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We introduce a geometric analysis of turbulent mixing in density-stratified flows based on
the alignment of the density gradient in two orthogonal bases that are locally constructed
from the velocity gradient tensor. The first basis connects diapycnal mixing to rotation
and shearing motions, building on the recent ‘rortex–shear decomposition’ in stratified
shear layers (Jiang et al., J. Fluid Mech., vol. 947, 2022, A30), while the second basis
connects mixing to the principal axes of the viscous dissipation tensor. Applying this
framework to datasets taken in the stratified inclined duct laboratory experiment reveals
that density gradients in locations of high shear tend to align preferentially (i) along the
direction of minimum dissipation and (ii) normal to the plane spanned by the rortex and
shear vectors. The analysis of the local alignment across increasingly turbulent flows offers
new insights into the intricate relationship between the density gradient and dissipation,
and thus diapycnal mixing.
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1. Introduction

The physics-based parametrisation of turbulent mixing in density-stratified flows is
a fundamental challenge in geophysical and environmental fluid dynamics (Caulfield
2020; Dauxois et al. 2021). This challenge requires an understanding of the small-scale
mechanisms that drive transport and irreversible mixing across isopycnals (Gregg et al.
2018). These mechanisms rely on the interaction between the velocity and scalar fields.
In the past, the strain-rate tensor has been used to analyse the geometry of dissipation in
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shear flows (see e.g. Ashurst et al. 1987). The alignment of the principal directions of the
strain-rate tensor with the scalar gradient plays a crucial role in the small-scale mixing
and cascade processes (Garcia, Gonzalez & Paranthoën 2005). In the context of sheared
stratified turbulence, Smyth (1999) investigated how the direction of the scalar gradient
aligns with the principal directions of the time-varying strain-rate tensor during the
development of Kelvin–Helmholtz instability. Unlike previous numerical studies relying
on the strain-rate tensor, the present work uses three-dimensional (3-D) experimental
datasets and the pseudo-dissipation tensor (to be defined in § 2.4) to study the alignment
statistics with the scalar gradient.

Using simultaneous 3-D velocity and density data in the ‘stratified inclined duct’
(SID) laboratory experiment, Jiang et al. (2022) analysed the morphology of coherent
(Eulerian) vortical structures and their evolution from preturbulent Holmboe waves to fully
developed sheared turbulence. They explained how turbulent hairpin vortices across the
density interface engulf unmixed fluid into the stratified interface, while vortices within
the shear layer generate further stirring and small-scale shear, enhancing irreversible
mixing. Although significant emphasis has been placed on understanding the interaction
between vortices and stratification in previous research (see also Watanabe et al. 2019),
the alignment of velocity and density gradients under different shear strengths, and the
connection with viscous dissipation, remain unclear.

The objective of this paper is to tackle these issues by using the same datasets as Jiang
et al. (2022) and quantifying the relation between kinematic rotational and shearing flow
structures and the dynamics and energetics of the flow, an open question (Riley 2022)
essential to improve parametrisations. Specifically, we will address the two following
questions. First, how is viscous dissipation connected to the homogenisation of the density
field that indicates mixing? Second, how do shear and rotation, the building blocks of
vorticity, contribute distinctively to the mixing of the density field? To answer these
questions, we investigate the local geometric alignment of the density gradient with
characteristic directions associated with the local viscous dissipation tensor and with the
rotation and shear vectors.

In § 2 we introduce our experimental datasets and new geometric framework consisting
of two local orthogonal bases constructed from the velocity gradient tensor. We quantify
the alignment of the density gradient in the first basis (spanned by viscous dissipation
eigenvectors) in § 3.1, and in the second basis (spanned by shear and rotation vectors) in
§ 3.2. We then study in § 3.3 how this alignment varies under increasing turbulent intensity,
and in § 3.4 examine the link between alignment and a standard mixing coefficient in the
most turbulent flow, emphasising the physical insights gained. Finally, we conclude in § 4.

