lemma 1.2 (ZZ) implies that
NM¥(F) : F is a prime filter in L} = w
Recall that ideal P is prime if and only if L\P is a prime filter. By
Lemma 1.4, Y¥(L\P) is a #*-congruence and it is clear that
ker (Y(L\P)) = O(P) and so 0©{0(P)) < ¥(L\P) . Combining this information

we obtain: N{O(0(P)) : P is a prime ideall} = @, . Then, part (i) is an
easy consequence of Lemma 2.3 (Z77) end Lemma 1.1 (Z%). a

Let J Dbe a congruence-kernel in a distributive pseudocomplemented

lattice L . For any O =nsw, let En(J) denote the smallest of all
#-congruences © on I such that ker(®) =J and L/O € B, , so that
L/En(J) is the maximal homomorphic image of L which lies in Bn . Even
though Zw(J) = 0(J) and ZO(J) = R(J) (Theorem 1.6), it will at times be
convenient to use that notation Zw(J) and ZO(J) . We will also use I
in place of Zn((o]) . The existence and description of Zn(J) is the aim

of the next theorem. Granting the existence it is clear that

o(J) = Zw(J) c ... SEn('J) Ezn-l(J) c ... ng(J) EZO(J) = R(J) .

For 1 =n<uw, let Dn be the filter of L generated by all

elements of the form

n * n
/\ =; v\_/(xlA...Axi_l/\x;:'A:ciﬂA...Axn]*
1=1 =1
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where :cl, s :cn €L Thus
A A =)
D = {.'z: €L : x = [( x ]
g=1 W= ¥
n
*, A *
v}! (le A Ny i NTde Az A zng) ]
for some ;50 (=1, s, Ny Jd =1, , m), in L}
For any z > X, €L , it is easy to see that
n
* * %
(e, n e Az )t v\ (g Ao Az AZEA L Az)
1=1
* * %
= (xl Ao Axn) \Y (xl Aeea A xn]

and so DngD 2D forany l=n=uw.

1

THEOREM 2.5. Let 1 =n < w be a given positive integer and let J
be a congruence-kernel in a distributive pseudocomplemented lattice
(L; vy, A, *, 0, 1) . The following conditions relating to a *-congruence
® are equivalent:

(1) ®=1L,(J),

(i1} foray x,y €L, « =y(®) if and only if
x Ab Aa*=y AbAa*, where

m n * n -
- % %
b _j/=} [({z\l bij] v\/ (le. Aee Aby 1o AR ND o A e /\bnj) ]

=1

for some bij (=1, .coon, g=1, ..., m) in L, and

a€d,
(iii) ¢ =¥, vJ,),
(iv) ¢ = L v o(J) in the lattice of (*-)congruences,
(v)
o = ﬂ{O[Pl NPyn...n Pn] : Pl, Pyr evs P are (not necessam'lq

distinct) minimal prime ideals in L which contain J} .
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Proof. It is clear that (iZ) and (iZ771) are equivalent. The
congruence ® given in both is, indeed, a *-congruence (Proposition 1.l4)
and has J as its kernel since Dn cD. &s Dn c coker(®) , L/d € Bn

in view of Lemms 2.3 (ZZ). It folldws that ¢ = Zn(J) and so (7)), (iZ)
and (i7i1) are equivalent.

The equivalence of (1Z1) and (Zv) follows from Theorem 1.5 and the

equivalence of (i) and (iiZ) for the case J = (0] .
Now let ¢ be the congruence given in (v). The theorem will be

established if we can show that ¢ = Zn(J) .

s P

For any »n minimel prime ideals Pl’ n

l}/(i)(Pl N... nN Pn) € Bn , by Lemma 2.4 (Z), and since Bn is a variety,
L/d ¢ Bn , a8 L/® is a subdirect product of algebras in Bn . But
ker® = J (Theorem 1.5) and so En(J) C ¢ by the definition of Zn(J) .

