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Congruences on distributive

pseudocomplemented lattices

William H. Cornish

Let BQ c S1 c B2 c . . . c B^ c . . . c B^ be al l the non-trivial

varieties of distributive pseudocomplemented lattices

(L; v, A, *, 0, l ) considered as algebras of type

(2, 2, 1, 0, 0) . A subset J of such an algebra L is a

congruence-kernel if and only if i t is a lattice-ideal and

x** d J for each x € J . The smallest congruence having J

as i t s kernel is Q{J) , where a = b [Q(J)) , (a, b € L) if

and only if a A a* = b A C* for some a € J . For given

0 5 n £ w , let £ (J) be the smallest congruence having J as

i t s kernel and such that the associated quotient algebra is in

B . Of course, ZtJ) = B(J) an
71 u)

paper shows that for 1 5 n < u> ,

B . Of course, I (J) = 0(<O and the main resul t of th i sn to

ZnU) = n{0(Px nP2 n ... nPj : J c P ^ Pg P^ci

are minimal prime ideals} .

It is also shown that T. (J) is the smallest congruence on the

lat t ice (L; v, A, 0, l ) having J as i t s kernel for each

congruence kernel J if and only if L € B . On the other

hand, for any congruence kernel J , ^Q(«^) is always the

largest congruence on the latt ice (L; v, A, 0, l ) having J

as i t s kernel and so ^o(^) i s the unique congruence with J

as i t s kernel and such that quotient algebra is boolean.
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1. Congruence-kernels

A congruence 9 on a distributive pseudocomplemented lattice

(L; v, A, *, 0, l ) is a congruence of the lat t ice (L; v, A, 0, l ) which

also has the substitution property for the ^-operation. At times i t will

be convenient to refer to such a congruence as a ^-congruence. For such a

congruence 0 , ker(G) = {x € L : x = 0(9)} and

coker(9) = {x € L : x = 1(9)} are called, respectively, the kernel and

cokernel of 0 . A subset J of L is called a congruence-kernel

(respectively congruence-aokernel) i f J = ker(9) (respectively

J = coker(9) ) for some ^-congruence 9 on L .

The purpose of this section is to characterize the congruence-kernels

of a given algebra (L; V, A, *, 0, 1) and-also to describe the smallest

and largest congruences on L which have a given congruence-kernel as

their common kernel. The necessary prerequisite information on the variety

of al l distributive pseudocomplemented lattices can be obtained from

Chapter 3 of Gratzer's recent book [4]. We begin with some preliminary

results on distributive latt ices which will be useful both in this section

and in the later sections.

Let J be an ideal in a distributive latt ice L . Then a prime ideal

P in L is called a minimal prime ideal belonging to J if P is a

minimal member of the set of al l prime ideals in L which contain J . If

L has a smallest member, 0 , then a minimal prime ideal of L is simply

a minimal prime ideal belonging to the zero-ideal (0] . The following

lemma summarizes some useful information which appears in the l i terature.

LEMMA 1.1. The following results hold in a distributive lattice L .

(i) A prime ideal P containing an ideal J is a minimal prime

ideal belonging to J if and only if, for each, x € P , there

exists y € L\P such that x A y € J .

(ii) Suppose that 0 € L- and that Q is a prime ideal in L .

Then, 0(Q) = {x € L : x A y = 0 for some y £ L\Q} is the

intersection of all the minimal prime ideals of L which are

contained in Q .

(Hi) If L is pseudocomplemented then a prime ideal P is a

minimal prime ideal if and only if x** € P for each x € P ;

and the set of all minimal prime ideals of L endowed with the
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hull-kernel topology, is a compact Hausdorff space.

Proof. (i) follows from [7 , Lemma 3-1] and the d i s t r ibu t iv i ty of L .

(•Li) i s established in [/, Proposition 2 .2] .

The f i r s t part of (Hi) follows from (i), see also [4, Lemma 5,

p. 169], while the second part i s a consequence of [9, Proposition 3-2]. •

If J i s an ideal in a dis t r ibut ive l a t t i c e L then 9 (j) and
Lat

R{J) wil l be used to respectively denote the smallest congruence and the

largest congruence on L possessing J as a congruence class . I t i s

well-known that x = y (0T .(</)) , (x, y £ L) , i f and only "if

x v a = y v a for some a £ J , while x = y {R{J)) , (x, y £ L) , i f and

only if, for any b £ L , x A b £ J i f and only i f y A b £ J . For

detailed information on 0 (J) and R{J) we refer respectively to [4]

and [JO]. In [70, Proposition l( . l ] i t i s shown that i f 1 € L then

{x € L : x = l( i?U))} is the f i l t e r £)(</) where

D{J) = {a i. L : J:a = J} and J:a i s the ideal {b € L : a A b d J) .