2. Methodology

2.1. Experiment and data processing
We collected data in the SID experiment (sketched in figure 1) in which a salt-stratified,
shear-driven flow is sustained in a square duct of length 1350 mm and cross-section
H = 45 mm (aspect ratio 30) connecting two reservoirs of different densities ρ0 ± �ρ/2,
giving an Atwood number At ≡ �ρ/(2ρ0). The duct can be tilted at a small angle θ

with respect to the horizontal to add an along-duct gravitational forcing and increase
turbulence levels. This experiment has been described in more detail in Meyer & Linden
(2014) and Lefauve & Linden (2020). The data acquisition and processing pipeline,
originally introduced in Lefauve & Linden (2022a) (§ 3.3), comprises four steps illustrated
in figure 1.
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Figure 1. Set-up with the four-step data acquisition and processing pipeline, transforming volumetric velocity
and density measurements into non-dimensional ‘shear-layer’ datasets with a peak-to-peak velocity jump,
density jump, and shear-layer height of 2.

In step 1, we simultaneously measure the time-resolved, 3-D density field ρd(xd, td)
and three-component velocity field ud = (ud, vd, wd)(xd, td) using scanning laser-induced
fluorescence and stereo particle image velocity (Partridge, Lefauve & Dalziel 2019). The
superscript d highlights that the data are still in the original dimensional units. The xd-axis
is aligned locally with the duct, making the zd-axis tilted at an angle θ with respect to
the true vertical (defined by the direction of gravity g), while the yd-axis is the spanwise
direction.

In step 2, the velocity u and density ρ − ρ0 are then averaged in xd and in td, yielding
three key profiles: the vertical profile of the streamwise velocity, ud(zd) (in red), sampled
at yd = 0, the vertical profile of density, ρd(zd) (in grey), also sampled at yd = 0, and
the spanwise profile of the streamwise velocity, ud( yd) (in blue), sampled at the height
corresponding to maximum flow speed, zd

max.
In step 3, all data are then non-dimensionalised. For length we use half the shear-layer

height hu/2 (measured from the locations of minimum to maximum ud(zd)), for velocity
we use half the peak-to-peak velocity jump δu/2, as shown in the figure, and for density
we use half the fixed maximum density jump �ρ/2. This restricts all non-dimensional
shear-layer variables zs, us, ρs between −1 and 1, and is consistent with the following
Reynolds and bulk Richardson numbers, respectively,

Re ≡
(

hu

2
δu

2

)/
ν, Rib ≡ g

ρ0

�ρ

2
hu

2

/(
δu

2

)2

. (2.1a,b)

Note that salt stratification yields a large Prandtl number Pr ≡ ν/κ ≈ 700, where ν is the
kinematic viscosity of water and κ the diffusivity of salt. The thickness of the density
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interface, defined as the spacing between the values ρd = ± tanh(1) = ±0.76, becomes
2/Rh, where Rh is the thickness ratio between the shear layer and the density interface.
This step allows datasets obtained in flows at different values of �ρ (or Atwood number
At) and tilt angle θ to be compared side-by-side with accurate non-dimensional parameters
based on the actual measured velocity profiles.

In step 4, we define the shear layer as the region |zs| ≤ 1 and |ys| ≤ Ly (where 2Ly is
the central portion where |us| > 0.7) and discard the regions outside this. This step avoids
including wall-bounded, unstratified flow (inherent to this experiment) in our statistical
analysis of the interfacial, shear-driven stratified flow data of interest to this paper. In the
remainder of the paper, we drop the s superscripts and use shear-layer variables throughout.

2.2. Dataset
The dataset, described in Lefauve & Linden (2022a) and freely available in Lefauve &
Linden (2022c), includes 15 experiments with increasing levels of turbulent intensity,
controlled by the product of the tilt angle θ and Reynolds number Re. The data comprise
four flows in the Holmboe regime (H1–H4), showing small-scale, travelling waves whose
scouring motion maintain a relatively sharp density interface Rh ∈ [7.2, 11.3]; eight flows
in the intermittently turbulent regime (I1–I8) with bursts of increasingly longer-lived
turbulence whose overturning mixing results in a thicker interface (Rh ∈ [2.2, 5.8]); and
three flows in the turbulent regime (T1–T3), where the flow never relaminarises and the
density interface is thickest (Rh ∈ [1.8, 2.1]).

