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Determining Fitting ideals of minus class groups via

the equivariant Tamagawa number conjecture

Cornelius Greither

Abstract

We assume the validity of the equivariant Tamagawa number conjecture for a certain
motive attached to an abelian extension K/k of number fields, and we calculate the
Fitting ideal of the dual of cl−K as a Galois module, under mild extra hypotheses on K/k.
This builds on concepts and results of Tate, Burns, Ritter and Weiss. If k is the field of
rational numbers, our results are unconditional.

Introduction

Let G be a finite abelian group, K/k a G-Galois extension of number fields where k is totally real
and K a CM field, and write c for the unique complex conjugation in G. For every ZG-module
M we let M− = R ⊗ZG M , where R is defined as Z[12 ][G]/(1 + c). (This notation, which includes
inversion of 2, is non-standard but practical.) If for example M is a class group, then M− is just
the non-2-part of the minus class group.

Our original goal was to calculate the initial Fitting ideal FittR(cl−K) in terms of an appropriate
generalisation of Stickelberger’s ideal. (Higher Fitting ideals will never occur in this paper.) We
start from the assumption that the equivariant Tamagawa number conjecture (ETNC) is true for
the motive h0(K) with coefficients in ZG, and we use techniques of Burns, Ritter and Weiss in
order to obtain information on cl−K . This means that our results are conditional unless k = Q

(cf. Theorem 1.1). As a main technical tool we use metrised complexes and their refined Euler
characteristics, which lie in a relative K-group. Our calculations lead to an explicit ideal called
SKu(K/k), which in the absolutely abelian case is related to Sinnott’s version of Stickelberger’s
ideal, and which was first introduced by Kurihara in a slightly more special setting. We expected
to end up with this type of ideal, but on the other side of the equation an unexpected twist occurs.
Our final results (Theorems 8.5 and 8.8) say that SKu(K/k)− is the Fitting ideal of the Pontryagin
dual cl∨−K of cl−K . For cyclic G this implies that cl−K has the same Fitting ideal. Joint work with
Kurihara (in preparation) actually shows that, in general, FittR(cl−K) does differ from Fitt(cl∨−K ),
and that FittR(cl−K) is in general not equal to SKu(K/k)−. On the other hand, it is remarkable
that previous results of Kurihara in the cyclotomic setting do yield FittR(cl−K) (no dual), and the
ideal obtained is the same as in the present paper. We do not have a convincing explanation for
this phenomenon yet.

We now give the precise statement of the main result (Theorem 8.8):
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C. Greither

If (under the blanket assumptions on K/k explained above) ETNC holds for the motive h0(K)
with coefficients in Z[G] (more briefly, ETNC(h0(K),Z[G]) holds), and if the R-module µK,odd of
odd-order roots of unity in K is of projective dimension at most 1, then

FittR(cl∨−K ) = SKu(K/k)−.

(Compare with the remark after Theorem 8.5.)

The ideal SKu(K/k), which will be called the Sinnott–Kurihara ideal, is defined in § 2, where we
also explain its relation to other constructions; § 1 recalls Tate sequences and equivariant Tamagawa
numbers; § 3 offers an outline describing the main steps of the central argument, and also explains
the link between refined Euler characteristics and Fitting ideals in a special case. The details of
our constructions are carried out in §§ 4–7. An important ingredient is a kind of multiplicativity
property of the refined Euler characteristic (see § 7) proved by Burns. In § 8 we finally complete
the transition from ETNC to Fitting ideals and prove our main result. The paper closes with an
application towards Brumer’s conjecture (Corollary 8.11) and a comparison with previous results
of Kurihara.

Partial results on Fitting ideals of class groups, which do not involve the Pontryagin dual,
were proved previously by the author [Gre00] (assuming cohomological triviality of cl−K) and Kuri-
hara [Kur03a] (assuming k = Q and more conditions). The approach in [Gre00] was somewhat
related to the present one, but certainly more naive; Kurihara’s techniques were quite different. We
should also mention a more recent result of Kurihara [Kur03b] which gives the Fitting ideal of the
projective limit lim(clKn{p}∨−) attached to the cyclotomic tower K∞/k, under some hypotheses on
K and the prime p. This again indicates that duals of minus class groups are the ‘better’ objects
to be studied.

We close this introduction by discussing some issues of notation. By S we always denote a finite
G-stable set of places of K, which contains S∞, the set of infinite places. The set of k-places below
places in S will consistently be written Sk. The symbol S′ will always denote a finite G-stable set
of places of K which contains S, and which is ‘larger’ in the sense of [RW96] (see also [Wei96]),
which means: S′ contains all ramified primes; the S′-class group of K is trivial; and G is the union
of the decomposition groups GP attached to P running over S′. The final applications will use
S = S∞. In a sense the whole point is that S∞ is almost never a ‘larger’ set, and all the work arises
from the transition from S′ down to a smaller set S. We recall two standard items of notation:
ES = O×

K,S and ∆S is the kernel of the obvious sum map ZS → Z. Both ES and ∆S come with a
natural ZG-module structure.

For duals we use the following convention: for any ZG-module M , the G-action on M∨ =
Hom(M,Q/Z) is given by (γf)(x) = f(γx) (γ ∈ G, f ∈ M∨, x ∈ M). This deviates from the
standard convention, which has f(γ−1x) instead of f(γx), but it makes sense since G is abelian
throughout the paper, and it leads to the ‘correct’ final results.

Since we have to deal with a lot of fairly big diagrams of similar shape, we use the following
notational convention concerning suppression of zeros: Without mention to the contrary, all rows
or columns with three or four terms are supposed to be exact, and in all such rows and columns the
first (respectively last) arrow is supposed to be injective (respectively surjective). The occasional
exceptions to this convention (mainly bottom row of diagram D1 (see also (21)) and bottom row of
the left part of (17)) will be clearly identified as such. In all cases, the obstruction to exactness is
only a finite group.
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Fitting ideals of minus class groups

1. Tate sequences and refined Euler characteristics

Tate defined a canonical class τ = τS′ ∈ Ext2ZG(∆S′, ES′) for ‘larger’ sets S′. Actually a slightly
weaker hypothesis (S′ only ‘large’) is enough here, but we will not use this.

Burns [Bur01] establishes a four-term exact sequence of ZG-modules

0 → ES′ → Ψ0
S′ → Ψ1

S′ → ∆S′ → 0 (1)

with the following properties: Ψ0
S′ and Ψ1

S′ are G-c.t. (short for ‘cohomologically trivial’; equiva-
lently, of finite projective dimension over ZG), and the sequence represents the canonical class τ
(see [Bur01], proof of Lemma 2.3.5, and [BF98], Theorem 3.2). Note that the latter property was
not used in the construction of the sequence but had to be proved by a non-trivial argument. The
construction uses derived functors, complexes and Verdier duality.

The existence of so-called Tate sequences

0 → ES′ → A→ B → ∆S′ → 0 (2)

(that is, sequences having A G-c.t., B projective over ZG, and representing τ) has been known and
used for a long time; see in particular the book [Wei96]. In [GRW98, GRW99] this sequence plus
additional data is used to construct an element Ωϕ of the relative K-group K0(ZG,Q). The so-called
lifted root number conjecture (LRNC) states that another element of that K-group, associated to
Ωϕ by means of L-values and regulators, is zero. (Recall that we assume G to be abelian; in general,
root numbers intervene.) Some constructions of Ritter and Weiss will be extremely important for
us, even though we will not refer to LRNC again and rather follow the setup and terminology of
Burns in the sequel.

To do this, we have to review refined Euler characteristics. We stick to the setup in [Bur01]
but will use some ad hoc terminology of our own. A ‘metrised’ complex either over ZG or over R
(context will tell) consists of two data: a complex in degrees 0 and 1,

A→ B, (3)

together with an RG-isomorphism,

ϕ : R ⊗ V → R ⊗ U, (4)

where both A and B are c.t. over G and U (respectively V ) is the kernel (respectively cokernel) of
A→ B. Alternatively one may write down an exact four-term sequence

0 → U → A→ B → V → 0

and consider the maps U → A (identifying U with the kernel of A → B) and B → V (identifying
V with the cokernel of A → B) as part of the data. Since it is only the ‘determinant’ of ϕ that
counts, as shown by Burns, our terminology ‘metrisation’ may be justified since all we do is specify
a measure (volume element) on HomR(R ⊗ V,R ⊗ U). But there will be no measure theory in our
arguments.

The construction of [Bur01] associates to every metrised complex E = (A→ B,ϕ) a refined Euler
characteristic χref(E) ∈ K0(ZG,R), which remains unchanged if ϕ is changed by any automorphism
of determinant 1 on either side. (The subscript in χref stands for ‘refined’ and is intended to leave
unadorned χ free to be used for characters. We suppress the dependence on the base ring, R or
ZG.) We will not review the complete construction of this, but the main idea is to ‘transpose’ ϕ to
an isomorphism ϕ̃ : R ⊗ B → R ⊗ A, and to put χref(A → B,ϕ) = (B, ϕ̃,A) in the usual notation
for explicit elements of K0(ZG,R). The work consists in describing the details of this translation
process, which entails making some choices, and in showing that everything is well defined in the
end. In any case, this is much simpler for abelian G than in the general case done in [Bur01].
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We need several properties of this construction. To get started, the most important one is the
following (see [Bur01, Proposition 1.2.2(ii)]): Whenever E = (A→ B,ϕ) and E′ = (A′ → B′, ϕ) are
metrised complexes fitting into a commutative diagram

0 �� U �� A ��

��

B ��

��

V �� 0

0 �� U �� A′ �� B′ �� V �� 0

(5)

and sharing the same ϕ, then χref(E) = χref(E′). This means that, if the metrisation (‘trivialisation’
in Burns’s terminology) ϕ : R ⊗ V → R ⊗ U is given, we only have to know the class of 0 → U →
A→ B → V → 0 in Ext2ZG(V,U) in order to know χref(A→ B,ϕ).