When 0 S I , i? wil l be used to denote i?((O]J and D wi l l be used to

denote D((O]J . If £ i s pseudocomplemented then x = z/ (i?) ,

(x, y d L) , i f and only i f a:** = j / * * and D = {x € £ : x** = l} , the

f i l t e r of dense elements.

LEMMA 1.2. Let h(J) denote the set of all minimal prime ideals

belonging to a given ideal J in a distributive lattice L . Then

(i) R{J) = n{/?(P) : P € h{J)} , and

(ii) © L a t V) = n { 0
L a t (

p ) : p

Proof. (i) Suppose that x, y £ L and x = y [R(J)) . If

x € P € h(J) then, according to Lemma 1.1 (i) , x A 2 € J for some

z € £\P . Then y l\ z i J and so y € P . By symmetry, we conclude that

x £ P i f and only i f y £ P , that i s , x = y [R(P)) . Thus,

R(J) c D{/?(P) : P £ h(J)} . But J = n(P : P t ft(J)} and so J is a

congruence class of L modulo I"l{/?(P) : P € fe(J)} . Hence

n{/?(P) : P € h(J)} c i?(J) . Part (i) i s now proved.

For any P € h(J) , i t i s clear that ©Lat(^) E 0
L a t (

p ) •
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Suppose that x, y € L and x % y (0 +U)) and consider

F = {a t L : x v a = y v a] . Then F is non-empty since x v y € F , and

F is a f i l ter . By the hypothesis on x and y , i t follows that J and

F are disjoint. Using the Birkhoff-Stone Theorem and the dual form of

Zorn's Lemma, i t follows that there exists Q € h{J) such that Q find F

are disjoint. Hence, x \ y [0{Q)) . The equality asserted in (ii) is now

readily established. •

If F is a f i l ter in an arbitrary latt ice L then the relation V(F)

defined by: x = y [V{F)) (x, y (. L) if and only if x A / = y A / for

some f i F , is always an equivalence relation. When L is a

distributive la t t ice , V{F) is the smallest congruence having F as a

congruence class. Special cases of the following lemma are well-known,

for example, [5, Lemma 7» P- 36] and [6, Theorem 2]; we include a simple

direct proof.

LEMMA 1.3. For any two filters F. and F- in a lattice L , the

equivalence relations V{FS) and V[F^) are permutable.

Proof. Suppose that x, y i L and that x i y \v[F) ° V[F)) .

Then, x A f^ = z A f± and z A fg = t/ A / 2 for some 3 € L , / ^ £ F

and f2 € F2 . Thus, x A f± A f2 = y A f± A / g . Put

U = (x A f2) V (j/ A fx) . Then

x = x v (a: A ^ A / 2 ) = a; v (j/ A ^ A / 2 )

= (* A f2) V (y A / J =W [V(F2]) ,

and W = (x A f2) v [y A / J E (x A f± A / 2 ) v y = !/ ( V ^ J ) . That i s ,

x = y (f [F_) ° V (F )) . The lemma now follows from symmetry. •

The next resul t describes congruence-cokernels in a d is t r ibut ive

pseudocomplemented l a t t i c e ; i t will be useful throughout the ent i re paper.

PROPOSITION 1.4. Let (L; v, A, *, 0, l ) be a distributive pseudo-

complemented lattice. A subset F of L is a congruence-cokernel if and

only if F is a filter in L . Moreover^ the smallest ^-congruence

having a given filter F as its cokernel is I'(F) .
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Proof. It is sufficient to prove that , for a given f i l ter F ,

has the substitution property for the ^-operation. Thus suppose that

x, y € L and x = y[V(F)) , that i s , x A / = y A / for some / € F .

Then x** A / * * = (x A / )** = (y A / )** = y** A /** so that
x* 1 f* ~ y* If* i n t h e skeleton [S{L); .V, A, *, 0, l) of L . Then

x* A /** = y* A / * * , since S(L) is a boolean algebra, and hence

x* A / = y* A / . D

If J is an ideal in a distributive psuedoconrplemented latt ice L ,

let JA = {x € L : x > a* for some a € J) • I t is easy to see that JA

is a f i l ter . We now come to our first characterization of congruence-

kernels .