Hence it remains to show that ¢c I (J)

Let 0 : L ~» L/Zn(J) denote the canonical epimorphism and, for
congruence 0 2 Zn(J) , let O’ denote the congruence on L/Zn(J) induced

by ©. For o(x), ofy) in L/Zn(J) , {x, y €LY, =y (0') if and

only if =z
31

y (0) 5 for details of this construction see [3, §11, Chapter

Since Zn(J) c®, &' is a well-defined congruence on L/Zn(J)
Using Theorem 1.5 it follows that
¢’ cnfefo(p, np, n ... nPn) t P, Py iy P
are minimal primes in L containing J} .
As ker[Zn(J)) =J , Lemma 2.2 implies that
o' cnfe(@ ne,n...nQ) @, -ty @,
are minimal prime ideals in L/)In(J)} .

Hence, by Lemma 2.4 (Z7), o' = wL/En(J) and so ¢ = Zn(J) . ]
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Some easy consequences of the above theorem are:

COROLLARY 2.6. For any O0=<n<uw, Dy, €D, SD . O
COROLLARY 2.7. Forany O0<n =w, ZO(J) = ):n(J) v 20 . D
Proof. Combine Theorems 1.6 and 2.5. o

COROLLARY 2.8. For any 0=n, m=w and congruence-kernels I
and J , the congruences Zn(I) and Zm(J) are permutable.

Proof. Combine Lemma 1.3, Theorem 1.5, Theorem 1.6 and Theorem 2.5. O

COROLLARY 2.9, For ay 1 =n <w and congruence-kernel J ,
L/o(7) € B, if and only if

o) = n{e(p, npP, n ... np):P

. P , P

17 for ce By
are minimal prime ideals containing J} .
We end this section with the following result.
THEOREM 2.10. For any fized 0 <n <=w, the mp J+ Zn(J) i8 an

injection of the lattice of congruence-kernmels into the lattice of
*-congruences which preserves arbitrary joins. When n =0 , the map
preserves finite meets.

Proof. It easily follows from Theorem 1.5 and Lemma 2.1 that
O(Y{JA :xeal) = Vo) : A €A} for any set {7, : A €A} of

congruence-kernels. As a consequence, Theorem 2.5 (Zv) and Theorem 1.6

(iv) imply that J - Zn(J) preserves arbitrary Joins for any 0 =n S w .
The last statement of the theorem follows from Theorem 1.6 (7%%). ®]

In the next section we will consider conditions on L which ensure

that the map J —* Zn(J) preserves finite meets even when 1 <n < w .

3. Stone lattices

LEMMA 3.1. Let J be a congruence-kernel in the distributive
pseudocomplemented lattice L . Then O(J) = eLat(J) if and only if

J={z €d :JdvVv (z*)=1L}.

Proof. Suppose that ©O(J) = G)L (J}) . Thus, &« € J implies

at

https://doi.org/10.1017/5S0004972700042404 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700042404

176 William H. Cornish

4 = 4 = =
x"l[eLat(J)) and so aVvat=qv1l=1 for some a €dJ .

L} =J .

Consequently, {x €J : J Vv (x*]

Conversely, suppose that J = {x € J : J V (z*] = L} . Suppose that
a, b €L are such that a = b (0(J)) . Then, by Theorem 1.5,
aAhzxt*=Db Ax* for some x €J . Using the hypothesis imposed on J eand

working in the lattice of ideals of L , we obtain

(alvd= (@l vd)nL=((al vd) n ((*] vJI) = ((a] n (z*]) vJ
= ((B) n (2*)) vJ = () VI .

Hence a = b (0. ,(J)) and so 0(J) =0, (J) . m]

Lat Lat

It should be noted that any ideal J of the distributive pseudo-
complemented lattice L 1is necessarily a congruence-kernel if
J={x €d :J v (x*] = L} , and we will refer to such ideals as special
congruence—ker'nels. It is easy to see that L 1is a Stone lattice, that
is, L € Bl » 1f and only if each congruence-kernel is a special

congruence-kernel. Using this observation we now come to our final result.

