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NUMERICAL STUDY OF FISHER'S EQUATION
BY A PETROV-GALERKIN FINITE ELEMENT METHOD
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Abstract

Fisher's equation, which describes a balance between linear diffusion and non-
linear reaction or multiplication, is studied numerically by a Petrov-Galerkin finite
element method. The results show that any local initial disturbance can propagate
with a constant limiting speed when time becomes sufficiently large. Both the
limiting wave fronts and the limiting speed are determined by the system itself and
are independent of the initial values. Comparing with other studies, the numerical
scheme used in this paper is satisfactory with regard to its accuracy and stability.
It has the advantage of being much more concise.

1. Introduction

Fisher [4] introduced the equation

u, = auxx + Pu(l-u) (1)

to describe the propagation of a virile mutant in an infinitely long habitat.
It also represents a model equation for the evolution of a neutron popula-
tion in a nuclear reactor [1,2] and a prototype model for a spreading flame
[7, 13].

Equation (1) includes the effects of linear diffusion via uxx and nonlinear
local multiplication or reaction via u( 1 - u).
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(1) becomes

UT = U(( + « ( ! - « ) • (2)

We look for a steady-state travelling-wave solution of (2); that is

««?,T) = !<«;-«).

A theoretical analysis (see, for example, [10]) predicts that c > 2. Further-
more, when c = 2, the state will be stable, as Kolmogoroff et al [7] proved.

Gazdag and Canosa [5] have obtained numerical solutions of (2) using
a pseudo-spectral approach and they show that if initial propagating waves
with speed c > 2 are specified, the speed will change into the minimum value
c = 2, and the final wave shape will be independent of the initial values.

Evans and Sahimi [3] used an AGE (alternating group explicit) iterative
method to solve the reaction-diffusion equation

ut = Xuxx + nu2(l-u) (3)

and have obtained satisfactory results, of a qualitatively similar nature.
Both numerical schemes mentioned above are quite complicated and the

pseudo-spectral approach always causes unexpected high-frequency oscilla-
tions, which must be filtered out at each time step.

Tang [11] introduced a Petrov-Galerkin FEM (finite element method) to
solve dispersive wave equations, such as the Korteweg-deVries equation [11],
the modified Korteweg-deVries equation [9], the regularised long wave equa-
tion [12], the rotation-modified Kadomtsev-Petviashvilli equation [6] and the
forced Kadomtsev-Petviashvilli equation (Tang and Smyth, a private com-
munication) with satisfactory accuracy, stability and conciseness.

Recently, we have expanded the use of this method to solve reaction-
diffusion equations. Here, we describe the numerical scheme, using Fisher's
equations as an example, and we present some interesting results.

2. Numerical scheme

The problem to be solved is

ut-auxx-fiu{l-u) = 0, -l<x<l, t>0, (4a)

u(x,O) = uo(x), (4b)

( x , 0 = 0. (4c)
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Define a piecewise linear function (j>{x) and a cubic-spline function y/(x)
by

1-1*1, 1*1 < 1 ,
0, \x\
0, x<-2,

-2<x<-\,

- I1
2)3/6,

6 J C 2 - 4 ) / 6 , -

-(x-2)3/6, K*<2,

10, x>2.

The space (-1,1) is then discretised, with the node points being

where h = 21/N is the spacing between node points.
As interpolating functions we use

and as weighting (test) functions we use

We now let
U(x,t) = UJ(t)<t>j(x) ; = ! , .

and

stand for the terms linear in u and the nonlinear u2 term, respectively.
The Einstein summation convention is assumed in these equations and in all
following equations unless explicitly stated. Substituting into (4a) yields the
error e{x,t) of our numerical approximation:

JJ fi jj Jtj = e(x, 0 (5)
where ' and ' stand for derivatives with respect to t and x, respectively.

We then take the inner product of (5) with the weighting function yi, and
let (e, v',) = 0. This requires the error, due to discretisation, to vanish in
the mean.

Considering (4c), and after integration by parts, we get

MU °j - j) Uj (6)
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where

1,
13/33,
1/66,

o,

J = '
j = i + l

j = i±2

otherwise

= -{QlJ + fiMr)

^ 20a
2lJ Uh2

• »u =

— 1 >

1/3,
1/6,

. o,

fiMr.

j = i>

J = i±U

j = i±2,

otherwise.