THEOREM 1.5. Let J be a nan-empty subset of a distributive pseudo-

aomplemented lattice (L; v, A, *, 0, l ) . Then the following conditions

are equivalent:

(i) J is a congruence-kernel*

(ii) J is an ideal of the lattice L and x** € J for each

x € J ,

(iii) J is an ideal of the lattice L and each minimal prime ideal

belonging to J is a minimal prime ideal,

(iv) J is an intersection of minimal prime ideals of the lattice

L .

Moreover, if J satisfies any of the equivalent conditions (i)-(iv)

then the smallest congruence on (L; v, A, *, 0, l ) having J as its

kernel is 0{J) , where x = y [0{J)) (x, y € L) if and only if

x A a* = y A a* for some a € J . Thus, 0(J) = V(J*) .

Proof. (i) •* (ii). Suppose that J = ker(0) for some ^-congruence

0 . Then J is certainly a lattice-ideal and, for x Z J , x i 0 (0) ,

so that x** = 0"* = 0 (0) , and hence (ii) holds for J .

(ii) =» (i). From (ii) and Proposition l.U, V(J*) is a

••-congruence. Because x** € J for x € J , ker['V{JA)) = J . If $ is

a ''-congruence with ker($) = J then x A a* = y A a* for a € J

implies x = y (4>) since a* = 0* = 1 (*) . Thus, (ii) =» (i) , and we have

also described the smallest ^-congruence having J as i t s kernel.
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The implication (iv) =* (ii) follows from Lemma 1.1 (iii) so that i t

remains to establish that (-Li) =» (iii) and (iii) =* (iv).

(ii) ** (iii). Let Ĵ  satisfy (•££>* and suppose that P is a minimal

prime ideal belonging to J . Let x £ P . By Lemma 1.1 (i) , x A z £ J

for some z £ L\P . Then x** A z** = (x A z)** £ J and so *** £ P ,

since P is prime and z £ z** . Then, by Lemma 1.1 (iii), P is a

minimal prime ideal.

(tit,) •» (iv). Each ideal in a distributive lattice is the inter-

section of all the minimal prime ideals belonging to i t . Hence (iv)

follows from (iii) . •

THEOREM 1.6. Let J be a given congruence-kernel in a distributive

pseudocomplemented lattice {L; v, A, *, 0, l ) . The following conditions

relating to an equivalence relation $ on L are equivalent:

(i) $ is the largest ^-congruence such that J = ker$ ,

(ii) $ = R{J) J

(iii) for any ar, y € L , x = y (<b) if and only if

x** A a* = y** A a* for some a (. J ,

(iv) $ = Q(J) v R in the lattice of {*-)congruences,

(v) for any x, y £ L ., x = y (^) if and only if

x A (b v b*) A a* = y A (b v b*) A a* for some b £ L and

a t J ,

(vi) 0 is the smallest ^-congruence with J = ker$ and such that

L/$ is a boolean algebra,

(vii) $ is the unique ^-congruence with J = ker$ and such that

L/4> is a boolean algebra.

Proof. (i) <==> (ii). By Theorem 1.5> each minimal prime ideal

belonging to J i s a minimal prime ideal . Hence, by Lemma 1.1 , R(P) i s

a ^-congruence for each P £ h(J) and so Lemma 1.2 implies tha t R(J) i s

a *-congruence. I t i s now evident that (i) and (ii) are equivalent.

(iii) <=> (v). Because (b v i * ) * * = 1 for each b £ L , (iii)

follows from (v). On the other hand suppose that x** A a* = y** A a* for

some a £ J . Since x v x* and y v y* are dense,
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(x v x*) A {y v y*) = b v b* for some b € L and then

x A (Z> v fc*) A a* = (x** A (x v x*)) A (i> v fc*) A a*

- x** A (b v £>*) A a* = j/** A (fc v £*) A a* = y A (b v b*) A a* .

Thus, (iii) and (y.) are equivalent.

=» d>;. Because Z, is pseudocomplemented, R = ¥(0), (e/\

Proposition 5.k]). Thus, from Theorem 1. 5,

v R J ^

where

J* v 0 = {x € L : x = b A d, b € </„, i ( fl)

is the join of J'„ and D in the lattice of filters on L . Hence (iv)

and ("U,) are equivalent.

(ii) <=> (Hi). Because of the equivalence of (iii) , (iv) , and (v) it

is clear that the relation $ of (iii) is a *-congruence vith ker$ = J

and hence $ c i?(t7) . It remains to establish the reverse inequality.