Now let U = ES′ , V = ∆S′ and ϕ−1 : RES′ → R∆S′ the negative of the usual Dirichlet map, so
ϕ−1(u) = −∑

v∈S′ log |u|v · v. Let E be a metrised 4-sequence as follows. Take any 4-sequence with
outer terms ES′ (left) and ∆S′ (right) and cohomologically trivial inner terms which represents
the Tate canonical class τ , and metrise it by ϕ. Then the ETN (equivariant Tamagawa number)
attached to h0(K) is the following element of K0(ZG,R):

TΩ(K/k, 0) := ψ∗
G(χref(E) + ∂(L∗

S′(0)�)). (6)

We repeat that we may take the Burns sequence (beginning of this section) or a Tate sequence as
in [Wei96] (see above) as we please, it does not matter. But we have to explain some bits of notation.
The map ψ∗

G is a certain involution of K0(ZG,R), and we will forget about it at once since we are
only interested in the nullity of TΩ(K/k, 0). The map ∂ is the usual connecting homomorphism
RG× → K0(ZG,R) given by ∂(x) = (ZG,x,ZG). Finally, the ‘equivariant L-value at zero’ L∗

S′(0)�

is, by definition, the unique element of RG which maps, under each character χ of G, to the leading
coefficient

L∗
S′(0, χ−1) = lim

s→0
s−e(χ)LS′(s, χ−1), (7)

where e(χ) is the vanishing order of LS′(s, χ−1) at s = 0. (This uniquely defines the equivariant
L-value as an element of CG, and it happens to lie in RG.)

The equivariant Tamagawa number conjecture (ETNC) in this context simply states: The ele-
ment TΩ(K/k, 0) is zero.

The following result, which can be seen as a starting point for this paper, was proved in [BG03a]
with the exclusion of the 2-primary part. Flach [Fla02] extended the argument to cover the 2-primary
part as well.

Theorem 1.1. If K is absolutely abelian, then TΩ(K/k, 0) = 0.

2. A variant of the Stickelberger ideal

We keep our assumptions concerning K/k. In this section, p will always be a prime of k that ramifies
in K/k; in later sections, p will lie in a fixed set S′

k that contains all ramified primes. Here and later,
we always fix a choice of a K-place P above p.

We use the standard notation Gp, G0,p and Ḡp = Gp/G0,p for, respectively, the decomposition
group, inertia group, and residual group of K/k at p. Write Fp for a lift, chosen once for all times,
of the (usual arithmetic) Frobenius Frobp ∈ Ḡp to Gp ⊂ G.

We will have to use idempotents of QGp defined as follows:

e′p = |G0,p|−1 NG0,p , e′′p = 1 − e′p;
ēp = |Gp|−1 NGp , ¯̄ep = 1 − ēp.

(8)
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Inspired by Sinnott [Sin80] we consider the element ω ∈ RG given by

χ(ω) = L(0, χ−1) for all χ ∈ Ĝ. (9)

The primitive Artin L-function used here omits exactly the Euler factors that belong to primes
dividing the conductor of χ, considered as a character on the idele class group via reciprocity. The
element ω is closely related to, but not identical with, the equivariant L-value discussed in § 1. From
the work of Deligne and Ribet [DR80], Barsky [Bar77], and Cassou-Noguès [Cas79], we know that ω
is actually in QG. (Note in this context that ω has plus part zero if k �= Q, and for k = Q, the plus
part of ω is essentially given by the value of the Riemann zeta function at 0, which is −1/2.)

From ω we now build a generalised version of Stickelberger’s ideal, which is closely related to
(but in general not equal to) Sinnott’s ideal for k = Q. For reasons that will become apparent
soon, the ideal that is going to be constructed will be called the Sinnott–Kurihara ideal. To lighten
notation a bit, let p1, . . . , ps denote the primes of k that ramify in K; shorten Gpi to Gi, G0,pi to
G0,i, e′pi to e′i, e

′′
pi

to e′′i , and Fpi to Fi.

We define the ‘local’ modules Upi = Ui by

Ui = 〈NG0,i , 1 − e′iF
−1
i 〉ZGi ⊂ QGi.

The ‘global’ module U = UK/k is defined by

U = U1 · . . . · Us · ZG ⊂ QG. (10)

The (fractional) Sinnott–Kurihara ideal is now defined by

SKu′(K/k) = Uω ⊂ QG

(compare p. 193 of [Sin80]). Note the following: the product defining U runs over the ramified
primes only, but one easily sees that Up = ZGp, if p is unramified, so nothing would change if some
more primes went into the definition of U and SKu′(K/k). We also remark that the plus part of
SKu′(K/k) is not very interesting, just as in the case of Sinnott’s ideal.

An important point will be to relate the modules Up and the modules W 0
p used by Ritter and

Weiss. The module Wp (for details see below) is the so-called inertial lattice of [RW96], and W 0
p is

its Z-dual. But we defer this, in order to explain the relation of SKu′(K/k) to earlier constructions,
and in particular to the straightforward generalisation of Sinnott’s construction to base fields other
than Q.

For any I ⊂ {1, . . . , s} let KI be the largest intermediate field of K/k which is ramified at most
in primes pi with i ∈ I. Let G(I) = Gal(KI/k). To any I and any set SI of k-places that contains
all primes ramifying in KI , we attach a Brumer element as usual:

θ(KI/k, SI) ∈ CG(I), ψ(θ(KI/k, SI)) = LSI
(0, ψ−1)

for all characters ψ of G(I). If SI is minimal, i.e., consists of exactly the primes that ramify in KI , we
omit it from the notation. Note that due to imprimitivity, the top level element θ(K/k, {1, . . . , s})
is not quite the same as ω. The natural generalisation of Sinnott’s Stickelberger ideal now appears
to be the following:

SSi′(K/k) = 〈corK/KI
θ(KI/k, S(I)) | I ⊂ {1, . . . , s}〉ZG ⊂ CG,

with S(I) = {pi | i ∈ I}. Note that it is quite possible that some primes in S(I) do not ramify in
KI/k. Again by [Bar77], [Cas79] and [DR80], SSi′(K/k) is a fractional ZG-ideal in QG. To facilitate
comparisons, we propose another definition:

SKu′
1(K/k) = 〈a(I) corK/KI

θ(KI/k, S(I)) | I ⊂ {1, . . . , s}〉ZG,
1403
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where the positive integers a(I) are given by

a(I) =
(∏
j �∈I

|G0,i|
)/∣∣∣∣∏

j �∈I
G0,i

∣∣∣∣.
(Recall that G0,i is short for the inertia group G0,pi .) We have the obvious inclusion

SKu′1(K/k) ⊂ SSi′(K/k).

We will see that this inclusion is proper in general, and that SKu′
1(K/k) agrees with SKu′(K/k).

Before this, we have to discuss yet another construction, in order to explain the link to previous
work of Kurihara [Kur03a]. This construction is conditional on the existence of an abelian extension
K̃/k containing K such that G̃ = Gal(K̃/k) is the direct product of all its inertia groups. If k = Q,
this is no restriction at all; the author thinks however that it is a fairly severe restriction in all other
cases. Note that all indices a(I) attached to K̃ are 1 (this is actually equivalent to the condition
that all products of inertia groups are direct), and we may assume (shrinking K̃ suitably) that: each
prime p of K has the same ramification index in K̃ as in K. We then put

SKu′
2(K/k) = resK̃/k SKu′

1(K̃/k) = resK̃/k SSi′(K̃/k).

We want to show the following comparison results: over the base k = Q, SSi′(K/k) essentially
gives back Sinnott’s original construction; in general SKu′(K/k) = SKu′

1(K/k), and SKu′(K/k) =
SKu′2(K/k), provided the latter is defined. We start with a lemma that simplifies the definition of
SSi′.

Lemma 2.1. In the definition of SSi′(K/k) one may omit the sets S(I) (that is, replace S(I) by the
set of primes that do ramify in KI/k) without changing the outcome.

Proof. It is clear by looking at Euler factors that the ideal defined with S(I) absent contains the
ideal defined with S(I) present; we have to prove the other inclusion. In other words, we must show
that SSi′(K/k) as it is defined already contains corK/KI

θ(KI/k). Look at the subset I ′ ⊂ I that
consists of all i such that pi does ramify in KI . Then KI′ = KI and G(I ′) = G(I). Therefore

θ(KI/k) = θ(KI/k, S(I ′)) = θ(KI′/k, S(I ′)) ∈ QG(I) = QG(I ′),

and hence corK/KI
θ(KI/k) = corK/KI′θ(KI′/k, S(I ′)) is in SSi′(K/k).

We can now show the following result.

Proposition 2.2. If k = Q and K/Q is abelian, of conductor f , then SSi′(K/Q) is the same as the
fractional ideal denoted S′ on p. 189 of [Sin80].

Proof. Let {p1, . . . , ps} be the set of distinct prime divisors of f . For d|f with (d, f/d) = 1, let I(d)
denote the set of prime divisors of d and Kd = K ∩ Q(ζd). Then Kd = KI(d) in our notation. It is
known that Sinnott’s S′ is generated by the terms

corK/Kd
resQ(ζd)/Kd

θd(1),

where d runs over all divisors of f such that (d, f/d) = 1, and the notation θd(1) is again from
Sinnott. The divisors d correspond bijectively to the subsets of {1, . . . , s} via d 	→ I(d). On the
other hand, θd(1) agrees with θ(Q(ζd), I(d)), and so

resQ(ζd)/Kd
θd(1) = θ(Kd, I(d)).

Putting this together, we obtain the claimed equality.

We proceed to compare the three variants of the Stickelberger–Kurihara ideal.
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Proposition 2.3. If SKu′
2(K/k) is defined (i.e., if the auxiliary extension K̃/k having the required

properties exists), then

SKu′
2(K/k) = SKu′(K/k).

Proof. We assume that K̃ is minimal, that is, the canonical surjection G̃→ G induces isomorphisms
on inertia groups. In particular K̃ also ramifies exactly in p1, . . . , ps.

The ideals SKu′
2(K/k) (respectively SKu′(K/k)) are generated by the elements xI (respec-

tively a(I)yI), where

xI = resK̃/Kcor K̃/K̃I
θ(K̃I/k, S(I)),

yI = corK/KI
θ(KI/k, S(I)).

Here I runs over all subsets of {1, . . . , s} as above. We will show that xI = a(I)yI for all I, which of
course suffices. Begin by noting that θ(KI/k, S(I)) = resK̃I/KI

θ(K̃I/k, S(I)), and look at the four
fields forming a ‘square’.

K̃I
2 �� K̃

KI
3 ��

4

��

K

1

��

The four relevant inclusions have been labelled from 1 to 4. We need to relate res1cor 2 and cor 3res4

(hoping that this shorthand is self-explanatory). A direct calculation using the involved Galois
groups yields:

res1cor 2 = ([K̃ : K̃I ]/[K : KI ]) · cor 3res4.

(This holds for every square of fields in which all fields are abelian over a given field k and the bottom
left field is the intersection of the bottom right and the top left field.) Now the numerator is exactly
the order of the product over j �∈ I of the ramification groups of pj in K̃; by our assumptions on K̃,
this is the same as the product over j �∈ I of the orders of the G0,j . The denominator is the order
of the product over j �∈ I of the G0,j . Thus the quotient is exactly a(I), and our claim follows.

