
Can. J. Math., Vol. XXIX, No. 5, 1977, pp. 1072-1080 

SIMPLE PROOFS OF SOME THEOREMS 
ON HIGH DEGREES OF UNSOLVABILITY 

CARL G. JOCKUSCH, JR. 

If a is a degree of unsolvability, a is called high if a ^ 0' and a' = 0" . 
In [1], S. B. Cooper showed tha t if a is high, then (i) a is not a minimal degree, 
and (ii) there is a minimal degree b < a. We give new proofs of these results 
which avoid the intricate priority and recursive approximation a rguments of 
[1] in favor of "oracle" constructions using the recursion theorem. Also our 
constructions apply to degrees a which are not below 0'. Call a degree a 
generalized high if a' = ( a U O ' ) ' . Among the degrees ^ 0', the generalized 
high degrees obviously coincide with the high degrees. W e show tha t if a is 
generalized high, then i') there is a nonzero degree b < a such t ha t b' = b W O ' , 
and ii') there is a minimal degree b < a. T h e main point of the present paper 
is to give simple proofs for the cited results of Cooper ra ther than to extend 
them from high to generalized high degrees. However, this extension is of some 
interest for the following reasons pointed out by D . Posner: 

(a) Cooper 's result [1 ; 2] t ha t all degrees ^ 0' are jumps of minimal degrees 
seems to present a barrier to extending his result t ha t high degrees are not 
minimal to degrees which are not necessarily below 0' bu t satisfy some condi­
tion involving the j u m p operation. For instance it shows t h a t the condition 
a' ^ 0 " is not a suitable extension of the notion of "h igh" , a t least for the 
purposes a t hand. However, the notion of "generalized high" is suitable for 
extending many results about high degrees, and the class of generalized high 
degrees is a reasonably rich class of degrees as explained in (b) . 

(b) T h e generalized high degrees "genera te" the set of all degrees in the 
sense t ha t every degree is the greatest lower bound of a pair of generalized 
high degrees. T o see this, relativize the construction of a minimal pair of high 
degrees to an arbi t rary degree c to obtain degrees #i , fl2 having greatest lower 
bound C such tha t C ^ a( and c' = a" for i = 1, 2. T h e degrees au a2 are 
clearly generalized high. (A minimal pair of high r.e. degrees is constructed in 
[6, Theorem 2] bu t a minimal pair of high degrees may be obtained much more 
easily as mentioned in [2, p. 130].) 

Very recently Posner and the au thor have shown tha t the conclusion of (ir) 
follows from the weaker hypothesis a" = (a W 0') r- This and related 
results will appear in a future joint paper. T h e proof is a simple "oracle argu­
m e n t " bu t use of the recursion theorem is supplanted by a rud imentary priority 
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argument . Although result (i') is rendered obsolete by this development, we 
include its proof here anyway as an optimally simple illustration of the method 
which is used to prove (ii') and has been used by Posner [7; 8] to obtain a 
number of other results about high degrees. (Some of these results do not seem 
amenable to the full approximation methods of Cooper, or indeed to any full 
approximation methods.) We do not know whether (ii') follows from the 
weaker hypothesis tha t a" > ( a U O ' ) ' , but we conjecture tha t it does not. 

We are grateful to Posner for helpful discussions and information on the 
subject of this paper. 

Our notat ion and terminology are s tandard. In particular, we use the 
letters a, b, C for degrees and A, B, C for subsets of co — {0, 1, 2, . . . } . We write 
S T, ', © for Tur ing reducibility, jump, and join respectively on subsets of co, 
and ^ , ', W for the induced ordering and operations on the degrees. Subsets 
of co are identified with their characteristic functions, so B (x) = 1 if and only if 
x £ B. Strings are functions from finite initial segments of co into {0, 1}. The 
letters ô, a, T always denote strings. A string a is a beginning of a set B if a is 
extended by the characteristic function of B. When we write a C T, U STS, we 
are viewing strings as sets of ordered pairs. We assume strings are Gôdel-
numbered and sometimes identify them with their Gôdel numbers. The nota­
tion C = liiru Cs means tha t for each n there exists a number s(n) such tha t 
C(n) = Cs(n) for all s ^ s(n). The Limit Lemma [12, p. 29] asserts t ha t 
C ^TAf if and only if there is a sequence of sets {Cs} which are uniformly 
recursive in A such tha t C = lims Cs. We write \e}(T(x) = y if the eth Tur ing 
reduction procedure, given argument x and oracle information a, gives ou tpu t 
y. Of course \e}B(x) = y means tha t {e}<r(x) — y for some beginning a of B. 
T h u s Bf = {e : {e)B{e) is defined}. Let (. , .) be a 1—1 recursive map from co2 

onto co. 

T H E O R E M 1. If a is generalized high, then there is a non-zero degree b < a 
such that &'= b U O ' . 