Let P be a minimal prime ideal and suppose that x = y [Rip)) for

given x, y € L . Then x, ;/ € P or x, y £ L\P . In the first case

x v y € P and x** A (x v y ) * = x** A x* A y* = 0 = y** A (x v y ) * ,

while in the second case x A y € L\P so that (x A y)* € P and

x** A ((x A y)*)* = x** A (x A y)** = x** A y** = y** A ((x A y)*)* .

Thus, for any minimal prime ideal P , x = y [R(P)) (X, y £ L) if and

only if x** K p* = y** A p* for some p (. P .

Now suppose x, y € L and x = j/ (i?(«7)) . Let 7i(.7) = {P, : X € A}

be the set of all minimal prime ideals containing J . By Lemma 1.2 and

Theorem 1.5, x = y [R[PA] for each A € A . It follows from the

preceding paragraph that, for each X € A , there exists p, € P, such

that x** A p* = j/1** A p* . Hence, for each P, € h(J) ,

P, € #(pf) = {Q : Q is minimal prime ideal and pt $ Q] . That is,

= X € A} is an open cover of the closed subset h(J) of the space

of minimal prime idea ls . Because of Lemma 1.1 (iii), h(J) i s compact and

so there exist X̂  , X , . . . , X 6 A such that
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HJ) c g p* u J p * u . . . u g\p* = J p * v p* v . . . v p*
"•I-1 l 2' " * nJ l 1 2 n-1

Hence

A ••• ApV = ( P ^ v ••• VP\J < n { « : « ^ ( P ^ v •••

b y Theorem 1 . 5 . Now a:** A pt = j / * * A p ? f o r i = 1 , . . . , n and s o
£ i

a;** A p * v . . . v p j = I / * * A p « _v . . . _v p* \
*• 1 jr ' • 1 n-*

in 5(L) . Hence

f 1 * f 1 *
a;** A p * < A . . . A p | « = y * * A p * * A . . . A p * *

I A l A
MJ I A i \)

and p?1* A . . . A p?* € «7 . Thus x = y ($) , where $ is the congruence
1 n

of (iii) . And ("iij and (Hi) are equivalent.

Thus conditions (£,) to (v) are equivalent.

Cuj *=* fu£,l. If $ is the congruence of (v) then ker($) = J and
£> v b* € coker(<f>) for each b € L and so L/$ is boolean. It is clear
that $ is the smallest ^-congruence with these properties and so (v) and
(vi) are equivalent.

(vi) *=* (vii). Since (i) and (vi) are equivalent, (vii) is equivalent
to fuiJ.

The theorem has now been established. D

The preceding theorem shows that the congruence R(J) has a very
simple description when J i s a congruence-kernel. In fact many of the
properties of the congruence R{J) which are implied by that theorem are
characteristic of congruence-kernels.

THEOREM 1.7. The following conditions on an ideal J of a
distributive peeudoaomplemented lattice L are equivalent:

(i) J is a oongimence-kernel,

(ii) R{J) is a ^-congruence,

https://doi.org/10.1017/S0004972700042404 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700042404


Congruences on la t t i ces 169

(Hi) for any x, y € L , x = y [E(J)) if and only if

x** A a* = y** A a* for some a € J ,

(iv) for any x, y € L , x = y [R(J)) if and only if

X A {b v b*) A a* = y A (b v i * ) A a* for some b € L and

a € J ,

(v) R(J) = Y(D(J)) ,

(vi) D(J) = D v J4 in the lattice of filters,

(vii) D <=_ D(J) ,

(viii) ^for any filter F , the congruences R(J) and 4'(F) are

permutdble,

(ix) the congruences R(J) and R are permutdble3

(x) R S.R(J) .

Proof. The equivalence of conditions (i), (ii), (iii) and (iv) is an

easy consequence of Theorems 1.6 and 1.5.

(iv) •» (v). Condition (iv) implies that R{J) = <i'(cokeri?(J)) , and,

as has been previously mentioned, coker[R{J)} = D(J) .

(v) =» (ii). This follows from Proposition l.k.

(v) ** (vi) and (vi) =» (vii) are obvious.

(vii) •* (i). Suppose that D c D{J) and let x i J . Then

x V x* € D(J) and so x** A (x v x*) = x implies x** € J : x = J . Thus

(i) holds.

(v) =» (viii) follows from Lemma 1.3.

(viii) •* (ix) since R = H'(O) holds in any psue docomplemented

la t t i ce .

