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Motivated by Wigner’s theorem, a canonical construction is described that produces

an Atiyah–Singer Dirac operator [5, Section II.6] with both unitary and anti-unitary

symmetries. This Dirac operator includes the Dirac operator for KR-theory [1] as

a special case, filling a long-standing gap in the literature. The conditions under

which this construction can be made are investigated, and the obstruction is identified

as a class within a generalisation of equivariant Čech cohomology. An associated

geometric K-homology theory [3] is constructed, along with a homomorphism

into an appropriate generalisation of analytic K-homology. More broadly, this the-

sis demonstrates that difficulties surrounding the interaction of K-orientation and

anti-linear symmetry can be naturally resolved by building on Wigner’s theory of

corepresentations. Potential applications include the classification of D-brane charges

in orientifold string theories [6, Section 5.2], the construction of index invariants for

topological insulators [4], and the formulation of a Baum–Connes conjecture [2] for

discrete groups with a distinguished order-2 subgroup.
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