Our analysis focuses on two typical cases: H1, a Holmboe wave flow at
(θ, Re, Rib, Rh) = (1◦, 381, 0.567, 8.9); and T3, a vigorously turbulent flow at
(θ, Re, Rib, Rh) = (5◦, 1145, 0.147, 1.9). For detailed parameters of these and the
remaining datasets used in this paper, see Lefauve & Linden (2022a, table 1).

2.3. Vorticity decomposition and structural coordinates
We build on the kinematic analysis of Jiang et al. (2022) using the local and instantaneous
rortex–shear decomposition of vorticity ∇ × u ≡ ω = R + S, appropriate when ∇u has
only a single real eigenvalue. The ‘rortex vector’, capturing rigid-body rotation, is defined
as (Gao & Liu 2019)

R ≡
⎛
⎝1 −

√
1 − 4λ2

ci

(ω · r̂)2

⎞
⎠ (ω · r̂)r̂ = Rr̂, (2.2)

where r̂ and λci are, respectively, the local unit real eigenvector and imaginary part of
the complex-conjugate pair of eigenvalues of the velocity gradient tensor ∇u. Points
where such a complex-conjugate pair does not exist have no local rigid-body rotation
and are thus excluded from our analysis. The remaining vorticity S ≡ ω − R is the called
‘shear vector’ (with magnitude S) as it is dominated by shearing motions (especially in
SID where turbulence is fed by a sustained background shear). Since the shear S is not
necessarily perpendicular to R, it can be further decomposed into ‘rotational shear’ Sr =
(S · r̂)r̂ (aligned with R) and a residual ‘non-rotational shear’ Sn = S − Sr, as shown in
figure 2(a). We define the total rotation as Rt ≡ R + Sr and construct the right-handed
orthonormal basis (n̂, r̂, f̂ ) based on the unit non-rotational shear and rotation vectors

n̂ = Sn

|Sn| , r̂ = Rt

|Rt| , f̂ ≡ n̂ × r̂. (2.3a–c)
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Figure 2. Sketch of the orthogonal bases (a) (n̂, r̂, f̂ ) based on rigid-body rotation r̂ in the velocity gradient
tensor and non-rotational vorticity n̂; (b) (d̂1, d̂2, d̂3) based on the eigendirections of the pseudo-dissipation
tensor. In (a), the red dashed arrow labelled ur represents velocity induced by rigid-body rotation and the
green band labelled un represents the likely velocity distribution induced by the non-rotational shear. In (b),
the shaded cones represent the typical range of alignments found in our results.

2.4. Directions of dissipation
To gain dynamical information, we define the local and instantaneous pseudo-dissipation
tensor (analogous to the left Cauchy–Green tensor in solid mechanics):

D ≡ 2
Re

∇u · ∇uT or Dij ≡ 2
Re

∂ui

∂xk

∂uj

∂xk
. (2.4)

There is a close relation between the rate of kinetic energy dissipation typically used
in the stratified turbulence literature ε ≡ (2/Re)E : E (where E ≡ (∇u + ∇uT)/2 is the
strain-rate tensor) and the pseudo-dissipation ε̃ ≡ (1/Re)∇u : ∇u (Pope 2000, § 5.3),
namely

ε̃ = 1
2

tr(D) = 1
Re

∂ui

∂xj

∂ui

∂xj
= ε − 1

Re
∂ui

∂xj

∂uj

∂xi
≈ ε. (2.5)

Our motivation for using D (rather than E) to study dissipation in this paper is that D
is closely related to the eigenbasis of ∇u, upon which structural identification schemes
are often built, like the above rortex–shear decomposition. The advantage of D is that
(unlike ∇u) it is symmetric positive semi-definite and therefore has three real non-negative
eigenvalues λ1 ≥ λ2 ≥ λ3 ≥ 0, such that ε̃ = (λ1 + λ2 + λ3)/2, and an associated basis of
real, orthogonal unit eigenvectors (d̂1, d̂2, d̂3), sketched in pink in figure 2(b).