(ix) •* (i). Let x $ J . Then 0 = x [R(J)) and x = x** (R) so

that 0 i x** [R(J) o i?) . By (ix) , 0 = z (R) and z = x** (/?(/)) .

Hence 3 = 0 and so x** € J = ker i?(<7)

<"iî  •* (x) is clear and (x) ** (i) since x = x** (i?) for any x € £ .

The theorem is proved. D

Some other consequence of Theorem 1.5 will be given in the next

sections.
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2. The congruences £ (J)

Because of Theorem 1.5, the congruence-kernels of a distributive

pseudocomplemented latt ice are precisely its a-ideals, in the sense of

[2]. The following lemma is thus an easy consequence of [2, Propositions

3.2, 3-3]; i t is easy to provide a direct proof and so details are

omitted.

LEMMA 2.1. The aet K(L) of all congruence-kernels of a

distributive pseudocomplemented lattice (L; v, A, *, 0, l ) is a complete

distributive lattice, where the meet is set-theoretic intersection and the

join of a family {j , : A € A} of congruence-kernels is

I ) * *! ( I )
A} = \x € L : x 5 a, V . . . v a,

<• <• A l n>

for some a , € J, , . . . , a, € J, and A , . . . , A €
A l Ai Xn Kn -1 n

Moreover, the maps J -*• {b € S(L) : b = x** for some x € J) and

I •*• ix € L' : x** € -Z"} are mutually inverse lattice-isomorphisms between

K(L) and the lattice of ideals of the skeleton [s(D; v., A, *, 0, l) . •

LEMMA 2.2. Let 0 be a ^-congruence on a distributive pseudo-

complemented lattice (L; v, A, *, 0, l ) and let 6 : L •*• L/Q be the

canonical epimorphism. Then the set-function induced by 6 and the

inverse image map 6 are mutually inverse lattice isomorphisms between

the interval [ker0, L] = {J € K(L) : ker0 5 J} of the lattice K(L) of

congruence-kernels of L and the lattice K(L/Q) of congruence-kernels of

L/Q . Hence the map P -*• 6(P) is a bisection of the set of minimal prime

ideals of L which contain kerO onto the set of minimal prime ideals of

L/Q .

Proof. Let J € K{L) be such that kerO c J and suppose that

x € Q*Q(J) . Hence 0(x) = 6(a) for some a € J , and so

6(x A a") = 6(x) A 8(a)* = 0 implies that x * a* £ ker0 c J . If P is

a minimal prime ideal containing J i t follows from Lemma 1.1 that x £ P .

Because of Theorem 1.5, x € J and so 8 8(J) = J .

I t is now clear that the first statement of the lemma holds and from

this we immediately obtain the second statement, because Theorem 1.5 and
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Lemma 2.1 imply that the minimal prime ideals of L are precisely the

meet-irreducible elements of K(L) . D

REMARK. Lemma 2.2 gives an estimate of the way in which the l a t t i c e

of congruence-kernels fa i l s to determine the l a t t i c e of ''-congruences. Of

course, the map 0 •*• ker(0) i s a bi ject ion (lattice-isomorphism) of the

l a t t i c e of ''-congruences onto the l a t t i c e of congruence-kernels of L i f

and only i f (L; v, A, *, 0, l ) is precisely the skeleton

[S{L); _V, A, *, 0, l ) that i s , i f and only i f i i s a boolean algebra.

This i s because ker(f?) = (0] i f and only i f x = x** for each x € L .

Let \B : 0 £ n 5 0)1 be a l l the non- t r iv ia l var ie t ies of1 n '

dis t r ibut ive pseudocomplemented l a t t i ce s {.of. [4 , Chapter 3] and [S]) .

Thus B i s the class of boolean algebras, B i s the class of Stone

la t t i ce s and B i s the class of a l l d is t r ibut ive pseudocomplemented

l a t t i c e s . We wil l need the following characterization of B ( l 5 n < u)

due to Lee [S, Theorems h, 5] .

LEMMA 2.3 . Let (L; v, A, *, 0, l ) be a distributive pseudo-

eomplemented lattice and let 1 £ n < w be a positive integer. Then the

following conditions are equivalent:

(i) L € Bn ,

(ii) any x , au, . . . , x E I satisfy the identity

A*.
U=i

V
n

V K A . . . A X._± A x* A Xi+1 A . . . A x J * = 1 ,
t = l

(iii) each prime ideal in L contains at most n distinct minimal

prime ideals. •

LEMMA 2.4. Let (L; v, A, *, 0, l ) be a distributive pseudo-

complemented lattice. Then

(i) for any n (not necessarily distinct) minimal prime ideals

Px, P2, ..., Pn in L , L/0(P1 n P2 n . . . n P j € Bn ,

(ii) for any 1 S M < O ) J L € B implies that
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d{0(P n P n ... n P ) : P , P , ..., P are n minimal prime ideals]

(the smallest congruence on L ) .