Without further assumptions (that is, using just our blanket hypothesis that K/k is abelian
with group G) we can show the next result.

Proposition 2.4. One has SKu′(K/k) = SKu′1(K/k).

Proof. We let bi = 1 − eiF
−1
i (see beginning of § 2), and for I ⊂ {1, . . . s} we let

e(I) =
∏
j �∈I

NG0,j ·
∏
i∈I

bi.

Then by definition, SKu′(K/k) is the ZG-span of all the elements e(I)ω. It will suffice to show (for
all I) that

e(I)ω = a(I)corK/KI
θ(KI/k, S(I)). (∗)

Let HI denote the product of the G0,j , j not in I. Then
∏
j �∈I NG0,j = a(I) · NHI

, essentially by
definition of a(I). So (∗) is equivalent to

NHI
·
∏
i∈I

bi · ω = corK/KI
θ(KI/k, S(I)).

This is equivalent to the validity of the following equation for all characters χ of G(I) = G/HI =
Gal(KI/k):

χ

(∏
i∈I

bi

)
χ(ω) = χ(θ(KI/k, S(I))). (∗∗)
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We look at the involved terms: χ(ω) = L(0, χ−1) (we repeat that we take the primitive L-function
here); χ(bi) is either 1 (if χ ramifies at pi) or 1 − χ−1(Fi) (if χ does not ramify at pi). Finally,
χ(θ(KI/k, S(I))) = z · L(0, χ−1) where z is the ‘imprimitivity factor’, that is, the product of the
Euler factors belong to primes pi, i ∈ I, for which χ is unramified. Hence z is exactly the product
of the χ(bi). Therefore the equation (∗∗), and hence (∗), is true, and we are finished.

One issue still has to be addressed: the ideals SSi′(K/k) and SKu′(K/k) are fractional. It is not
entirely clear what the integral version should be (except for k = Q), since there are two options:
intersecting with ZG, or multiplying with A = AnnZG(µK) (the annihilator of roots of unity), and
we do not seem to know in general whether these lead to the same ideal. With a view towards the
main results in this paper, we decide on the second option and define:

SSi(K/k) = A · SSi′(K/k), SKu(K/k) = A · SKu′(K/k).

Yet again, the results in [Bar77], [Cas79] and [DR80] each imply that SSi(K/k) and hence also
SKu(K/k) are contained in ZG.

3. Outline of the construction

We start with a Tate sequence, which we will have to make much more explicit in the process:

0 → ES′ → A→ BS′ → ∆S′ → 0. (11)

(We recall our simplifying notational convention: the bordering zeros will be omitted very soon.)
To make things simpler, we introduce a small technical change with respect to § 1: for a given 4-
sequence 0 → U → A → B → V → 0, we will consider metrisations (‘trivialisations’) going the
other more natural way: ϕ : RU → RV . The transposed map ϕ̃ will go, as a result, from RA to RB.
We change our definition and let χref(A → B,ϕ) = (A, ϕ̃,B). This only results in a sign change.
If ϕDir denotes the negative of the Dirichlet map (cf. § 1) and Eτ,Dir denotes the above 4-sequence
metrised by ϕDir, ETNC now becomes the formula

χref(Eτ,Dir) = ∂(L∗
S′(0)�), (12)

with no minus sign on the right (cf. formula (6)).

Our principal tool will be the ‘Tate sequence for small S’ which was established in [RW96], and
it will be unavoidable to go through the details of that construction. Therefore we prefer to begin
with an outline of what we shall do.

Let S′ and S be fixed until further notice (the final application will have S = S∞) and let C
be the free ZG-module with basis elements xp, where p runs over S′

k \ Sk. We will construct two
diagrams. The first is as follows.

ES′ �� A �� BS′ �� ∆S′

C ⊕ES ��

��

C ⊕A ��

��

BS ��

��

∇

��

Z ′ ��

��

C ��

��

C ��

��

Z ′′

�� (D1)

The middle row is the Tate sequence for the ‘small set’ S, with C added on in two places. We leave
the maps unspecified for the moment, just mentioning that the middle bottom map C → C is in
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general far from being the identity. The second diagram will have the same middle row as the first.

ES �� A �� B̃ �� ∇/δ(C)

C ⊕ ES ��

��

C ⊕A ��

��

BS ��

��

∇

��

C
id ��

��

C
0 ��

��

C
id ��

��

C

δ

��
(D2)

Again, most maps will be specified later on. In both diagrams all columns are exact in the middle
and the first (i.e., lower) vertical map is monic. The upper vertical maps will all be onto with the
exception of C ⊕ ES → ES′ , whose cokernel is the S-class group of K. The bottom row of (D1) is
only exact after tensoring with R (or Q) in general, but all other involved rows are exact.

All the occurring rows are 4-sequences, and they will be metrised in the next step. The point is
that these metrisations are ‘compatible’ in the two diagrams, in a fairly straightforward sense which
will be explained at the appropriate time. This will imply that, in both diagrams, the refined Euler
characteristic of the middle row is the sum of the characteristics of the bottom and top rows. The
input from ETNC gives the characteristic of the top row in (D1). The explicit nature of the other
metrisations permits one to calculate the characteristic of the top row in (D2), and this is the main
intermediate result. (We are a little imprecise here: for this we already need to set S = S∞ and to
take minus parts throughout.)

The next step will be to calculate the R-Fitting ideal of (∇/δ(C))−. Actually this is fairly
easy. If we assume S = S∞, and that the number of roots of unity in K is a 2-power (equivalently
µ(K)− = 1), and if we take minus parts, then the left term E−

S in the top row of (D2) vanishes. Also,
the rightmost term (∇/δ(C))− will be finite. The metrisation is therefore the only one possible: the
unique isomorphism from the real vector space 0 to itself, written ϕtriv. We need to discuss briefly
the connecting map ∂ already introduced in § 1. It is trivial on ZG× (which in fact is the precise
kernel of ∂), and hence gives a homomorphism from the group of free rank 1 ZG-submodules of RG
to K0(ZG,R), mapping xZG to (ZG,x,ZG) = (xZG, id,ZG). So we can extend ∂ to the group of
all projective rank 1 ZG-submodules of RG, by setting ∂(P ) = (P, id,ZG). Then ∂ in the extended
sense is still injective. (Write ∂p for the analogous map which arises when ZG is replaced by Z(p)G.
Then all ∂p are injective, so if ∂(P ) is trivial, then Z(p)P = Z(p)G for all primes p, hence P = ZG.)
Exactly the same construction can be done with R in the place of ZG. The next lemma will use ∂ in
this extended sense. Note that we will state and prove a stronger form of this lemma as Lemma 8.9;
the proof of that lemma needs more ingredients, so we begin with the weaker form here.

Lemma 3.1. If 0 → A′ → B′ → Q → 0 is an exact sequence of R-modules, A′ and B′ are of finite
cohomological dimension (so Q is as well), and Q is finite, then

χref(A′ → B′, ϕtriv) = ∂(FittR(Q)).

(Note that FittR(Q) is projective of rank 1 and that the right-hand side determines the ideal
FittR(Q).)

Proof. We will only use the case where B′ is without torsion and hence R-projective, so we will
assume this. One verifies that the transpose of ϕtriv is exactly the given map A′ → B′, call it σ,
tensored with R. Note that this is an isomorphism. Then χref(A′ → B′, ϕtriv) = (A′, σ,B′). By
localisation we may replace ZG by ZpG and assume that A′ = B′ = (ZpG)n are free of the same
rank. Now K1(RG) is isomorphic to RG× via the determinant, so

(
(ZpG)n, σp, (ZpG)n

)
is equal to

((ZpG)n,det(σp) ⊕ idn−1, (ZpG)n) in K0(ZpG,R). From the definition of the Fitting ideal we get

FittZpG(Qp) = FittZpG(coker(σp)) = (det(σp)),
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and on the other hand

∂(det(σp)) = ((ZpG)n, σp, (ZpG)n) = χref(A′ → B′, ϕtriv)p.

Since this holds for all p, we are done.

The rest of the argument will extract the Fitting ideal of the dual of cl−K from the Fitting ideal
of (∇/δ(C))−, which is given to us by the preceding lemma. We will just have to use that clK is
the torsion part of ∇, and that everything else is explicitly known.

4. Construction of the first main diagram
It is conspicuous that the processes leading to a Tate sequence on the one hand (cf. [Wei96, ch. 5])
and ‘Tate sequences for small S’ on the other (cf. [Wei96, ch. 14] and [RW96]) are similar, the
latter one being more intricate. Basically our task is to make this similarity as solid and precise as
possible, and it will not be a surprise to experts that this can be done.

We start by establishing a similar diagram in the local situation (G being replaced by Gp). The
global diagram will then arise as the result of three steps:

(i) inducing all local diagrams from Gp to G;
(ii) taking the direct sum over p ∈ S′

k;
(iii) and finally (a technical nuisance which makes an already complicated picture even more com-

plicated) taking, at every position, the kernel of certain maps which are only defined globally –
one of them is the sum map ZS′ → Z, and the others are close relatives.

Let us abbreviate indGGp to indp and
⊕
p∈S′

k
indp . . . to

∼⊕
p∈S′

k
. . . . Generally, we fix one P above

each p and write Kp instead of KP (so the former is never a semilocal completion, but a local field);
Up is as usual the group of local units O×

Kp
.

In [RW96] one finds two diagrams for p ∈ S′
k \Sk, which also can be fitted together horizontally,

giving two 4-sequences on top of each other, as below.

K×
p

�� Vp �� ∆Gp ∆Gp �� ZGp �� Z

Up ��

��

Vp �� Wp

��

Wp ��

��

ZGp ⊕ ZGp ��

��

W 0
p

��

(13)

We just quote the left-hand diagram (see loc. cit., Proposition 3), but we will have to look at the
right-hand diagram (see loc. cit., Lemma 5(c)), called ‘core diagram’, in much detail; see § 5. We
have similar, but simpler, diagrams for p ∈ Sk, as below.