MiJ =

In (6) let

Then we can rewrite (6) as

Using the trapezoidal rule to integrate this nonlinear ODE system yields

MrU
n+ = MrU" — •=\Lj.(U"+ + U") + Nr |(Un+ ) + (Un) \\ , (8)

where T = time step, U" = Uj(rn).
Equation (8) is a nonlinear system of algebraic equations which is solved

by the Newton-Raphson iteration procedure as follows. Begin by denning

(7)

Uj+1'k = value of Uj+l at fcth iteration,

and

[Note: Hereafter Ni};UjVj means Nt,Wj , where W. = I)'. x V. and no sum-
mation convention is used in calculating W..] Substituting into (8) yields
the linear system of algebraic equations

or in a simplified notation

(9)

(10)

From the initial condition uQ(x) we know U® = uo(Xj), and we take UJ'1 =

U®, so we can get UJ'2 , and so on, until

\Uj ' + j,' | < S (= 10 in our program).

This gives UJ = UJ' +1 as output, which are then used as the initial values

for calculating Uj , and so on. In this way we get U" step by step. Remember

U" are just the numerical values of u{x,, nz).
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Atj is a banded and diagonally dominant matrix with bandwidth 5, and
hence (10) can be solved by Gaussian elimination.

Now we consider the consistency and accuracy of our numerical scheme.
Let

R(u) = (20/n)[u,-auxx-fiu{l - «)], (11)
where R is the differential operator in (4a) multiplied by a constant 20/11,
which is needed to make the main elements of M^ unity. Also let

D{u) = MuUj + LtJUj + NUUJ, (12)

in which D is the operator for the discretisation of space in (7). Using the
Taylor expansions

n=0
5 A")

for Uj, Uj and UJ (which are the values of Ut(x, t), U(x, t) and U2(x, t)
at the nodal point Xj at instant t), some straightforward calculations yield

D(u) - R(u) = (5/ll)[R(u)]xxjh
2 + O(h4) (13)

where [R(u)]xxj are the second order partial derivatives of R(u) with respect
to x calculated at Xj, and are, of course, equal to zero. Therefore, the

truncation error in space discretisation is of the order O(h4). In other words,
D(u) is consistent with R(u) when h goes to zero and has fourth order
accuracy.

On the other hand, it is well known that the trapezoidal rule in numerical
integration in t has truncation error O(r2). Putting them together, our
numerical scheme is consistent with (4a) and has accuracy 0{x2, hA). If the
Runge-Kutta method was used in integrating with respect to t, the accuracy
could be raised to O(T 4 , h4).

It can also be shown that the linearised version of our scheme in which
M2 is replaced by uou with constant u0 e (0, 1), is stable unconditionally,
but it is of no use for our nonlinear problem, so the details are omitted.
Various numerical experiments with T and h varying in a large range were
performed to demonstrate the stability of our scheme.

3. Numerical results

For all the cases shown we set a = 0.1, 0 = 1.0, h = 0.02, T = 0.005.
The space scale / is adjusted to ensure that there is sufficient space for waves
to propagate.
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Two kinds of local initial values were used:
2,

with a sharp peak in the middle, and
, 1O(JC+I)

uo(x) = I 1, -Kx<l,

[6]

(A)

(B)

with a flat roof in the middle.
For both cases (A) and (B), the contour plots of u at different t are shown

in Figures 1 to 6.
Figure 1 is for case (A) for a short period of time, showing the results from

t = 0 to t = 0.2 with an increment At = 0.05 . At the very beginning, near
x = 0, uxx < 0 with a large absolute value, but the reaction term u{\ - u)
is quite small, that is, the effect of diffusion dominates over the effect of
reaction, so the peak goes down rapidly and gets flatter. A linearised analysis
verifies this behaviour analytically.

Figure 2 is also for case (A), but the period of time is from t = 0 to
t = 5 with At = 0.5 . It shows that after the peak of the contour arrives at
the lowest level, the reaction term dominates the diffusion (gradually), so it
begins to go up and flatten itself until, at the top, u = 1.

u(x, 0 ° F

FIGURE 1. Contour plots of u{x, t) for the case (A) from t = 0 to / = 0.2 with to = 0.05 .
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u(x,t) 5 F

-10

FIGURE 2. Contour plots of u(x, t) for the case (A) from t = 0 to t = 5 with At = 0.5 .

