BOUNDS FOR THE ASYMPTOTIC GROWTH RATE OF AN AGE-DEPENDENT BRANCHING PROCESS

P. J. BROCKWELL

(Received 22 April 1968)

Let $M(t)$ denote the mean population size at time t (conditional on a single ancestor of age zero at time zero) of a branching process in which the distribution of the lifetime T of an individual is given by $\Pr \{T \leq t\} = G(t)$, and in which each individual gives rise (at death) to an expected number A of offspring ($1 < A < \infty$). Then it is well-known (Harris [1], p. 143) that, provided $G(0+) - G(0-) = 0$ and G is not a lattice distribution, $M(t)$ is given asymptotically by

$$M(t) \sim \frac{A-1}{cA^2 \int t e^{-ct} dG(t)} e^{ct}, \quad t \to \infty,$$

where c is the unique positive value of p satisfying the equation

$$\int e^{-pt} dG(t) = A^{-1}.$$

In many biological problems the distribution function G is not known precisely and it is of interest to find bounds for the asymptotic growth rate c (sometimes known as the Malthusian parameter for the population), given only that

(a) $$\int t dG(t) = m_1,$$

or

(b) $$\int t dG(t) = m_1 \quad \text{and} \quad \int t^2 dG(t) = m_2,$$

where $m_1, m_2 < \infty$.

In this note we shall find the best possible bounds for c under these conditions and, in the course of the derivation, determine the functions (defined for all real non-negative values of p) $\sup_{p \in \mathcal{F}} \Phi(F, p)$ and $\inf_{p \in \mathcal{F}} \Phi(F, p)$, where $\Phi(F, p) = \int e^{-pt} dF(t)$ and \mathcal{F} represents one or other of the classes of probability distribution functions:

1 Work performed under the auspices of the United States Atomic Energy Commission.
Bounding techniques for branching processes have been used previously by Heathcote and Seneta [2], Senate [3] and Brook [4]. Lemmas 2 and 3 below were used by Brook to obtain an upper bound for the extinction probability.

Before deriving the results, which are given as a series of lemmas, we note that if \(F \) is the distribution function of a proper non-zero non-negative random variable and

\[
0 < n(F, p) < \infty, \quad \log n(F, p)
\]

is strictly decreasing and convex for \(p \geq 0 \).

It will be assumed throughout that \(m_1 > 0 \) since Lemmas 1—3 are trivial if \(m_1 = 0 \).

Lemma 1.

\[
\inf_{F \in \mathcal{F}(m_1)} \Phi(F, p) = \inf_{F \in \mathcal{F}(m_1, m_2)} \Phi(F, p) = e^{-m_1 p}, \quad 0 \leq p < \infty.
\]

Proof. (i) We first show that \(e^{-m_1 p} \leq \Phi(F, p) \) for all \(F \in \mathcal{F}(m_1) \). Denote by \(D_p \) the operator \(d/dp \). Then since \(\log \Phi(F, p) = 0 \) at \(p = 0 \) and \(D_p \log \Phi(F, p) = -m_1 \) at \(p = 0 \) it follows from the convexity of \(\log \Phi(F, p) \) that \(\log \Phi(F, p) \geq -m_1 p \) for all \(p \geq 0 \).

(ii) By choosing \(\alpha \) sufficiently small in the example

\[
F(t) = \begin{cases}
0, & t < m_1 - \sigma[(1-\alpha)]^\frac{1}{2} \\
1 - \alpha, & m_1 - \sigma[(1-\alpha)]^\frac{1}{2} \leq t < m_1 + \sigma[(1-\alpha)]^\frac{1}{2} \\
1, & t \geq m_1 + \sigma[(1-\alpha)]^\frac{1}{2},
\end{cases}
\]

(where \(\sigma = (m_2 - m_1^2)^\frac{1}{2} \)) we see that for any given non-negative \(p \) and positive \(\epsilon \) there exists \(F \in \mathcal{F}(m_1, m_2) \) such that \(\Phi(F, p) - e^{-m_1 p} < \epsilon \).