K×
p

�� Vp �� ∆Gp ∆Gp �� ZGp �� Z

K×
p

�� Vp �� ∆Gp ∆Gp �� ZGp �� Z

(14)

We now apply
∼⊕
p∈S′

k
to these diagrams. Let

V0 =
∼⊕
p∈S′

k

Vp,

WS =
∼⊕

p∈S′
k\Sk

Wp ⊕
∼⊕
p∈Sk

∆Gp, WS′ =
∼⊕
p∈S′

k

∆Gp
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NS =
∼⊕

p∈S′
k\Sk

(ZGp ⊕ ZGp) ⊕
∼⊕
p∈Sk

ZGp, NS′ =
∼⊕
p∈S′

k

ZGp,

W 0
S =

∼⊕
p∈S′

k\Sk

W 0
p ⊕

∼⊕
p∈Sk

Z,

and note that
∼⊕
p∈S′

k
Z is identified with ZS′, by the choice of P|p. We finally let V = V0⊕

∼⊕
p �∈S′

k
Up,

that is, we add on the unit ideles outside S′ to V0. Inducing up (13) and (14), taking direct sums
and replacing V0 by V then yields the following two diagrams.

JK,S′ �� V �� WS′ WS′ �� NS′ �� ZS′

JK,S ��

��

V �� WS

��

WS
��

��

NS
��

��

W 0
S

��

(15)

There are two other short exact sequences, the one coming from class field theory (cf. [RW96]), the
other obvious, which we write directly below the preceding diagrams.

CK �� V �� ∆G ∆G �� ZG �� Z. (16)

Each term in (15) comes with a canonical map to the term in (16) directly below it, in such
a way that a commutative ‘three-dimensional’ diagram results, which we think we need not write
down; but let us discuss the maps. For the left half, this is in [RW96]. The map JK,S′ → CK (and
consequently JK,S → CK as well) is the canonical map from the idele group to the idele class group.
The map V → V will never be used explicitly. The map WS′ → ∆G comes from the surjection
Wp → ∆Gp (fourth column of (13)) and the inclusion ∆Gp → ∆G. It is surjective as a consequence
of the third condition in the definition of a ‘larger’ set. The map NS′ → ZG comes from ZGp ⊂ ZG,
which becomes an equality on inducing ZGp up to ZG. The map ZS′ → Z is the sum map. All of
these vertical maps are onto, with the (possible) exception of the map to CK , whose cokernel is the
S-class group of K.

We now replace every single term in (15) by the kernel of the vertical map going from it to the
term in (16) below it. We need to identify some of these kernels, and give names to the others.
The kernel inside JK,S (respectively JK,S′) is of course ES (respectively ES′). The kernel of V →
V is called A. (This letter will never mean anything else from now on.) The kernels inside WS

(respectively WS′) will not really matter in the sequel: call them W̃S (respectively W̃S′). The kernels
inside NS (NS′) get the name BS (BS′). The kernel from the map ZS′ → Z is of course ∆S′. Finally,
the kernel of W 0

S → Z is, by definition, the module ∇̄ of Ritter and Weiss. Altogether we have the
following diagrams.

ES′ �� A �� W̃S′ W̃S′ �� BS′ �� ∆S′

ES ��

��

A �� W̃S

��

W̃S
��

��

BS ��

��

∇̄

����

(17)

All the short rows are short exact sequences (a consequence of the surjectivity of the maps from
(15) to (16)), with one exception: the map A→ W̃S has cokernel clK,S, by the snake lemma, since
JK,S → CK has that cokernel.

We now discuss the vertical maps in this diagram (not to be confused with the ‘vertical’ maps
from (15) to (16) which have already dropped out of the game). The first one from the left is
the obvious inclusion, the second is an equality. The map between the W̃ -terms will not matter.
A trivial argument shows that the two rightmost vertical maps in (17) are onto, with the same
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kernel as the corresponding maps in (15). In § 5 we shall explain that the middle vertical map in
the core diagram (right part of (13)) is Fp · pr2 : ZGp ⊕ ZGp → ZGp. Consequently, the kernel
of NS → NS′ (or, what is the same, the kernel of BS → BS′) is isomorphic to the direct sum of
copies of ZG, one for each p ∈ S′

k \ Sk. Still more explicitly: recall the definition of C (free on xp,
p ∈ S′

k \ Sk) and map C to NS by xp 	→ 1 ⊗ (1, 0) ∈ indp(ZGp ⊕ ZGp). This map then affords an
isomorphism from C to the kernel of BS → BS′ ; the map C → BS will be called γ.

We next discuss the kernel of ∇̄ → ∆S′ (right column of (17)). Let Z ′′
p be the kernel of W 0

p →
Z (rightmost column of (13)); this will be made explicit in § 5. Let Z0 =

⊕̃
p∈S′

k\Sk
Z ′′
p . Then Z0

identifies with the kernel of ∇̄ → ∆S′, and we get the diagram below.

W̃S′ �� BS′ �� ∆S′

W̃S
��

��

BS ��

��

∇̄

��

C ��

γ

��

Z0

��
(18)

We intend to compose this with the left part of (17); the problem is, however, that the right bottom
arrow A→ W̃S is not surjective. To remedy this, let W̃ ′

S denote temporarily the image of that arrow
(so we know that W̃S/W̃

′
S
∼= clK,S), and, following Ritter and Weiss, we define ∇ as BS/W̃ ′

S . Then
one has a natural sequence 0 → clK,S → ∇ → ∇̄ → 0, and one still has an upward map ∇ → ∆S′ .
If Z ′′ is its kernel, we again find 0 → clK,S → Z ′′ → Z0 → 0, and the last diagram turns into the
following one.

W̃S′ �� BS′ �� ∆S′

W̃ ′
S

��

��

BS ��

��

∇

��

C ��

γ

��

Z ′′

��
(19)

Note that after tensoring with R, (18) and (19) become the same. Diagram (19) can now be amal-
gamated with the left part of (17) to produce a diagram in which the first two rows are exact
4-sequences.

ES′ �� A �� BS′ �� ∆S′

ES ��

��

A ��

��

BS ��

��

∇

��

C ��

��

Z ′′

�� (20)

We will show in § 5 that the map C → Z ′′ is onto modulo torsion and that its kernel is generated
by the elements NGp xp. Let therefore ν : C → C be the ZG-endomorphism defined by xp 	→ NGp xp
for all p ∈ S′

k \Sk, and let Z ′ = ker(ν). We now can complete diagram (20) so as to arrive at diagram
(D1) at last. We give some maps a name: thus ι : ES′ → A (a monomorphism) and α : A → BS′ .
We change and complete (20) as follows. First we write down the new diagram, and then we explain
the new and the changed maps. Note that the map ν : C → C was replaced by hν (the auxiliary
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integer h will be explained promptly).

ES′
ι �� A

α �� BS′ �� ∆S′

C ⊕ ES
(idC⊕ι) ��

(β,inc.)

��

C ⊕A
(0,α) ��

(ιβ,idA)

��

BS ��

��

∇

��

Z ′ ��

(−idC ,β)

��

C
hν ��

(−idC ,ιβ)

��

C ��

��

Z ′′

��
(21)

We start out by defining β : C → ES′ (which one should think of as a kind of partial inverse to the
Dirichlet map). Choose a positive multiple h of hK once and for all. For every p ∈ S′

k \ Sk, there
then exists an S′-unit up, whose valuation at the chosen prime P over p is h, and 0 at every other
finite prime. We define β by

β : C → ES′ , xp 	→ up.

This is a ZG-linear injection.
It is no problem to check that the first and second columns of (21) are short exact. Likewise,

the commutativity of the two leftmost squares is a direct consequence of the definitions. The upper
middle square commutes since ιβ(C) ⊂ ι(ES′) goes to zero under α, by exactness of the top row.

Proposition 4.1. The lower middle square of (21) commutes, and hence the whole diagram (21)
commutes.

We defer the proof to the next section. Note that the factor h at the map ν has a consequence
which appears quite unpleasant at first sight: the bottom row is no longer exact. But this will not
cause any problems, because it will suffice to have exactness after tensoring with R. (Or else, one
could replace Z ′′ by the cokernel of hν, which is an extension of Z ′′ by a finite module; then the
rightmost column would have a finite kernel in its first map. Again this will not matter at the crucial
point.)

Modulo various technical results which will be proved in the next section, this finishes the
construction of diagram (D1).

5. The core diagram

In this section we discuss in detail the objects and maps which form the right part of (13), largely
following the work of Ritter and Weiss, and prove some important auxiliary results.

The exponent 0, which has already occurred in names of objects, generally denotes Z-duals. For
any group H and any ZH-module M , M0 is HomZ(M,Z), with the H-action formula (ηf)(m) =
ηf(η−1m) = f(η−1m) for η ∈ H, f ∈ M0, m ∈ M , the last equality holding since Z is a trivial
H-module. This formula makes M0 again into a ZH-module, even if H is non-commutative.

For M = ZH there is a standard identification which will be regarded as an equality in the
sequel:

ZH
∼−→ ZH0, η 	→ δη. (22)

The map δη is of course given by δη(η′) = δη,η′ (η, η′ ∈ H), where the right-hand δ is Kronecker’s.
One checks that this identification is indeed H-linear.

If f ∈ HomZH(ZH,ZH) is given as multiplication with a central element γ ∈ H, then f0 is
given, in the above identification, as multiplication by γ−1 on ZH, as one easily verifies.
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Under the above identification, (∆H)0 becomes ZH/(NH). For every quotient H̄ = H/H0, one
has a completely analogous identification of ZH-modules (ZH̄)0 = ZH̄. The dual of the canonical
epimorphism ZH → ZH̄ is, under our identifications, the map ZH̄ → ZH that sends 1 to NH0 . In
particular for the extreme case H = H0, the augmentation map εH : ZH → Z is dual to the map
1 	→ NH from Z to ZH. All this will be used throughout our calculations.

We now come to the local part of this section, dealing with the inertial lattice Wp of Ritter
and Weiss, and its dual. To streamline notation, let H = Gp, H0 = G0,p (the inertia group) and
H̄ = H/H0. We will omit the index p at W and W 0 now and reinstate it later when we go global
again. All we do in this section is essentially due to Gruenberg, Ritter and Weiss. We recall that
F ∈ H (index again omitted) is a lift of Frobp ∈ H̄. We now give the definition of W . In categorical
language it is a difference kernel, and W 0 will be a difference cokernel:

W := {(x, y) ∈ ∆H × ZH̄ | x̄ = (F − 1)y}. (23)

Here the overbar denotes the canonical map ZH → ZH̄. The natural projection from W to ∆H
will be written prx. There is another canonical map τ : Z →W which sends 1 to (0,NH̄). The latter
element is indeed in W since (F − 1)NH̄ = 0, so the map τ makes sense.