" (x, t) 5 p

-40 -20 o

x

20 40

FIGURE 3. Contour plots of u(x, t) for the case (A) from / = 0 to t = 40 with At = 2 .

Figure 3 is still for case (A), but it is for the period of time t = 0 to
t = 40, with At = 2. It shows that, after the peak has returned to its original
position M = 1, the contour on the top becomes flatter and flatter. So, after
a long time, the contour looks like a bell with a flat top and very steep lateral
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sides, which propagate to the left and right symmetrically. The wave fronts
(i.e. the lateral sides) approach a fixed shape and their propagating speed
approaches a constant value c. Because the height of the contour is 1, we
can use half of the area under the contour to define the position of the wave
fronts in the mean in the x-direction. The values of the speed calculated
in this way at different t keep on growing: at f = 36, 38 and 40, they are
0.61906, 0.61983 and 0.62053; and they are approaching the steady-state
value of 2\fafi = 0.63246, corresponding to our choice of a = 0.1 and
0 = 1.0.

Figures 4, 5 and 6 show the stages of development of case (B). In contrast
with case (A), Figure 4 shows, at the first stage, in the middle part, that
both the effects of diffusion and reaction are very small, and the contours get
rounded only at the edges, where the diffusion effects are larger than anywhere
else. Affected by these, we can see in Figure 5 that the whole contour goes
down a little bit, and then comes up. However, when time becomes large,
Figure 6 shows that the limiting contour is almost the same as in case (A).
This demonstrates that the limiting wave fronts and their propagating speed
do not depend upon the initial values.

Finally, in Figure 7 we show the results for the initial condition

(c)

u(x,t) 5 p

FIGURE 4. Contour plots of u(x, t) for the case (B) from t = 0 to t = 0.2 with At = 0.05 .

https://doi.org/10.1017/S0334270000008602 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000008602


[9] Numerical study of Fisher's equation 35

u(x,t) 2 p

FIGURE 5. Contour plots of u(x, t) for the case (B) from t = 0 to t = 5 with At = 0.5 .

u(x,t)

•40

FIGURE 6. Contour plots of u{x, t) for the case (B) from t = 0 to t = 40 with Af = 2 .

which demonstrates how any small initial disturbance will also grow in time.
This is because u = 0 is an unstable equilibrium state of (1).

From all the figures shown, during the running of 8,000 time steps, we
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u(x,t) 5 F

FIGURE 7. Contour plots of u(x, t) for the case (C) from t = 0 to t = 40 with At = 2.

could find no high frequency oscillatory tails caused by numerical errors,
which is in contrast to what was reported by Smith [8] and Gazdag and
Canosa [5] for their numerical methods. It shows that our numerical scheme
is satisfactory in both accuracy and stability. Furthermore, comparing with
both the pseudo-spectral and the AGE methods, the conciseness of our nu-
merical scheme is quite obvious, as our Fortran program only takes two pages,
including the standard subroutine of Gaussian elimination.

The reaction-diffusion equation (3) was also solved using our numerical
scheme. In appearance, the contour plots for the reaction-diffusion in (3)
are quite similar to those for Fisher's equation (1). But, if we use the initial
condition (A), since the reaction near x = 0 is less than that for Fisher's
equation, the peak of u goes down rapidly and comes up slowly. On the other
hand, the wave fronts approach their limiting shape and propagating speed,
(which equals 0.2236 when A = 0.1 and n = I were chosen), much slower
for the reaction-diffusion equations (3) than they did for Fisher's equation

(1).

4. Conclusions

1. Fisher's equation, due to the balance of diffusion and multiplication,
makes any local disturbance grow to the steady-state solution, u = 1,
which replace u = 0 (a quasi-steady state) gradually. The interfaces
between the two states (wavefronts) propagate with a constant limit-
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ing speed c = 2\[afi, which is determined by the system itself and
is not affected by initial values.

2. In comparison with existing numerical schemes used to solve Fisher's
equation, the scheme in this paper is an improvement in terms of
stability and conciseness; and it has comparable accuracy.

3. This method, with some modifications, seems to be easily extended
to solve model equations including more mechanical, physical or bio-
physical effects, such as nonlinear convection, reaction, linear diffu-
sion and dispersion.
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