Proof. (i) L/Q[P n P n . . . n P ) has, at most, n d is t inc t

minimal prime idea ls . This follows from Lemma 2.2 since P . , P^ P

are the only minimal prime ideals of L containing P.. n P n ... n P .

Thus part (i) follows from Lemma 2.3-

(ii) The dual of Lemma 1.2 (ii) implies that

flWF) : F i s a prime f i l t e r in L) = (o_ .
L

Recall that ideal P is prime if and only if L\P is a prime f i l ter . By

Lemma l.U, V!(LXP) is a ''-congruence and i t is clear that

ker(4'(£\P)} = 0(P) and so Q[O(P)) C V(L\P) . Combining this information

we obtain: fl{6(0(P)} : P is a prime ideal} = to. . Then, part (ii) is an

easy consequence of Lemma 2.3 (Hi) and Lemma 1.1 (ii). •

Let J be a congruence-kernel in a distributive pseudocomplemented

la t t ice L . For any 0 £ n £ w , le t 1 (J) denote the smallest of al l

''-congruences 0 on L such that ker(Q) = J and L/Q € B , so that

L/Z (J) is the maximal homomorphic image of L which l ies in B . Even

though ZJ,J) = Q{J) and ZQ{J) = R(J) (Theorem 1.6), i t will at times be

convenient to use that notation T, [J) and £n(J) • We will also use £
w 0 n

in place of E ((°]) • T h e existence and description of E (J) is the aim

of the next theorem. Granting the existence i t is clear that

Q(J) = Z (J) c . . . cZ (J) c E (J) c . . . c E (J) c Z (J) = R(J) .

For 1 £ « < to , let D be the f i l ter of L generated by a l l

elements of the form

n
v

n
\ J ( x , A . . . A X . , A X*. A X . , A . . . A x ) *
. v , *• 1 v-1 v ^+l n'
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where x. , .. ., x € L . Thus
1 n

n
v \ / (xn . A ... A a;. n . A a;* . A X ._,, . A ... A a; .)

f o r some x . . , (i = 1 , . . . , n, j = 1, . . . , m), i n L\ .
I'd j

For any x. , . . . , x € L , i t is easy to see that

n
(x,_ A . . . A x j * V y [xx A . . . A X i - ; L A X* A . . . A x j *

> ( x x A . . . A X ) * V ( x 1 A . . . A x ) * *

and so D 3 Dn z> D for any 1 2 n < u .
n — 1 —

THEOREM 2.5. Let 1 < n < to le a given positive integer and let J
be a congruence-kernel in a distributive pseudocomplemented lattice
(L; v, A, *, 0, l ) . The. following conditions relating to a ^-congruence
<S> are equivalent:

(i) $ = Zn(J) ,

(ii) for any x, y € L , x = y ( $ ) if and only if
i A 1 A a* = j * i A a* , where

/ o r eome fc.. (•£ = 1, ... , n, j = 1, ..., m) in L , and
I'd

a t J ,

(Hi) $ = V[Dn v J j ,

(iv) $ = Z v O(J') i« the lattice of (*-)congruences,

(v)

* = n{©(P n P n . . . n P ) : P , P , . . . , P are (not necessarily

distinct) minimal prime ideals in L which contain j \ .
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Proof. I t i s clear that (ii) and (iii) are equivalent. The

congruence $ given in both i s , indeed, a *-congruence (Proposition l.U)

and has J as i t s kernel since D c D . As D c coker(<t>) , L/9 € B

in view of Lemma 2.3 (•£•£,). I t follows that $ = £ (</) and so ft,*, (ii)

and (iii) are equivalent.

The equivalence of (iii) and ('•iD/l follows from Theorem 1.5 and the

equivalence of (i) and (iii) for the case J = (0] .

Now l e t $ be the congruence given in (v). The theorem wi l l be

established i f we can show that $ = Z (J) .

For any n minimal prime ideals P , . .. , P ,

L/Q[P. n . . . n p ] € 5 , by Lemma 2.1* f i j , and since B i s a var ie ty ,

£/$ € S , as L/4> is a subdirect product of algebras in B . But

ker$ = J (Theorem 1.5) and so I (J) c * by the definition of Z (J) .