More categorically, W = ker(∆H × ZH̄ → ZH̄), the map being overbar on the first component
and 1 − F on the second. This permits, by functoriality, the identification W 0 = HomZ(W,Z) as
follows, using the identifications concerning Z-duals explained above:

W 0 = coker
(

ZH̄ → ZH

(NH)
× ZH̄

)
, (24)

the map being given by 1 	→ (NH0, 1−F−1). The module W 0 comes with two natural maps: firstly
ix, the dual of prx, in other words the natural map ZH/(NH) →W 0 coming from the first injection
into the product; and secondly the dual W 0 → Z0 = Z of the map τ : Z → W . By our previous
remarks, this map is given by (0, εH̄). (We will not need the following fact, but let us state that
this map is also given by evaluation in w1 in the notation of [GW96].) Let κ denote the canonical
epimorphism from ZH ⊕ ZH to W 0. We get the following diagram in which all arrows except
the horizontal one starting at W are determined, and the two eastern squares are easily seen to
commute.

∆H �� ZH
εH �� Z

W ��

prx

��

ZH ⊕ ZH
κ ��

F pr2

��

W 0

(0,εH̄)

��

Z
·NH ��

τ

��

ZH ��

i1

��

ZH/(NH)

ix

�� (25)

The north-east square would commute just as well without the factor F in the map F pr2, but that
factor will be needed for the completion of the diagram. To do that, we discuss the kernel of the
map κ. Let ∆(H, H̄) = ker(ZH → ZH̄). Then

ker(κ) = 〈(NH , 0)〉 + 0 × ∆(H, H̄) + 〈z〉
with z := (NH0 , 1 − F−1). The first generator may be omitted for the following reason: (1 + F +
· · · + F |H̄|−1) · z = (NH , z

′) with some z′ that goes to 0 in ZH̄ and hence is in ∆(H, H̄); therefore
(NH , 0) can be generated from the other two summands in the above formula for ker(κ).

We construct an isomorphism q : W → ker(κ) by letting

q(x, y) = (NH0 y, F
−1x) for (x, y) ∈W ⊂ ∆H × ZH̄.
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(The product NH0 y makes sense as an element of ZH even though y is from ZH̄ and not from ZH:
one just chooses a lift of y, and NH0 y does not depend on the way of lifting.) There are a few things
to show.

(a) First, q takes values in ker(κ). We have x̄ = (F −1)y, so the two terms q(x, y) = (NH0 y, F
−1x)

and yz = (NH0 y, (1−F−1)y) agree modulo 0×∆(H, H̄), which is contained in ker(κ). But yz
is in ker(κ) as well.

(b) The isomorphism q : W → ker(κ) is surjective. On letting y = 0 and x run through ∆(H, H̄),
one obtains that 0×∆(H, H̄) is contained in the image of q. On the other hand one sees that
q(F − 1, 1̄) = z is also in the image. This suffices.

(c) It is straightforward to check that W , and hence W0, have Z-rank |H|. (Indeed one has Q ⊗Z
W ∼= QH.) Therefore ker(κ) has rank |H| too, and hence q must be an isomorphism.

We now insert the map q : W → ker(κ) ⊂ ZH ⊕ ZH in (25). It remains to show commutativity
of the western squares. For the northern one, we chase (x, y) ∈ W both ways. Upward then to the
right gives x. To the right gives (0, F−1x), and this then goes to x. For the southern square we chase
1 ∈ Z. Upward then to the right gives q(0,NH0) = (NH , 0). The other way produces the same.

We revert to the notation Gp for H. We now have established the core diagram, that is, the right
half of (13). More than that, we have identified the kernel (which we called Z ′′

p ) of the map W 0
p → Z

with ZGp/(NGp); the map ZGp → Z ′′
p arising from the vertical kernels in (13) is the canonical one,

and consequently Z0 (see (18)) becomes identified with
∼⊕
p∈S′

k\Sk
ZGp/(NGp); the map C → Z0 in

(18) is again the canonical one, xp mapping to the vector in Z0 which has 1̄ (more precisely, 1 ⊗ 1̄,
because of the induction performed) in position p, and zeros elsewhere.

We now prove Proposition 4.1.

Proof of Proposition 4.1. The map γ : C → BS (see (18)) arises from the vertical injections i1 :
ZGp → ZGp ⊕ ZGp in the core diagram by induction and summing, so γ(xp) = 1 ⊗ (1, 0) ∈
indp(ZGp ⊕ ZGp). We have to show that

αιβ(xp) = hγ(NGp xp).

The left-hand term is αι(up) (the S′-unit up was introduced right after diagram (21)). The map
ι : ES′ → A is the restriction of a map, call it ι′, from JK,S′ to V ; see diagram (15). This in turn
comes from (14) via inducing up and summing; write ιp : Kp → Vp for the corresponding local
map. Let αp : Vp → Wp be the map from the left part of (13). We now consider up as a (principal)
idele, that is, as an element of JK,S′ , and our task is to chase it through (15) as follows: to V , then
continue in the lower row (using the equality sign between the two V ) and go by α from V to NS

(via WS). All this can be done locally, that is, looking at (14). Any local unit will go to 1 under
this process, by exactness of the lower rows in (14). So if we let αp : Vp → ZGp ⊕ ZGp (via Wp)
be the local counterpart of α, then αpιp(y) only depends on the valuation of y ∈ K×

P . Let π be a
parameter of KP. Because of the choice of up we then have that up agrees, up to a unit idele, with
the idele which has 1 ⊗ πh over p and 1s over all q �= p. (Note: This is the only time that we need
to remember that indpK×

P is identified with the product of all K×
P′ , where P′ runs over all places

of K above p, and P is, as always in this paper, a fixed choice among them.)

Thus it remains to chase the element πh ∈ K∗
p through (13): the outcome, after inducing up

again, will be the left-hand side of the equality we want to prove. For convenience we reproduce the
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left part of (13) below.

K×
p

ιp �� V �� ∆Gp

Up ��

��

V �� Wp

��

Now by Proposition 2.2 and the following Remark in [RW96], this diagram as a whole is obtained
by trivial rearrangement, including writing V twice, from the following diagram.

Z
τp �� Wp �� ∆Gp

K×
p

ιp ��

��

V ��

α′
p

��

∆Gp

U

��

U

��

Here the top row is the same as the leftmost column in (25) (in slightly differing notation), and the
map K×

p → Z is just the normalised valuation. The map α′
p gives αp when followed by the map

Wp → ZGp ⊕ ZGp from (13), which we momentarily call qp; this is also the map q from (25).

Then one sees directly that α′
pιp(πh) = τp(h) = h · (0, 1 + Fp + · · · + F f−1

p ) with f := |Gp/G0,p|.
When we apply qp to this expression, we get

αpιp(πh) = h · qp(0, 1 + Fp + · · · + F f−1
p ) = h · (NGp , 0).

By definition of γ, this is the same as h · γ(NGp xp), and we are done.

6. Construction of the second main diagram

The middle row of (D1) constitutes an important step, but our goal is to find a 4-sequence with
finite outer terms, in order to make the metrisations disappear. So another modification is called
for; it seems to partially undo previous constructions, but we could not find a more direct approach
to the final 4-sequence.

The construction does what it is supposed to do only if we assume that S = S∞ and take minus
parts, but it can be performed without this. We will shortly define a ZG-monomorphism δ : C → ∇.
Let δ′ : C → BS be any lift of δ through the epimorphism BS → ∇. On setting B̃ = coker(δ′), this
gives the following commutative diagram with exact rows and columns.

ES
ι �� A �� B̃ �� ∇/δ(C)

C ⊕ ES ��

pr2

��

C ⊕A ��

pr2

��

BS ��

��

∇

��

C

��

C
0 ��

��

C

δ′
��

C

δ

��
(D2)

It is known from [RW96] (and will also become clear in the next section) that the outer terms of the
middle row become isomorphic over Q. Hence the same holds for the outer terms of the top row.
Now if S is set equal to S∞, that is, ES is just the global unit group of K, then E−

S (the group of
roots of unity) is finite, and hence (∇/δ(C))− is finite as well. It therefore remains for us to define δ.
We will make choices there (as before), but all choices will drop out in the final calculation.
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Recall that W 0
p was described as a certain quotient of ZGp ⊕ ZGp and that the canonical

epimorphism in this context is denoted κ. We define δp : ZGp · xp →W 0
p by

δp(xp) := κ((−1, 1)). (26)

From this we obtain by applying
∼⊕
p∈S′

k\Sk
a map δ0 from C to W 0

S . But we want a map to ∇̄, which
is the kernel of the map W 0

S → Z in the core diagram; that map takes κ
(
(−1, 1)

)
to 1. We choose an

infinite place w∞ of K and define the modified map δ1 by δ1(xp) = δ0(xp)−dw∞ . (This modification
will be irrelevant later when we take minus parts; it will suffice to know δ0.) Finally let δ : C → ∇
be any lift of δ1.

Lemma 6.1. The element δp(xp) is a QGp-generator of QW 0
p ; δp and δ are injective.

Proof. Let dp := δp(xp). Using that (NG0,p , 1 − F−1
p ) is in ker(κ), we find

NG0,p dp = κ((−NG0,p , |G0,p|)) = κ((0, gp)),

with gp := |G0,p|+1−F−1
p . It is easy to show, for example using characters, that gp maps to a non-

zero divisor in Z[Gp/G0,p]. Let (by abuse of notation) g−1
p denote any element of Q[Gp] such that

gpg
−1
p goes to 1 ∈ Q[Gp/G0,p]. Then the element g−1

p NG0,p is uniquely defined, and we may write
κ
(
(0, 1)

)
= g−1

p NG0,p dp ∈ QGpdp. Since W 0
p is generated by the two elements dp and κ

(
(0, 1)

)
, the

first statement of the lemma follows. The rest is a consequence of the (known and easily reproved)
fact that QW 0

p
∼= QGp. (We will reuse the element gp later.)

7. Endowing the diagrams with metrisations

We recall that a metrisation of a complex A
f−→ B of cohomologically trivial modules (over ZG or

over R) is an RG-isomorphism ϕ : ker(R ⊗ f) → coker(R ⊗ f). In other words, if 0 → U → A
f−→

B → V → 0 is exact (A and B as above), then every RG-isomorphism ϕ : R ⊗ U → R ⊗ V is
a metrisation. To each metrised pair E = (A → B,ϕ) we attached a refined Euler characteristic
χref(E) lying in K0(ZG,R) or K0(R,R). We will now give metrisations to the rows in (D1) and
(D2) in a ‘compatible’ way, starting from the standard Dirichlet metrisation of the top row of (D1).
So we first have to explain what kind of compatibility is meant here. The crucial technical result
is due to Burns [Bur01, Proposition 1.2.3 and Remark 1.2.4], and goes as follows. (We state it over
ZG, but it holds over R just as well. It should be said here that Burns proves quite a bit more.)