The interpretation of this basis is provided by the unique polar decomposition ∇u =
V · R, where R is the rotation tensor (a proper-orthogonal tensor) and V is the left
stretch tensor (a real, symmetric, positive semi-definite tensor; Spencer 1980, § 9.2).
Since R is orthogonal then D = 2

ReV 2 and V has the same eigenvectors as D with
associated eigenvalues

√
Reλi/2. The linear transformation δu = ∇u · δx (the first order

change of velocity a small δx away) is decomposed into a rotation followed by a
local stretch (if

√
Reλi/2 > 1) or compression (if

√
Reλi/2 < 1) along the basis vectors

d̂i. As the dissipation equals (half) the sum of these principal stretches squared, we
interpret d̂1, d̂2, d̂3 as representing the directions of maximum, intermediate and minimum
dissipation, respectively.

According to Wu, Ma & Zhou (2016), the dissipation is related to the stress resulting
from the surface deformation rate, which constitutes a viscous resistance to changes in the
direction and area of surface elements. Therefore, the maximum (minimum) dissipation
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direction can be seen as the axis along which fluid elements can efficiently (inefficiently)
dissipate kinetic energy through cumulative effects of stretching (or compression) and
rotation.

2.5. Density-gradient ratios

We define the ‘dissipation angles’ as ζi ≡ ∠(∇ρ, d̂i), with i = 1, 2, 3, and the ‘structure
angles’ as ζφ ≡ ∠(∇ρ, φ̂), with φ̂ = n̂, r̂, f̂ . The density gradient can then be
decomposed either along the directions of dissipation defined by the unit vectors
(d̂1, d̂2, d̂3),

∇ρ =
∑

i=1,2,3

∇ρi, where ∇ρi = |∇ρ| cos(ζi)d̂i, (2.6)

or along the structural direction as

∇ρ =
∑

φ=n,r,f

∇ρφ, where ∇ρφ = |∇ρ| cos(ζ φ)φ̂. (2.7)

In (2.6), each component ∇ρi can be further decomposed along (n̂, r̂, f̂ ):

∇ρi =
∑

φ=n,r,f

∇ρ
φ
i , where ∇ρ

φ
i = (∇ρi · φ̂)φ̂. (2.8)

The 12 components in (2.6) and (2.8) encode the alignment of the density gradient with
6 physically meaningful directions corresponding to dissipation and rotation/shear. We
propose the following 3 + 3 + 9 = 15 squared-density-gradient ratios (SDGRs):

Mi ≡ |∇ρi|2
|∇ρ|2 = cos2 ζi, M φ ≡ |∇ρφ|2

|∇ρ|2 = cos2 ζφ, M φ
i ≡ |∇ρ

φ
i |2

|∇ρi|2 . (2.9a–c)

Here, repeated indices do not imply summation; where summation is required, we use
explicitly

∑
j. The last nine SDGRs encode the projection of (d̂1, d̂2, d̂3) in (n̂, r̂, f̂ ) and

M φ
i is related to the rotation matrix T iφ between these bases. The use of orthonormal

bases implies that each group of SDGR sum to one, namely
∑

i Mi = ∑
φ M φ =∑

φ M φ
1 = ∑

φ M φ
2 = ∑

φ M φ
3 = 1.

3. Results

3.1. Alignment of density gradient with directions of dissipation

We start by examining the local alignment between ∇ρ and d̂1, d̂2, d̂3 quantified by the
three angles ζi. Since cos2 ζ2 = 1 − cos2 ζ1 − cos2 ζ3, we focus our analysis on the two
independent angles ζ1 and ζ3.

Figure 3 compares the joint probability density function (p.d.f.) of cos ζ1 and cos ζ3 in
the Holmboe wave flow (dataset H1, panel a) and turbulent flow (dataset T3, panel b). The
blue lines represent conditional p.d.f.s for the two angles separately at increasingly large
values of k = S/Srms, where Srms is the root-mean-square shear averaged in space and time,
starting with the interval (0, 0.5] (lighter shade) and ending with (2.5, 3] (darkest shade).
Note that the high-shear region often corresponds to a higher dissipation (dominated by
λ1). We find that, in both flows, ∇ρ is most often nearly anti-parallel to d̂3 (cos ζ3 ≈ −1)
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Figure 3. Joint p.d.f.s of the alignment between ∇ρ and the direction of maximum and minimum dissipation
d̂1, d̂3 (angles ζ1, ζ3 respectively) in H1 (a) and T3 (b). Conditional p.d.f.s are shown in blue, with darker lines
indicating higher shear thresholds k = S/Srms ∈ (0, 0.5], . . . , (2.5, 3]. The vertical scale of blue lines has been
amplified by 3 (a) and 1.5 (b) for better visualisation. The top-right insets show the joint p.d.f. conditioned
at k ∈ (2, 2.5]. The top-left insets compare the alignment of ∇ρ with the intermediate and minimum strain
directions (ê2, ê3) to the alignment of d̂2 with ω.