Remark. The example given in (ii) also shows that the infima are unchanged when taken over the subclass of \(\mathcal{F}(m_1, m_2) \) in which \(F(0+) - F(0-) = 0 \) and \(F \) is a non-lattice distribution.

Lemma 2.

\[
\sup_{F \in \mathcal{F}(m_1)} \Phi(F, p) = 1, \quad 0 \leq p < \infty.
\]

Proof. We need only show that for any given non-negative \(p \) and positive \(\epsilon \) there exists \(F \in \mathcal{F}(m_1) \) such that \(1 - \Phi(F, p) < \epsilon \). Such an \(F \) is obtained by choosing \(\alpha \) sufficiently small in the following example:
LEMMA 3.

\[
\sup_{F \in \mathcal{F}(m_1, m_2)} \Phi(F, \rho) = 1 - \frac{m_1^2}{m_2} + \frac{m_1^2}{m_2} \exp \left(- \frac{m_2 \rho}{m_1} \right), \quad 0 \leq \rho < \infty.
\]

PROOF. (i) We first establish the inequality,

\[
\chi(F, \rho) \equiv \Phi(F, \rho) - 1 + \frac{m_1^2}{m_2} - \frac{m_1^2}{m_2} \exp \left(- \frac{m_2 \rho}{m_1} \right) \leq 0.
\]

Since at \(\rho = 0 \) there is equality in (3) it will be sufficient to show that \(D_\rho \chi(F, \rho) \leq 0 \) for all non-negative \(\rho \), or equivalently that

\[
\rho(F, \rho) \equiv \log \Phi(F, \rho) - \log m_1 + m_2 \rho/m_1 \geq 0.
\]

Since \(\rho(F, \rho) = 0 \) at \(\rho = 0 \) and \(D_\rho \rho(F, \rho) = 0 \) at \(\rho = 0 \) it follows from the convexity of \(\rho(F, \rho) \) that \(\rho(F, \rho) \geq 0 \) for all \(\rho \geq 0 \). This establishes the inequality (3).

(ii) If \(m_2 = m_1^2 \) the assertion of the lemma is trivial since in this case

\[
\sup_{F \in \mathcal{F}(m_1, m_2)} \Phi(F, \rho) = \exp(-m_1 \rho).
\]

If \(m_2 > m_1^2 \) then by choosing \(\alpha \) sufficiently small (\(\alpha > 0 \)) in the example,

\[
F(t) = \begin{cases}
0, & t < m_1 - \sigma[(m_1^2-m_2 \alpha)(\sigma^2+m_2 \alpha)^{-1}]^{1/2}, \\
1 - \frac{m_1^2}{m_2} + \alpha, & m_1 - \sigma[(m_1^2-m_2 \alpha)(\sigma^2+m_2 \alpha)^{-1}]^{1/2} \leq t < m_1 + \sigma[(\sigma^2+m_2 \alpha)(m_1^2-m_2 \alpha)^{-1}]^{1/2}, \\
1, & t \geq m_1 + \sigma[(\sigma^2+m_2 \alpha)(m_1^2-m_2 \alpha)^{-1}]^{1/2},
\end{cases}
\]

(where \(\sigma = (m_2-m_1^2)^{1/2} \)) we see that for any given non-negative \(\rho \) and positive \(\varepsilon \) there exists \(F \in \mathcal{F}(m_1, m_2) \) such that

\[
1 - \frac{m_1^2}{m_2} + \frac{m_1^2}{m_2} \exp \left(- \frac{m_2 \rho}{m_1} \right) \Phi(F, \rho) < \varepsilon.
\]

REMARK. The examples given in the proofs of Lemmas 2 and 3 show that the suprema are unchanged when the further restrictions are imposed that \(F(0^+) - F(0^-) = 0 \) and that \(F \) be a non-lattice distribution.