Proposition 7.1. Assume that a diagram of c.t. ZG-modules is given as follows.

A1
f1 ��

��

B1

��
A2

f2 ��

��

B2

��
A3

f3 �� B3

Suppose that the columns of this are short exact sequences, and that the resulting snake map
ker(R ⊗ f3) → coker(R ⊗ f1) is zero. (Expressed more directly: the resulting column of kernels, or
of cokernels, becomes short exact on tensoring with R.) Suppose finally that the three horizontal
complexes making up the above diagram are all metrised, via ϕi : ker(R⊗ fi) → coker(R⊗ fi), such
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that the obviously arising ladder

ker(R ⊗ f1)
ϕ1 ��

��

coker(R ⊗ f1)

��
ker(R ⊗ f2)

ϕ2 ��

��

coker(R ⊗ f2)

��
ker(R ⊗ f3)

ϕ3 �� coker(R ⊗ f3)

is commutative. (Let us call such a setup a ‘well-metrised short exact sequence of complexes’.) Then

χref(A2 → B2, ϕ2) = χref(A1 → B1, ϕ1) + χref(A3 → B3, ϕ2).

To coin a phrase, ‘the refined Euler characteristic is additive on well-metrised short exact sequences
of complexes’.

Remark 7.2. This applies to both diagrams (D1) and (D2), since in both of them the R-tensored
snake map is zero (equivalently, the border columns become exact on tensoring with R). For (D2)
this is obvious. In (D1), Z ′ was constructed to be the exact kernel in the leftmost column, and the
cokernel of the upper vertical map is clK,S, which is finite and disappears under R ⊗ −. We recall
that the top and middle row of (D1) are exact, and the bottom row becomes exact after R ⊗ −.
As a consequence, the rightmost column also becomes exact after R ⊗ − since this is true for the
leftmost column.

We choose a metrisation ϕ1 for the bottom row in (D1) as follows. Both Z ′ and Z ′′/tors = Z0

are obtained by taking
∼⊕
p∈S′

k\Sk
of local terms, and the corresponding sequence of local terms is

∆Gp · xp → ZGp · xp
hNGp−−−−→ ZGp · xp → ZGp/(NGp) · xp.

Note that this sequence becomes exact upon tensoring with R (or Q). We declare ϕ1 : R ⊗ ∆Gp →
RGp/(NGp) to be the map that is induced by the identity map on RGp. (It is straightforward that
this map ϕ1 is an isomorphism; over Z we would only get an injection.)

For ϕ3 : R ⊗ ES′ → R ⊗ ∆S′ we take the negative of the Dirichlet map exactly as in § 1. (This
was called ϕDir.)

We now define ϕ2 : R ⊗ (C ⊕ ES) → R∇. On RES we take any lift of ϕ3|RES through the
epimorphism R∇ → R∆S′. (This is possible since RG is semisimple.) We recall the element dp =
κ((−1, 1)) ∈ W 0

p defined in the proof of Lemma 6.1; we define another element d′p ∈ W 0
p to be

κ((1, 0)), and we define (recalling that ē and ¯̄e were defined in formula (8)):

ϕ2(xp) = ēp

(
h · log(N P)dp −

∑
w|∞

log |up|wdw
)
− ¯̄epd′p.

We suppress the map indp here. The correction term
∑

w|∞ . . . is chosen in such a way that ϕ2(xp) ∈
∇̄ (note that the map W 0

S′ → Z takes dp and dw to 1 and use the product formula, recalling
upOK = Ph), and will be irrelevant in the end.

Again, an adjustment (which uses some infinite place and will disappear in the minus part) is
needed to put ϕ2(xp) into R∇.

In order to prove the next result, we have to take an irrevocable step: we let S = S∞ throughout,
and we will work in the minus part only. Recall that we use a non-standard convention: M− =
R⊗ZGM with R = Z[12 ][G]/(1 + c), so inverting 2 is included in taking minus parts. For example,
E−
S = µodd(K), the odd part of the group of roots of unity in K.
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Lemma 7.3. The resulting diagram

R ⊗ ES′
ϕ3 �� R ⊗ ∆S′

R ⊗ (C ⊕ ES)
ϕ2 ��

(β,inc)

��

R ⊗∇

��

R ⊗ Z ′ ϕ1 ��

��

R ⊗ Z ′′

��

commutes in the minus part, so in particular ϕ−
2 is an isomorphism as well and (D1)− is now well

metrised. (All vertical maps are directly from the diagram (D1).)

Proof. We start with the lower square. We have to unravel the map Z ′′ → ∇̄. It suffices to deal
with the local terms. There Z ′′

p = ZGp/(NGp) · xp, and looking at (19) and the core diagram we see
that 1̄ · xp ∈ Z ′′

p maps to d′p = κ((1, 0)). (See diagrams (21) and (25).) Moreover Z ′
p = ∆Gp · xp. We

are now ready to chase a typical element αxp (with α ∈ ∆Gp). Under ϕ1 this becomes ᾱ · xp. This
goes to αd′p ∈ W 0

p . The other way round, αxp maps upward to (−αxp, αβ(xp) (see (21)). We want
to see where this is sent to by ϕ2. But RES becomes zero in the minus part, so we may replace the
second component αβ(xp) by zero. Now ēpα = 0 and ¯̄epα = α, so in evaluating ϕ2((−αxp, 0)) only
the ¯̄ep part matters, and the definition gives ¯̄epαd′p, so the lower square commutes.

For the upper square, ϕ2 is defined just in the right way that chasing u ∈ ES either way
gives the same result. So it only remains to chase (xp, 0). From the core diagram we know that dp
(respectively d′p) goes to 1 (respectively 0) under the map W 0

p → Z (which gives rise to ∇ → ∆S′).
From this and from β(xp) = up), one can see that (xp, 0) goes to h log(N P)·P−∑

w|∞ |up|w ·w ∈ ∆S′

via both routes in the square. (Here we did not need to take minus parts.)

In order to metrise (D2) we retain the assumption that S = S∞, and we continue to take minus
parts of all modules involved. We recall that E−

S is now finite. From the construction or from other
arguments it follows that (∇/δ(C))− is finite as well. Thus one has just the obvious metrisation
0 ∼−→ 0 for the minus part of the top row of (D2), and we call it ϕtriv. For the middle row of (D2),
which agrees with the middle row of (D1), we take the metrisation ϕ2. For the bottom row of
(D2), which looks very simple-minded, we cannot take the most obvious metrisation which would
be id : RC → RC. To make the next lemma work, we have to choose

ψ = δ−1 ϕ2|RC : RC → RC.

Lemma 7.4. With these three metrisations ϕtriv, ϕ2, ψ, the minus part of diagram (D2) is well
metrised.

Proof. As in the last lemma, we have to show that two squares are commutative. For the square
involving ϕtriv (which is the zero map between two zero modules), this is trivial. So we have to show
that the following diagram commutes (and this works without taking minus parts).

R ⊗ (C ⊕ ES)
ϕ2 �� R ⊗∇

R ⊗ C
ψ ��

��

R ⊗ C

δ

��

But this is obvious, according to the definition of ψ.

One row can be dealt with quickly (see following remark).
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Remark 7.5. Because of the zero in the middle of the bottom row of (D2), the transpose of ψ is ψ
itself, and thus the refined Euler characteristic of that row metrised with ψ is ∂(detRG ψ).

In the following definitions we mention various rows of diagrams; of course we mean these rows
together with the metrisations as just explained. Let

XS′ = χref(top row of (D1)),
X1 = χref(middle row of (D1)),
XC = χref(bottom row of (D1)),
X−

∞ = χref(bottom row of (D1)− with S = S∞).

(The notation (D1)− should be self-explanatory: take minus parts of all terms. Note that ‘minus
part’ is an exact functor.)

By Proposition 7.1, Lemmas 7.3 and 7.4 and Remark 7.5 we conclude that

X1 = XS′ +XC in K0(ZG,R) (27)

and

X−
∞ = X−

1 − ∂(detRG(ψ))− ∈ K0(R,R). (28)

Note here that we write the natural map K0(ZG,R) → K0(R,R) also simply by an exponent minus.
Therefore our target object X−∞ can be calculated from the three quantities XS′ , XC ,

∂(detRG(ψ)). The first of these three is given by ETNC, and the two others are explicitly calculable.
We do one of them now.

Lemma 7.6. Let vp = h · |Gp|ēp + ¯̄ep ∈ QGp. Then

XC =
∑

p∈S′
k\Sk

∂(vp).

Proof. Both χref and δ are compatible with induction, so we may work locally and calculate the
refined Euler characteristic of

ZGp
h·NGp−−−−→ ZGp

with ‘identity’ R∆Gp → RGp/(NGp) as metrisation. We tensor with R and decompose along the
characters χ of Gp. (By the way, it is allowed to tensor with C, since the natural map K0(ZGp,R) →
K0(ZGp,C) is injective.) The map in the above complex is zero, respectively an isomorphism, in the
χ part, according to whether χ is non-trivial or trivial. In the χ parts for non-trivial χ therefore,
the transpose of the metrisation isomorphism is the metrisation isomorphism itself, that is, identity.
For trivial χ, the metrisation is zero, and its transpose is the given map of the complex, which is
multiplication by h|Gp|. Hence the transposed isomorphism is multiplication by vp, and this gives
∂(vp) as χref of the above metrised sequence. This proves the lemma.

In preparation for our final calculations we put Lemma 7.6, (27) and (28) together for reference.

Proposition 7.7. One has X−∞ = X−
S′ +

∑
p∈S′

k\Sk
∂(vp)− − ∂(detRG(ψ))−.

8. Refined Euler characteristics and Fitting ideals

We recall that S = S∞. We will calculate X−∞, the refined Euler characteristic of the top row of
diagram (D2) in the minus part, and as a consequence we will obtain information on Fitting ideals.

For practical reasons we introduce a slightly generalised notation. (We only treat R-modules,
the case of ZG-modules being completely analogous). Suppose P is R-free of rank n and L is any
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R-lattice in QP (that is, any finitely generated R-submodule of QP whose Q-span is all of QP ).
We define

FittR(P ;L) := x−n · FittR(P/xL),
where x ∈ R is any non-zero divisor such that xL ⊂ P . It is helpful in this context to remember
that FittR(P/xP ) = Rxn.