and nearly perpendicular to d̂1 (cos ζ1 ≈ 0) and, therefore, nearly perpendicular to d̂2. This
trend is clear even in the turbulent flow, despite more spread around the mean values than
in the Holmboe flow.

The conditional p.d.f.s and the top-right insets, restricting the joint p.d.f.s to high-shear
regions k ∈ (2, 2.5], show that this trend increases in regions of high shear. Figure 2
illustrates (with shaded cones) this preferential alignment of the density gradient ∇ρ along
the (negative) direction of least dissipation d̂3 and thus perpendicular to d̂1, d̂2.

The top-left insets of figure 3 shows the p.d.f. of the alignment of ∇ρ with the
intermediate and minimum eigendirections of the strain-rate tensor (ê2 and ê3). It shows
a preferential ∇ρ ⊥ ê2 (similarly to d̂2) but a deviation from alignment to ê3 by ≈ 40◦
(see black arrows). This observation aligns with prior findings in sheared, stratified flow,
which have shown imperfect alignment between ∇ρ and the compressive strain direction
(Ashurst et al. 1987; Smyth 1999). This finding implies that both maximum stretching
and compressive strain influence the orientation of ∇ρ in the continuously shear-driven,
high-Pr SID flow, promoting alignment with the direction of minimal dissipation.

Isopycnals oriented in the directions of maximum and intermediate dissipation (i.e.
∇ρ ‖ d̂3) are particularly susceptible to stretching and diffusion. The reduced alignment
between ∇ρ and d̂3 in T3, in contrast with H1, suggests increased turbulence-induced
energy dissipation, resulting in a more effectively mixed shear layer. Therefore, the
deflection of ∇ρ from the d̂3 direction to the d̂1–d̂2 plane is an outcome of this mixing
process.

We also find that the vorticity ω has a strong and robust preferential alignment along d̂2
in both flows (see top-left insets of figure 3). This echoes earlier studies that observed
vorticity aligning with the intermediate principal direction ê2 of the strain-rate tensor
in both shear and isotropic flows (Ashurst et al. 1987). It implies that the intermediate
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Figure 4. Joint p.d.f.s of the alignment between ∇ρ and non-rotational shear n̂ (angle ζ n) and rotation r̂
(angle ζ r) for H1 (a) and T3 (b), similar to figure 3. The top-left and top-right insets show the joint p.d.f.
conditioned at k ∈ (0, 0.5] and k ∈ (2, 2.5], respectively, with the dashed line in (b) indicating the asymmetry
of the distribution.

directions of the strain and dissipation tensors may share comparable functions related to
the net production of enstrophy.

3.2. Alignment of density gradient with rotation and shear
We now examine the local alignment between ∇ρ and the rotation/shear basis using the
two independent angles ζ r, ζ n in figure 4, similar to figure 3. In both flows H1 and T3, two
regions have high probability density (see arrows I and II). Region I corresponds to the rim
where cos2 ζ n + cos2 ζ r ≈ 1, i.e. nearly within the n̂–r̂ plane and thus ∇ρ ⊥ f̂ . Note that
f̂ = n̂ × r̂ and corresponds to the direction of non-rotational straining (shearless) motions.
Region II corresponds to the centre where cos ζ n = cos ζ r ≈ 0, i.e. ∇ρ ‖ f̂ . These two
alignment properties between the ∇ρ and f̂ indicate two distinct states of mixing, which
we will elaborate on later in the paper.