Hence i t remains to show that $ c Z [J) .

Let O : L •*• L/Z (J) denote the canonical epimorphism and, for

congruence 0 D !! (J) , l e t 9 ' denote the congruence on L/Zn(J) induced

by 0 . For a(x) , o(y) in L/Z^J) , (x, y € L) , x = y (01) i f and

only i f x E y (0) ; for deta i l s of th is construction see [ 3 , §11, Chapter

31-

Since ^n(<^) S * > *' i s a well-defined congruence on L/Z (J) .

Using Theorem 1.5 i t follows that

• ' c U{Q[o[P1 nP2 n ... nPn) : P±, P2, ..., Pn

are minimal primes in L containing j} .

As ker(E (J)) = J , Lemma 2.2 implies that

*' E n M " 2 i n « 2 n . . . n Qn) : Q ± , < ? 2 , • • • , < ? „

are minimal prime ideals in L/Z (J)} .
n

Hence, by Lemma 2.k (ii) , $' = u r / r / ,.% and so
Li I It \v Jn
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Some easy consequences of the above theorem are:

COROLLARY 2.6. For any 0 £ n < u , Dn+1 E D
rt E ° • D

COROLLARY 2.7. For any 0 £ n 5 u , E Q U ) = I (J) v I . D

Proof. Combine Theorems 1.6 and 2.5 . Q

COROLLARY 2.8. For aw/ 0 £ n j m £ u> and congruence-kernels I

and J , the congruences £ ( J ) end ^m^^ a r e permutable.

P r o o f . Combine Lemma 1 . 3 , Theorem 1 . 5 , Theorem 1 .6 and Theorem 2 . 5 - D

COROLLARY 2.9. For any 1 £ n < w awd congruence-kernel J ,

L/0U) 6 S^ i / and only if

0(J) = fl{0(P1 n P2 n . . . nPn) : P^ ?2 > . . . , ? „

are minimal prime ideals containing j} .

We end th i s section with the following resu l t .

THEOREM 2.10. For any fixed 0 £ n £ u ., t/ze map J i - t - i : ( j) i s an

injection of .the lattice of congruence-kernels into Hhe lattice of

*-congruences which preserves arbitrary joins. When n = 0 , the map

preserves finite meets.

Proof. I t easily follows from Theorem 1.5 and Lemma 2.1 that

0 ( Y {J
x '• X € Al) = V { 0 ( J x ) : X e A} for any set {JX : X € A} of

congruence-kernels. As a consequence, Theorem 2.5 (iv) and Theorem 1.6

(iv) imply that J -*• I (J) preserves arbi trary Joins for any 0 £ n £ (0 .

The l as t statement of the theorem follows from Theorem 1.6 (iii). O

In the next section we wil l consider conditions on L which ensure

that the map J i—• E (J) preserves f in i te meets even when 1 £ n £ a) .

3. Stone latt ices

LEMMA 3 .1 . Let J be a congruence-kernel in the distributive

pseudocomplemented lattice I . Then @(J) = ®Lat(^) * / ana> onMl i

J = ix € J : J v [x*] = L} .

P r o o f . Suppose t h a t Q(J) = 0T .(J) . T h u s , x i J i m p l i e s
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x* = 1 (0. +(J)) and so a v x * = a v l = l for some a € J .

Consequently, {x € J : J V (x*] = L} = J .

Conversely, suppose tha t J = {x € J : J v (x*] = L) . Suppose that

a, b € L are such that a = b (0(c7)) . Then, by Theorem 1.5,

a A x* = b A x* for some x € J . Using the hypothesis imposed on J and

working in the l a t t i c e of ideals of L , we obtain

(a] v J = ((a] v ,7) n L = ((a] v j ) n ((x*] v j) = ((a] n (**]) v «/

= ((b] n (x*]) v J = (b] v J .

Hence a = b (9 L a t (^)) and so B(j) = Q^iJ) • °

I t should be noted that any ideal J of the distributive pseudo-
complemented lat t ice L is necessarily a congruence-kernel if
J = {x € J : J v (x*] = L) , and we will refer to such ideals as special
congruence-kernels. I t is easy to see that L is a Stone la t t i ce , that
i s , L € B, , if and only if each congruence-kernel is a special
congruence-kernel. Using this observation we now come to our final result.