Lemma 8.1. FittR(P ;L) is well defined.

Proof. Assume that y ∈ R is another non-zero divisor such that yL ⊂ P . We show that the
right-hand side in the above definition does not change if x is replaced by xy (and this suffices by
symmetry). If z1, . . . , zm is a set of generators of L, then Fitt(P/xL) is generated by the n×n minors
of the matrix whose rows are the xzi, written as coordinate vectors according to a chosen basis of P .
It is then clear that the Fitting ideal gets multiplied by yn when xL is replaced by xyL; this exactly
cancels against the y−n which comes from the first factor.

Let now f ∈ QR× be such that ∂(f) = X−∞. Then f is unique modulo R×, but we just make
a once-for-all choice. Before we start putting everything together, we explain how one gets from
knowledge of f to the Fitting ideal of cl∨−K . (The Pontryagin dual comes in unavoidably.) We recall
the sequence which gave rise to X−∞, making the final extra assumption that µodd(K) is trivial:

0 → A− → B̃− → (∇/δ(C))− → 0. (29)

All terms in it are now c.t. over R, and Lemma 3.1 tells us that

FittR((∇/δ(C))−) = (f) (30)

as principal ideals of R. (The a priori fractional ideal (f) now turns out actually to be an ideal.)
The transition to an explicit description is done by the following result.

Lemma 8.2. One has FittR(cl∨−K ) = f · FittR(δ(C)−; ∇̄−).

Proof. Just for this proof we agree to omit all minus exponents. Choose a non-zero divisor x ∈ R
such that x∇ ⊂ δ(C) (possible since ∇/δ(C) is finite). There is the crucial short exact sequence
0 → clK → ∇ → ∇̄ → 0. By abuse of notation we also use δ for the map C → ∇̄ and note that this
is still injective since C is free. This produces two short exact sequences

0 → clK → ∇
δ(C)

→ ∇̄
δ(C)

→ 0, 0 → ∇̄
δ(C)

→ x−1δ(C)
δ(C)

→ x−1δ(C)
∇̄ → 0.

These combine into the four-term sequence

0 → clK → ∇
δ(C)

→ x−1δ(C)
δ(C)

→ x−1δ(C)
∇̄ → 0.

From Lemma 5 in [BG03b] we obtain

FittR(cl∨K) = FittR

( ∇
δ(C)

)
· Fitt−1

R

(
x−1δ(C)
δ(C)

)
· FittR

(
x−1δ(C)

∇̄
)

= f · FittR(δ(C); ∇̄).

For safety we repeat that all modules in the preceding argument silently carry an exponent minus.

We next calculate the Fitting ideal on the right in the statement of Lemma 8.2, to give an idea

of the final result. To begin with, we note that in the minus part, ∇̄ agrees with
∼⊕
p∈S′

k\Sk
W 0
p .

Thus everything decomposes: we just need to calculate FittR(Rδ(xp);W 0−
p ) and take the product
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over all p ∈ S′
k \ S∞. Recall the description of W 0

p from § 5. The element dp = δ(xp) was defined as
κ((−1, 1)) in § 6, and from the proof of Lemma 6.1 we easily extract

W 0
p = dp · 〈1, g−1

p NG0,p〉. (31)

We recall from § 6 that gp = |G0,p|+ 1− F−1
p maps to a non-zero divisor ḡ of Zp[Gp/G0,p], and g−1

p

stands for any lift of ḡ−1 to Qp[Gp]. So we have

FittR(Rδ(xp);W 0
p ) = 〈1, g−1

p NG0,p〉, (32)

and FittR(δ(C)−; ∇̄−) is the product of all these fractional ideals (extended to ideals of R). We now
identify the individual ideals.

Lemma 8.3. If we let hp = e′pgp + e′′p, then

〈1, g−1
p NG0,p〉 = h−1

p Up

as fractional ideals of ZGp.

Proof. We omit all indices p in this proof (the h that results has nothing to do with the integer factor
h used before), and we write N for NG0,p . We note that h is a non-zero divisor in Q[Gp] to start with.
Recall from § 2 that U = Up = 〈1−e′F−1, N〉. We multiply the left-hand side in the lemma by h; this
gives 〈h,N〉. Now h = e′(N+1−F−1)+e′′ = 1−e′F−1 +N . Thus 〈h,N〉 = 〈1−e′F−1 +N,N〉 = U ,
as had to be shown.

If we assemble Lemmas 8.2 and 8.3 with (32) and the sentence following it, we obtain a non-
explicit version of our main result. Let hglob =

∏
p∈S′

k\S∞ hp, and recall that U is the product of all
Up with p ∈ S′

k \ S∞.

Corollary 8.4. One has FittR cl∨−K = fh−1
globU

−.

The explicit form of our main result runs as follows (for the sake of clarity we repeat even the
most standard assumptions we are making; the quantity ω was defined in § 2).

Theorem 8.5. Assume K/k is abelian with group G, K is CM and k totally real. Assume that
ETNC holds for the motive h0(K) with coefficients in ZG. Then

fh−1
globR = ωR

and consequently, if the number of roots of unity in K is a power of 2,

FittR(cl∨−K ) = ωU− = SKu′(K/k)−

(see § 2).

Remark. Since all relevant exact sequences are base-changed from Z[G] to R, it is even enough to
suppose the validity of ETNC(h0(K), R) instead of ETNC(h0(K),Z[G]).

Proof of Theorem 8.5. It suffices to prove the first formula, since the second is a consequence via
Corollary 8.4.

We take Proposition 7.7 and give values to the right-hand side. For XS′ we put ∂(L∗
S′(0)�),

according to ETNC. Therefore f equals, up to a factor in R∗, the product

f1 := L∗
S′(0)� ·

∏
p∈S′

k\S∞

(h|Gp|ēp + ¯̄ep) · detRG(ψ)−1. (33)

(Of course this is meant as an equation in R ⊗R; we suppress the canonical epimorphism R[G] →
R ⊗R.) The terms on the right-hand side all split up as products over p. For the middle term this
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is obvious, and it is well known for the L-value; we will see the details very soon. The determinant

also factors since ψ =
∼⊕
p∈S′

k\Sk
ψp for local maps ψp. We will show that, for every odd character χ

of G, the values χ(f1h
−1
glob) and χ(ω) agree. This will prove f1h

−1
glob = ω, and we will be done. (Note

that hglob is likewise a product of local factors.)

For the rest of the argument we fix one character χ of G. Tacitly, χ will also be considered as a
character of Gp by restriction. We write the set S′

k \ S∞,k as the disjoint union of three subsets T1,
T2 and T3 (depending on χ) as follows:

1. p ∈ T1 if and only if χ is trivial on Gp, equivalently if and only if χ(ēp) = 1;

2. p ∈ T2 if and only if χ is non-trivial on Gp but trivial on G0,p, equivalently if and only if
χ(e′p) = 1 but χ(ēp) = 0;

3. p ∈ T3 if and only if χ is non-trivial on G0,p, i.e. χ(e′p) = 0.

We will call p of type 1, 2 or 3 respectively. This is equivalent to p being split (type 1), unramified
non-split (type 2), and ramified (type 3), respectively, in the subfield of K cut out by χ. This
division into types also corresponds to the decomposition of 1 into orthogonal idempotents

1 = ēp + ¯̄epe′p + ¯̄epe′′p ,

where type i corresponds to χ sending the ith of the right-hand summands to 1 and the other two
to 0, for i = 1, 2, 3.

Lemma 8.6. In the minus part, ψ =
∼⊕
p∈S′

k\Sk
ψp, where each ψp is the endomorphism of xpRGp

which is given via multiplication by the following element tp:

tp = h log N P · ēp +
1 − F−1

p

gp
· ¯̄epe′p + ¯̄epe′′p .

The denominator gp of the second summand may also be changed to hp.

Proof. By definition, ψ is δ−1ϕ2. In the minus part, the adjustment terms at infinity used in the
definition of δ and ϕ2 simply disappear. So we may calculate with δ0 instead of δ, and with the map
ϕ′

2 defined exactly as ϕ2 with the term involving
∑

w|∞ omitted. Since δ0 maps xp to dp, we are
reduced to checking the equality

ϕ′
2(xp) = tpdp.

The ēp component of this equality is a direct consequence of the definitions. Thus it suffices to
show that our formula is correct in the ¯̄ep component. By definition, ¯̄epϕ′

2(xp) = −¯̄epκ((1, 0)). Using
Lemma 6.1 and its proof we get

κ((1, 0)) = −κ((−1, 1)) + κ((0, 1))

= (−1 + g−1
p NG0,p)dp.

On multiplying this expression by ¯̄epe′p, the right-hand term becomes

¯̄epe′pg
−1
p (−|G0,p| − 1 + F−1

p + NG0,p)dp.

But e′p(−|G0,p| + NG0,p) = 0, so we obtain ¯̄epe′pκ((1, 0)) = ¯̄epe′pg
−1
p (F−1

p − 1)dp, which means that

¯̄epe′pϕ
′
2(xp) = ¯̄epe′ptpdp.
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When we multiply the equation κ((1, 0)) = (−1+g−1
p NG0,p)dp by ¯̄epe′′p (note that this is equal to e′′p,

but we retain ¯̄e for clarity), then the term g−1
p NG0,p drops out. So we are left with ¯̄epe′′pκ((1, 0)) =

−dp, which means that
¯̄epe′′pϕ

′
2(xp) = ¯̄epe′′ptpdp,

and we are done.
The concluding statement of the lemma is an easy consequence of the definition of hp, see

Lemma 8.3.

We now continue in the proof of Theorem 8.5. Recall that we have to show that χ(f1h
−1
glob) =

χ(ω), and that f1 is given in (33) as a product of three terms; we process these, and then h−1
glob, one

after another.
The L-function LS′(s, χ) arises from the standard function L(s, χ), which omits Euler factors

exactly at the primes in T3 (‘ramified’), by removing the Euler factors attached to primes in T1

and T2. Among these, precisely the inverse Euler factor for primes in T1 have a (simple) zero in
s = 0, with leading term (first derivative at s = 0) log N p. This gives

χ(L∗
S′(0)�) = L∗

S′(0, χ−1)

=
∏
p∈T1

log N p · LT2∪T3(0, χ
−1)

=
∏
p∈T1

log N p ·
∏
p∈T2

χ−1(1 − Fp) · L(0, χ−1). (34)

Note that the last factor already equals χ(ω), so the point will be that the remaining factors cancel
against the terms that are yet to be calculated.