We can gain further insight by conditioning the statistics of ζ n and ζ r on the shear S,
as in the previous section. The blue curves in figure 4(a,b) show that cos ζ n and cos ζ r

both become more confined to 0 with high shear (darker blue curves), thus belonging
increasingly to region II. This is also evidenced by the joint p.d.f.s conditioned at k ∈
(2, 2.5] (top-right insets), showing a strong peak at the origin. By contrast, the joint p.d.f.s
conditioned at k ∈ (0, 0.5] (top-left insets) show that ζ n and ζ r belong to region I. This
suggests that ∇ρ ‖ f̂ in regions of high shear and ∇ρ ⊥ f̂ in regions of low shear. The
asymmetry seen in the insets for the turbulent case (see dashed lines in I and II in figure 4b)
also suggest that ∇ρ is slightly more aligned with n̂ than with r̂.

Although Jiang et al. (2022) discovered that ∇ρ vectors frequently exhibit perpendicular
orientation relative to r̂ within regions of pronounced stratification, the present findings
highlight the importance of the alignment between ∇ρ and the n̂–r̂ plane, and the
dependence on shear strength. We recall that in SID flows, the n̂–r̂ plane is (statistically)
preferentially inclined by 0◦–15◦ to the ‘true horizontal’ plane (Jiang et al. 2022),
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Figure 5. Averaged SDGRs defined in (2.9a–c) for the 15 experimental datasets. (a–d) Variation with θRe of
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Figure 6. (a) Schematic diagram of overall values of the SDGRs represented by the thickness of arrows and
text. (b) Vertical profiles of the seven key SDGRs for the turbulent flow T3, together with the buoyancy
frequency N2. The blue shaded region in (b) is re-used in the analysis of figure 7.

i.e. approximately f̂ ‖ ĝ (gravity). In a stably stratified shear layer, we expect preferentially
∇ρ ‖ ĝ (hydrostatic equilibrium), and therefore ∇ρ ‖ f̂ , which is what is found at
high-shear regions where the stratification exerts sufficient strength to mitigate the stirring
caused by neighbouring vortical structures. However, in regions with weak shear, such
as the middle layer of turbulent flow, ∇ρ reorients from ∇ρ ‖ f̂ to ∇ρ ‖ n̂–r̂ plane (see
figure 2), which arises as a result of nearby flow motions that distort local fluid parcels
and disrupt isopycnals. In these unstable regions, figure 4(b) suggests that rotation is more
effective than non-rotational shear in distorting the isopycnals. We believe that the intricate
interplay between these flow motions and buoyancy may affect the local instability due to
their different time scales.

3.3. Squared-density-gradient ratios
We now examine in figures 5 and 6 the alignment of ∇ρ in the two orthogonal bases
using the SDGRs defined in (2.9a–c). The overbar M averages an SDGR over the entire
available shear-layer volume (x, y, z) and time (t), as in figure 5, whereas brackets 〈M 〉(z)
average in x, y and t, retaining the z dependence, as in figure 6(b).

Figure 5 compares the averaged SDGRs in the 15 flows ranging from H1 to T3, with
increasing turbulent intensity controlled by the product θRe (where θ is in radians). In
panel (a), we find that typically M3 > M2 > M1, confirming the results of § 3.1 that
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∇ρ ‖ d̂3 is preferential, although this trend of dominant M3 decreases slightly as θRe
increases. For M φ in panel (b), the distribution is similar to Mi in (a). Both M n and M r

show a nearly linear increase as M f decreases, indicating that the impact of shear and
rortices on density becomes more pronounced with intense turbulence. The reason behind
the deviation of ∇ρ from d̂3 or f̂ at higher θRe can be attributed to more intense mixing
and overturning.

In figure 5(c), we find that M r
1 > M n

1 > M f
1 , indicating that the component of the

density gradient along the direction of maximum dissipation ∇ρ1 aligns preferentially

with rotation r̂, and secondarily with non-rotational shear n̂. As M f
1 ≤ 20 %, it is likely

that d1 lies close to the n̂–r̂ plane. If r̂ ‖ d̂1, both a rotation and stretching occur along the
d̂1 direction, strengthening the velocity induced by the non-rotational shear, as depicted
in figure 2(a). This suggests that the stretching of the n̂–r̂ plane, especially along the r̂
direction, is closely related to the dissipation.