LEMMA 4. If \(A > 1, G(0^-) = G(0^+) = 0, G \) is a non-lattice distribution, and \(c(G) \) is the unique positive root of equation (2), then
\[\inf_{G \in \mathcal{F}(m_1)} c(G) = \frac{\log A}{m_1}, \quad \sup_{G \in \mathcal{F}(m_1)} c(G) = \infty, \]

\[\inf_{G \in \mathcal{F}(m_1, m_2)} c(G) = \frac{\log A}{m_1}, \quad \sup_{G \in \mathcal{F}(m_1, m_2)} c(G) = \begin{cases} \frac{m_1 \log m_2 A}{m_2 A - m_2(A-1)} & \text{if } m_2^2 A > m_2(A-1), \\ \infty & \text{if } m_1^2 A \leq m_2(A-1). \end{cases} \]

Proof. If \(G \in \mathcal{F}(m_1) \) satisfies the conditions of the lemma then we know from Lemma 1 that \(\Phi(G, \hat{\rho}) \geq \exp (-m_1 \hat{\rho}) \), and in particular \(\Phi(G, c(G)) = A^{-1} \geq \exp [-m_1 c(G)] \). Hence \(c(G) \geq m_1^{-1} \log A \). Furthermore given any \(\epsilon > 0 \) it follows from Lemma 1, since \(\exp (-m_1 \hat{\rho}) < A^{-1} \) if \(\hat{\rho} = m_1^{-1} \log A + \epsilon \), that there exists \(G \in \mathcal{F}(m_1, m_2) \) satisfying the conditions of Lemma 4 such that \(\Phi(G, m_1^{-1} \log A + \epsilon) < A^{-1} \). Since \(\Phi(G, \hat{\rho}) \) is a decreasing function of \(\hat{\rho} \) this inequality implies that \(c(G) < m_1^{-1} \log A + \epsilon \). This establishes the infima as given in the statement of the lemma. The suprema are established in an analogous way from Lemmas 2 and 3.

It is interesting to observe that specification of only the mean of \(F \) gives no finite upper bound for \(c \). Specification of the second moment as well as the mean gives an upper bound for \(c \) only if the coefficient of variation is sufficiently small (i.e., only if \(m_1^{-1}(m_2 - m_1) \leq (A - 1)^{-1} \)). A large coefficient of variation allows the probability of a lifetime near zero to become too great for \(c \) to be bounded above.

In terms of a specified mean, \(m_1 \), and coefficient of variation \(\nu \), Lemma 4 gives

\[\log A \leq m_1 \nu \leq \frac{1}{1+\nu^2} \log \frac{A}{1-(A-1)^{-1}}. \] (4)

For reasonably small values of \(\nu \) (as frequently occur in biological problems) these bounds are rather close. For example in the particular case \(A = 2 \), we obtain the following bounds for various values of \(\nu \):

\[\begin{array}{llll}
\nu = 0.2, & 0.693 \leq m_1 \nu \leq 0.706; \\
\nu = 0.4, & 0.693 \leq m_1 \nu \leq 0.748; \\
\nu = 0.6, & 0.693 \leq m_1 \nu \leq 0.838; \\
\nu = 0.8, & 0.693 \leq m_1 \nu \leq 1.046; \\
\nu = 1.0, & 0.693 \leq m_1 \nu \leq \infty. \\
\end{array} \]

We note finally that for given \(A \) and \(m_1 \) the least upper bound for \(c \) increases monotonically to \(\infty \) as \(\nu \) increases from zero to \((A-1)^{-1} \). Consequently if we specify that the mean lifetime be \(m_1 \) and that the coefficient of variation satisfy the inequality \(\nu \leq \nu_0 < (A-1)^{-1} \), then the best bounds which can be given for \(c \) are obtained from (4) on setting \(\nu = \nu_0 \).
Acknowledgement

I am indebted to Dr. E. Trucco who raised this problem in connection with its biological applications and to the referee for several helpful comments.

References

Argonne National Laboratory
Argonne, Illinois