THEOREM 3.2. The following conditions on a distributive pseudo-
complemented lattice (L; V, A, *, 0, 1) are equivalent:

(1) L <is a Stone lattice,
(ii) each congruence-kernel in L is a special congruence-kernel,

(iii) O(J) = eLat(J) for each congruence-kernel J ,

(iv) eLa.t(J ) 48 a *-congruence for each congruence-kernel J ,

(v) 0(P) =0, (P) for each minimal prime ideal P ,
(vi) eLat(P) i8 a *-congruence for each minimal prime ideal P ,

(vii) each minimal prime ideal i8 a special congruence-kernel,

(viit) N{O(P) : P is a minimal prime ideall}l = W

(iz) for any congruence-kernel J and any filter F, 0, . U)
and Y(F) are permutable congruences,

(x) for any congruence-kernels I and J ,
e nJ) =0) nol),
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(xi) L € Bn for some 1 < n <w and, given any congruence-kernels

I avd J , Zn(I) n Zn(J) = Zn(I ndJ),

(xii) forany O <n<=<w, the mp J > Zn(J) i8 a lattice

monomorphism of the lattice of congruence-kernels into the

lattice of *-congruences.

Proof. The equivalence of conditions (7), (ZZ), (iiZ) and (Zv)
follows from Lemma 3.1 as does the equivalence of conditions (v), (vi) and
(vii).

Condition (7iZ) implies (v) by specializiation and (v) = (viii)

follows from Lemma 1.2 (i1).

Condition (viii) implies (Z) by Theorem 2.5, and so the first eight

conditions are equivalent.

Condition (ix) follows from (Zv), by virtue of Lemma 1.3 and Theorem

1.5.

Suppose that (Zx) holds. Let x € L and set J = (x**] and
F=[z) . Then J is a congruence-kernel, O = x (OLat(J)) , and
z =1 (¥(F)) sothat 0 =1 (OLat(J) o ¥(F)) . By (ix), there exists

a € L such that O =a (¥(F)) and a =1 (9,,,(J)) . Hence 0=anrz,

that is, a < z* , and a vV x** =1 ., Thus (Zx) = (Z) holds and the first

nine conditions are equivalent.

(t21) = (x) is clear and (x) = (vii) follows from Theorem 2.5 (iv),
Theorem 1.6 (iv) and the distributivity of the lattice of (*-)congruences.
O0f course, (xii) = (x) and (x) = (Z), because setting . = (x*] and

J = (x**] for given x €[ implies thatt
z* vzt 21 (6(I) n o) = 8(I nJ) = 0((0]) =w, .
Since (i) and (xi7) are equivalent, (x1) follows from (%) and the
theorem will have been proved if we show that (xi) implies (Z).

Suppose that (xi) holds. Put I = (x*] and J = (x**] for given
x €L . Then for 1 <n <w (fixed),

L) nz () =2 (InJ)=2((0]) =w »
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as L € Bn (Theorem 2.5). By Theorem 2.10,
) Zn(I) Y Zn(J) = Zn(I vd) = Zn(L) s

as zx* vx** =1, and so Zn(I) v Zn(J) = 1; , the largest *_congruence
on L . Corollary 2.8 says that Zn(I) and Zn(J) are permutable. Thus,

from the general theory of universal algebra ([3, §19, p. 120]), the map
ar— ([a]Zn(I), [a]Zn(J)) is an isomorphism of L onto the direct product
L/Zn(I) x L/Zn(J) . Under this map x* v £** and 1 both correspond to
(1, 1) and so x* va** =1 . That is, L € B, and so (xi) implies

(). a

COROLLARY 3.3. Let J be a congruence-kernel in a Stone lattice
L. Then, =y (R(J)), (x,y €L), if and only if

(x va)*=(y va)** for some a €dJ .
Proof. By the previous theorem, A permutes with eLat(J) = Q(J)
and so R(J) = Ro o . (J) (Theorem 1.6 (Zv)). Thus &« = y(R(J)) implies

that x** = 2** and z2va=yva for some a €J . In any Stone

lattice, (s v t)** = g** v ¢t** is an identity, and so we obtain

(x va)** = (y va)** for some a € J . The converse follows from the
same identity and Theorem 1.6 (Zii). ]
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