In figure 5(d), we see that the preferential alignment is reversed for ∇ρ3: M f
3 >

M n
3 > M r

3 , i.e. ∇ρ3 is primarily aligned with f̂ . In the most turbulent flows T2 and

T3, M f
3 ≈ M n

3 ≈ 2M r
3 , i.e. ∇ρ3 is preferentially in the n̂– f̂ plane and perpendicular to

r̂. We recall from §§ 3.1–3.2 that high-shear regions have approximately ∇ρ ‖ f̂ , d̂3, ĝ,
thus ∇ρ3 is the component of the gradient most likely to be disturbed during mixing.
Having ∇ρ3 ⊥ r̂ signals stirring and overturning, a requirement for diapycnal mixing by
small-scale diffusion.

As θ increases at nearly constant Re, the d̂3–∇ρ alignment decreases, as well as the
f̂ –∇ρ and d̂3– f̂ alignments. This is observed in I3, I7, I8 and T3 with θ = 2◦–6◦ and
Re ≈ 1000. Conversely, increasing Re at constant θ = 5◦ has a more limited impact on
alignment, as seen in cases H2, H4, I5, I8 and T3. This suggests that θ exerts a more
significant influence than Re on ∇ρ alignment, echoing the findings of Lefauve & Linden
(2022a) that θ increases overturning more strongly than Re.

Figure 6(a) summarises the typical averaged SDGRs across all 15 flows and
encapsulates the typical geometry of stratified turbulence in our experimental data.
The left-hand branches (i.e. the three arrows under the blue shading indicated by
Mi) show the three ‘dissipation’ SDGRs, while the right-hand branches show the
three ‘structural’ SDGRs (indicated by M φ), and the middle branches show the nine

‘mixed’ SDGRs indicated by M φ
i . Note the approximate symmetry between the left- and

right-hand branches, indicating a robust relation between diapycnal transport, structural
and dissipation coordinates.

Finally, figure 6(b) shows the variation of seven key SDGRs along z (in the duct frame of
reference) in the turbulent flow T3. To examine the effect of stratification, we superimpose
the averaged non-dimensional buoyancy frequency 〈N2〉 = −Rib∂zρ (thick grey line). We
find that 〈M1〉 (thick red line) is maximum in the middle layer where 〈N2〉 is minimum,
indicating that ∇ρ is more distorted and thus more aligned with d̂1 in the turbulent mixing
layer. Vice versa, 〈M1〉 is minimum at the upper and lower density interfaces of this mixing
layer where 〈N2〉 � 0.2. This trend is exactly reversed for 〈M3〉, which reaches a minimum
value in the well-mixed region and a maximum value at the interfaces. Furthermore, 〈M2〉
is relatively uniform in z and independent of the stratification. We also observe the same
pattern of reversed behaviour between 〈M r

1 〉 and 〈M f
1 〉, as well as between 〈M r

3 〉 and
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Figure 7. Correlation between the turbulent flux coefficient Γ and the six SDGRs (a) 〈M1〉, 〈M r
1 〉, 〈M f

1 〉,
(b) 〈M3〉, 〈M r

3 〉, 〈M f
3 〉 in the T3 case within the shear layer (z ∈ [−0.5, 0]). The size of symbols indicates |z|,

and the darker colours indicate higher stratification N2.

〈M f
3 〉. Recalling from § 3.2 that ∇ρ ⊥ r̂ at high shear, the finding here that stronger

stratification favours the alignment of r̂ and d̂1 (larger 〈M r
1 〉) is consistent with the fact that

more diapycnal transport occurs at the interface. This agrees with Jiang et al. (2022) who
studied the interaction of hairpin-like structures and density gradients through R × ∇ρ,
as well as with Riley, Couchman & de Bruyn Kops (2023), who found that most potential
energy dissipation occurs near density interfaces.

3.4. Link with mixing coefficient
Figure 7 investigates the relationship between the SDGRs and the flux coefficient Γ ≡
B̄/ε̄′, the ratio of the globally averaged turbulent buoyancy flux B ≡ Rib w′ρ′ and turbulent
kinetic energy dissipation ε′ ≡ (2/Re) e′

ije
′
ij, where the perturbations (prime variables) are

taken with respect to the (x, t) average (Lefauve & Linden 2022b, § 2.2). We restrict the
analysis to the T3 case within the active turbulent lower layer z ∈ [−0.5, 0] (blue shaded
region in figure 6b). Larger symbols indicate higher |z|, and darker colours indicate high
N2 (in this region, N2 ∝ |z|).