THEOREM 3.2. The following conditions on a distributive pseudo-

aomplemented lattice (£; v, A, *, o, l ) are equivalent:

(i) L is a Stone lattice,

(ii) each congruence-kernel in L is a special congruence-kernel,

(Hi) 0(c7) = 0. (J) for each congruence-kernel J ,

(iv) 0. .{J) is a ^-congruence for each congruence-kernel J ,
Li a t

(v) 0(P) = 0 (P) for each minimal prime ideal P ,

(vi) 0. (P) is a *-congruence for each minimal prime ideal P ,

(vii) each minimal prime ideal ie a special congruence-kernel,

(viii) n{0(P) : P is a minimal prime ideal) = i t ,

(ix) for any congruence-kernel J and any filter F , ^^

and y(f) are permutable congruences,

(x) for any congruence-kernels I and J ,
0<J nJ) = 6(1) n 0(J) ,
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(xi) L € B for some 1 < n < u> and, given any congruence-kernels

I and J , Z {I) n E (J) = E (J n J ) ,
M 71 ?1

fxii>) for any 0 < n £ u , tfce map J •* ̂ ( J ) i s a lattice

monomorphism of the lattice of congruence-kernels into the

lattice of *-congruences.

Proof. The equivalence of conditions (i), (ii), (Hi) and (iv)

follows from Lemma 3.1 as does the equivalence of conditions (v), (vi) and

(vii).

Condition (Hi) implies (v) by special iziat ion and (v) °* (viii)

follows from Lemma 1.2 (ii).

Condition (viii) implies (i) by Theorem 2 .5 , and so the f i r s t eight

conditions are equivalent.

Condition (ix) follows from (iv) , by virtue of Lemma 1.3 and Theorem

1.5.

Suppose that (ix) holds. Let x € L and set J = (***] and

F = [x) . Then J i s a congruence-kernel, 0 = x ( 0 ^ ^ ^ ) ) > sai

x = 1 (*(P)) so that O i l (0 L a t U) ° *(*")) • By (ix) , there exists

a £ L such that 0 i a [V(F)) and a E 1 (0Lat(«0) • Hence 0 = a A x ,

that i s , a 5 re* , and a v x** = 1 . Thus fixj =» (i) holds and the f i r s t

nine conditions are equivalent.

(Hi) =» Taj i s clear and (x) =» ('uiij follows from Theorem 2.5 (iv) ,

Theorem 1.6 (iv) and the d is t r ibut lv i ty of the l a t t i c e of (*-)congruences.

Of course, (xii) •* (x) and (x) => CiJ, because se t t ing .1 = (x*] and

J- = [x**] for given a; € L implies t h a t t

x* v x** E 1 (0(J) n 0(J)) = 0(J n J ) = 0((O]) = 0)£ .

Since ("î  and (xii) are equivalent, CxiJ follows from CiJ and the

theorem wil l have been proved i f we show that (xi) implies (i).

Suppose that (xi) holds. Put J = (x*] and J = (x**] for given

x i L . Then for 1 < n < o> (fixed),

t n ( I ) n Z n ( J ) = l n { I n J ) = I
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as L € B (Theorem 2 . 5 ) . By Theorem 2 .10 ,

• Z ( I ) v Z (J) = Z (J v J) = Z (L) ,n n n — n '

as x* _v x** = 1 , and so Z (J) v Z (J) = 1, , the largest ''-congruence

on L . Corollary 2.8 says that Z (J) and £ {J) are permutable. Thus,

from the general theory of universal algebra ( [3 , §19, p . 120]), the map

a'—*• ([a]Z (I), [a]Z (</)) i s an isomorphism of L onto the direct product

L/Z (J) x L/Z (J) . Under t h i s map x* v x** and 1 both correspond to

( l , l ) and so x* V x** = 1 . That i s , L € B and so (xi) implies

(i). •

COROLLARY 3.3. Let J be a congruence-kernel in a Stone lattice

L . Then, x = y [H(J)) , (x, y 6 L) , if and only if

(x v a)** = (y v a)** for some a € J .

Proof. By the previous theorem, R permutes with GT (.J) = Q{J)
.Lat

and so B(J) = R o Q (j) (Theorem 1.6 (iv)). Thus x = y[R{J)) implies

that x** = z** and z v a = y v a for some a Z J . In any Stone

l a t t i c e , (e v t)** = s** v t** i s an ident i ty , and so we obtain

(x v a)** = (y v a)** for some a € <7 . The converse follows from the

same ident i ty and Theorem 1.6 (Hi). •
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