The second factor in (33) yields

χ

( ∏
p∈S′

k\S∞,k

(h|Gp|ēp + ¯̄ep)

)
=

∏
p∈T1

(h|Gp|), (35)

since the factors for p of type 2 or 3 just evaluate to 1.
From Lemma 8.6 we deduce that

χ(det(ψ)) =
∏
p∈T1

h log NP ·
∏
p∈T2

χ(h−1
p (1 − F−1

p )). (36)

Finally, it follows from the definitions that χ(hp) = 1 for p of type 3 and that χ(hp) = |G0,p| for
χ of type 1. This gives

χ(hglob) =
∏
p∈T1

|G0,p| ·
∏
p∈T2

χ(hp). (37)

Now for the conclusion. The desired value χ(f1h
−1
glob) is the product of the left-hand sides of (34)

and (35), divided by the left-hand sides of (36) and (37). We thus have to look at the corresponding
right-hand sides. It is directly visible that the type 2 products cancel out. The type 1 products
cancel out likewise, since log N P equals [Gp : G0,p] log N p. Only L(0, χ−1) remains, and as already
said this means that we are done.

Remark. Under our hypotheses, the minus part of A (the annihilators of roots of unity) coincides
with R, and SKu′(K/k)− = SKu(K/k)− in the notation of § 2.

From Theorem 8.5 and the main result of [BG03a] we obtain a corollary.
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Corollary 8.7. If K is absolutely abelian (and K/k abelian, K imaginary, k real as always), and
if the number of roots of unity in K is a 2-power, then

FittR(cl∨−K ) = SKu′(K/k)−.

We can go a little further with little extra effort. We can also capture the case where µ(K)−

has projective dimension at most 1 over R (instead of being zero), and all it takes is sharpening a
lemma.

Theorem 8.8. If K/k is G-abelian, K is CM and k totally real, if µ(K)− is R-cohomologically
trivial and ETNC holds for the motive h0(K) with coefficients in ZG, then

FittR(cl∨−K ) = SKu(K/k)−.

Proof. Let A = FittR(µ(K)−). Then our assumption implies that this R-ideal is projective; A is also
the same as the R-annihilator of µ(K)−. The sequence (29) picks up an extra term µ(K)− on the
left. From Lemma 8.9 below (which is a generalisation of Lemma 3.1) we obtain that each of (30),
Lemma 8.2 and Corollary 8.4 continue to hold if an extra factor A is inserted in the right-hand
side. The claim of Theorem 8.8 then follows from the definition of SKu(K/k) (see § 2). We are done
(modulo the lemma).

Lemma 8.9. If 0 → P → A′ → B′ → Q → 0 is an exact sequence of R-modules of projective
dimension at most 1, and P and Q are both finite, then

χref(A′ → B′, ϕtriv) = ∂(FittR(Q)) − ∂(FittR(P )).

Proof. We will only need the case where B′ is torsion-free (hence projective), so we will assume
this. Pick a projective resolution 0 → D → C → A′ → 0; let f : A′ → B′ be the given map and
f ′ : C → B′ be the obvious composition. We use our convention of omitting zeros in big diagrams.
M in the following diagram is defined by exactness; it is again of projective dimension at most 1.

D
id ��

��

D
0 ��

��

D
id ��

��

D

��
M ��

��

C
f ′ ��

��

B′ ⊕D ��

��

Q⊕D

��
P

id �� A′ f �� B′ id �� Q

The top row has the canonical trivialisation, and its χref is obviously zero. The bottom row has
the canonical trivialisation. To make the above diagram into a well-metrised short exact sequence
of complexes, we have to metrise it via ϕ : RM → R(Q ⊕D) = RD, arising as the inverse of the
injective map j : D → M given by the diagram. Then we have to determine the transpose ϕ̃. It is
easy to see (and enough for us) that ϕ̃ = f ′ + j∗, where j∗ is any extension of R⊗ j−1 : RM → RD
to RC. Then one has, by the standard rules for calculating in relative K0-groups:

(C, ϕ̃,B′ ⊕D) = (M, j−1,D) + (C/M, f ′, B′).

Now P is the cokernel of j : D →M , and Q is the cokernel of f ′ : C/M → B′. From this it follows
just as in the proof of Lemma 3.1 that

δ(FittR(P )) = −(M, j−1,D), δ(FittR(Q)) = (C/M, f ′, B′).

Since χref(A′ → B′, ϕtriv) = χref(C → B′ ⊕ D,ϕ) = (C, ϕ̃,B′ ⊕ D) by multiplicativity of χref

(Proposition 7.1), we obtain exactly the formula stated in the lemma.
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Remarks. (1) As already pointed out in § 2, the right-hand side in Theorem 8.8 lies in SKu′(K/k)−∩
R, but we cannot prove equality. The point is that SKu′(K/k) might be ‘too integral’.

(2) Obviously there is an ‘absolute’ corollary (k = Q) for Theorem 8.8, in analogy with Corol-
lary 8.7 for Theorem 8.5.

As a consequence of our main results we can also say something about annihilators. We start
by pointing out that the modules cl∨−K and cl−K have the same R-annihilator, and we recall that the
annihilator of any R-module M contains the Fitting ideal of M . Therefore we know that, under
the hypotheses of Theorem 8.8, the ideal SKu(K/k) annihilates cl−K . Actually slightly more is true,
as in the following theorem.

Theorem 8.10. Under the hypotheses of Theorem 8.8, the generalised Sinnott ideal SSi(K/k)−

annihilates cl−K .

Proof. Recall that SSi(K/k)− = A SSi′(K/k)− (where A = FittR(µ(K)−) as above), and that
SSi′(K/k) is generated by xI = corK/KI

θ(KI/k, S(I)) with I running through all subsets of
{1, . . . , s}; for further notation we refer to § 2. Recall likewise that SKu′(K/k) is generated by
all the elements a(I)xI . It is obvious from the definition that a(I) = 1 if I is the maximal set
{1, . . . , s}. In particular Ax{1,...,s} = Aθ(K/k) annihilates cl−K since it is contained in the Fitting
ideal of cl∨−K . The point is to see that the other terms AxI annihilate cl−K as well. But (as follows
from the definition of corestriction) it is sufficient for this that Aθ(KI/k, S(I)) annihilates cl−KI

. We
claim that already Aθ(KI/k) has this annihilation property; to show this, simply note again that
θ(KI/k) ∈ SKu′(KI/k) and invoke Theorem 8.8 for KI/k instead of K/k. (One has to check two
things to make this work: µ(KI) is again of projective dimension at most 1 over RI := ZG(I)−; and
FittR(µ(K)−)θ(KI/k) ⊂ FittRI

(µ(KI)−)θ(KI/k). Both of these are easy; the first property uses
that µ(KI) can be obtained from µ(K) by taking Gal(K/KI)-invariants; and the second can be
seen via replacing Fitting ideals by annihilators.)

As said in the previous proof, Aθ(K/k) annihilates cl−K under the hypotheses of Theorem 8.8.
But this can be rephrased differently, as follows.

Corollary 8.11. Under the hypotheses of Theorem 8.8, the Brumer conjecture for K/k is true
outside the 2-part. (Note that the Brumer conjecture is true in the plus part for trivial reasons.)

While we do not have any simple-to-state result at hand, it is not too difficult (even for k = Q)
to find examples for which SKu(K/k) is strictly contained in SSi(K/k). We do not give details and
just point out that whenever this happens and the hypotheses of Theorem 8.8 are satisfied, we are
assured by Theorem 8.10 that the Fitting ideal of cl∨−K is strictly smaller than its annihilator.

We conclude this paper by discussing the necessity of taking the Pontryagin dual in our main
results and comparing our results to Kurihara’s (see [Kur03a]). It is well known that for any cyclic
group G and any finite ZG-module M the ZG-Fitting ideals of M and M∨ are the same. The
analogous statement for R = ZG−-modules (still G-cyclic) is an easy consequence via base change,
so one can replace cl∨−K by cl−K in Theorems 8.5 and 8.8 and Corollary 8.7 in that case. For gen-
eral abelian groups, this is definitely not true. The question remains whether there are reasonable
conditions which would ensure FittR(cl∨−K ) = FittR(cl−K), or, more generally, which would permit
one to calculate FittR(cl−K). For now, it is quite interesting that Kurihara [Kur03a] does obtain a
formula for FittR(cl−K) (not the dual) in certain cases, and the right-hand side in his formula is the
same as ours.

We now go through the cases treated in [Kur03a], noting first that in that paper it is assumed
that k = Q, and the results are stated over the p-completion of R, with p being an arbitrary
prime. (Our result over R is of course equivalent to the conjunction of all its p-adified versions,
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with p �= 2.) The first case (Theorem 0.4 in [Kur03a]) deals with extensions K/k such that no
p-adic prime splits in K+/K. If we make the extra assumption that K/k is ‘nice’ (see [Gre00];
this includes cohomological triviality of µ−K), then it follows that cl−K is R-cohomologically trivial,
and then its Fitting ideal does not change upon dualising, so our result in Theorem 8.5 and the
quoted theorem of [Kur03a] are ‘equivalent’. Compare also [Gre00]. The second case (Theorem 0.5
in [Kur03a]) assumes that K is the nth layer of the p-cyclotomic extension over a field K0 whose
degree over Q is prime to p. Here the p-part of G is cyclic, so in the p-part, dualising again does not
change the Fitting ideal. The most interesting case in the present context is Kurihara’s Theorem 0.6,
where he assumes that ζp �∈ K and that p is at most tamely ramified. Here the p-part of G need not
be cyclic. If we impose the slightly stronger hypothesis that µ(K) is of 2-power order, then [Kur03a]
and our Theorem 8.5 show in particular that cl−K and its dual have the same R-Fitting ideal, which
now is a genuine restriction on the module structures. It would be very nice to understand just why
this happens.

Joint work with Kurihara (in preparation) shows the existence of examples K/k for which the
top level element θ(K/k) is not in FittR(cl−K). Since these examples all have k �= Q, we do not
know the validity of ETNC, so in general we have no definite result on FittR(cl∨−K ) yet, even if K/k
satisfies the assumptions in Theorem 8.8. But from this joint work and [Kur03b] one can deduce
that there are unconditional examples with FittR(cl∨−K ) = SKu(K/k) and θ(K/k) �∈ FittR(cl−K).

Acknowledgements

Thanks are due to Al Weiss for sending me his paper [GW] with Gruenberg, and to Andreas Nickel,
who located an inaccuracy in a previous version. The author is grateful to the referee for his careful
reading and helpful remarks, and he acknowledges support from DFG.

References
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