First, the linear relations between Γ and the SDGRs suggest a clear link between the
efficiency of mixing, approximated by this flux coefficient (Caulfield 2020), and the
geometry encapsulated in the SDGRs. Second, Γ decreases in proportion to 〈M1〉 =
cos2 ∠(∇ρ, d̂1) and 〈M f

1 〉 but increases in proportion to 〈M r
1 〉 (figure 7a). Looking

at the direction of minimal dissipation, the opposite is observed: Γ is proportional to
〈M3〉 = cos2 ∠(∇ρ, d̂3) and 〈M f

3 〉 but inversely proportional to 〈M r
3 〉. We interpret this

by the expectation that low M1 or high M3 indicates the alignment of isopycnals along the
direction of greatest dissipation (or stretch, see § 2.4), and hence an increase in the surface
area of isopycnals and diffusive mixing. Third, figure 7 shows that closer to the density
interface (larger darker symbols), r̂ aligns more with d̂1 (i.e. 〈M r

1 〉 becomes larger), while
∇ρ aligns more with f̂ and d̂3 (i.e. 〈M f

3 〉 and 〈M3〉 become larger). This results in the n̂–r̂
plane aligning more with the d̂1–d̂2 plane, indicating stronger overturning and stretching
leading to mixing.

4. Conclusions

In summary, we have explored the alignment of the density gradient ∇ρ(x, t) in two local,
instantaneous orthogonal bases determined from flow kinematics based on the velocity
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gradient tensor ∇u(x, t). Our goal was to shed light on the geometry of shear-driven,
stably stratified turbulent mixing in a SID experiment. We used the datasets of increasingly
turbulent flows investigated in Jiang et al. (2022), with a focus on two main flows
representative of the Holmboe wave and turbulent regimes.

The first kinematic basis (n̂, r̂, f̂ ), constructed using the non-rotational shear n̂ and
rigid-body rotation r̂, showed that in regions of weak shear, ∇ρ preferentially aligns
in the n̂–r̂ plane. However, increasing shear strength tends to reorient ∇ρ normal
to the n̂–r̂ plane, thus increasing the potential for destruction of stratification by
rotational and shearing structures. The second kinematic basis (d̂1, d̂2, d̂3), constructed
using the principal directions of the pseudo-dissipation tensor (2.4), showed that ∇ρ

aligns preferentially with the direction of minimum dissipation d̂3 and thus normal
to the maximum dissipation d̂1, a trend that is exacerbated in regions of high
shear.

The SDGRs (see (2.6)–(2.9a–c)) quantified the alignment of ∇ρ in both kinematic
bases to reveal that approximately M1 ≈ 23 % of the total SDGR is along the maximum
dissipation d̂1, which is itself dominated by flow structures in the n̂–r̂ plane. By contrast,
a ratio M 3 ≈ 50 % is along the minimum dissipation d̂3, which aligns preferentially
perpendicular to n̂–r̂ and makes the isopycnals more susceptible to being distorted through
overturning by vortices and hence more diapycnal mixing.

Focusing on the most turbulent flow, the variation of SDGRs across the shear layer
explained why more efficient mixing, quantified by Γ , occurs at the edges of the mixing
layer. At the edges (stronger stratification), r̂ aligns more with the maximum dissipation
d̂1, and ∇ρ aligns more with the minimum dissipation d̂3 and, therefore, is prone to
overturning by rotational structures. The n̂–r̂ plane becomes more aligned with the d̂1–d̂2
plane, enhancing stirring and overturning and increasing flux coefficient. This mechanism
explains the robust linear correlations between the mixing efficiency Γ and the SDGRs
shown in figure 7. Our findings also rationalise that Γ decreases with increasing M1
and increases with increasing M3 because isopycnals aligned along the direction of
maximum dissipation are more exposed to stretching and diffusion. These insights into the
geometry of the density gradient and dissipation constitute a step towards a better physical
understanding of turbulent mixing in stratified shear flows. Future research should study
the applicability of these findings to stratified flows that differ from the present stably
stratified, shear-driven inclined duct flows.
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