Proof. The argument is a primitive forcing argument in the style of the proof 
of the Friedberg completeness criterion [12, Ch. 10]. Given e, x G co and a 
string a, we say tha t \e\<T(x) is strongly undefined if {e)T(x) is undefined for all 
strings r 3 <r- Given B C co we say \e\B(x) is strongly undefined if {e\°(x) is 
strongly undefined for some beginning a of B. Define B* to be the set of e G co 
such tha t \e}B(e) is strongly undefined. Clearly B* Pi B' = 0 for all B ^ co. 
Observe tha t B* is r.e. in B © 0' (since {(e, a) : \e)a(e) is strongly undefined) 
is recursive in 0 ') . The set B is called 1-generic if B*KJ B' — co, i.e. B* = co — B'. 
(A set is 1-generic just in case it is generic for 1-quantifier ari thmetical 
s ta tements with respect to forcing with finite conditions, cf [4]). The following 
lemma is well-known. 

LEMMA 2. If B is a 1-generic set, then B' :g T B © 0r and B is not recursive. 
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Proof. The sets B', B* are each r.e. in B © 0' and are complementary by 
assumption. Hence B' ST B © 0'. 

T o show tha t B is not recursive, we consider an arbi t rary recursive func t ion / 
and show t h a t / 9e B. First , let e b e a number such t ha t for any set C, {e\ c(e) 
is defined if and only if there exists a number k such t h a t / ( & ) ^ C(&). Such 
an e exists s i n c e / is recursive. Then e d B*, since no finite amount of informa­
tion about B can guarantee t ha t / = B. Hence e Ç Bf by 1-genericity, so 
/ ^ B as required. 

We remark tha t 1-genericity has numerous consequences in addit ion to 
those mentioned in Lemma 2, and these may be used to s t rengthen Theorem 1. 
For instance, if B is 1-generic, then no non-recursive r.e. set is recursive in B 
[3]. Also if B is 1-generic, then every countable partial ly ordered set may be 
embedded in the degrees below the degree of B. T o show the lat ter , it suffices 
by the proof of [10, § 4, Corollary 3] to find a recursively independent sequence 
of sets Bo, Bi, . . . which are uniformly recursive in B. T o do this, let Bt = 
\j '• (hj) £ B\ • T h e sequence of B is is recursively independent since, whenever 
D is a finite join of sets Bj with j ^ i and {e\D is total , no finite amoun t of 
information about B can force {e}D to be Bt. 

T h u s to prove Theorem 1 it suffices to show tha t for any set A satisfying 
(A © 0 ' ) ' ST A', there is a 1-generic set B ST A. T h e "classical" construc­
tion of a 1-generic set B is to obtain the characterist ic function of B as \Jeae 

where {ae} is an inductively defined, C-ascending, sequence of strings such 
tha t {e}ae+l (e) is either defined or strongly undefined. We follow this idea in 
constructing our set B, bu t in order to arrange t ha t B ST A, we make in­
finitely many ' 'appropriately bounded" a t t acks on the requirement t ha t 
\e)B(e) be defined or strongly undefined. T h e a t t acks are arranged so tha t for 
any given e, all sufficiently late a t t acks are successful. Recall t ha t B* is r.e. 
in B © 0', so B* ST (B ® 0 , ) / . If 4 is a set such tha t (A © 0 ' ) ' ST A' and 
we construct B S T A, it follows tha t B* S T (B © 0 ' ) ' S T (A © 0 ' ) ' S T A'. 
Therefore by the Limit Lemma [12, p . 29] there exists a sequence of sets Bs*, 
uniformly recursive in A, such tha t lim s Bs* = B*. Although the B*s depend 
on B, the recursion theorem will justify their use in the construction of B. 
(This will be explained further after the construction of B.) We obtain B as 
VJe(7e where o-0 C ax C . . . are strings, Let cr0 be the empty string. Suppose 
inductively t ha t as has been defined. Let 5 = (e, n). We a t t e m p t to arrange 
tha t as+i is a string a such tha t {e}a'(e) is defined or strongly undefined, thus 
guaranteeing e G B' \J B*. T o obtain as+i search simultaneously for t ^ s 
such tha t e G B * and a string a ^ as such t ha t {e}a(e) is defined. If the search 
first yields SL t ^ s such tha t e G B*, let as+i be any (effectively chosen) 
proper extension of <rs. If the search first yields <r 2 v$ with {e}a(e) defined, 
let a s + i be t ha t a. Note tha t the search must terminate roughly because if no 
(j 2 o"s with {e}a(e) defined exists, then e G B* so e £ JB,* for all sufficiently 
large /. Also if e $ J3*, then for all sufficiently large n the search a t stage (e, n) 
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cannot find a / and hence must find a a, so e Ç B'. Hence B is 1-generic. Since 

the construction of B is carried out recursively in the sequence Bs* which is 

uniformly recursive in A, we have B ^ T A as required. 

I t remains now to justify using Bs* in the definition of B. The argument is 
roughly tha t the recursion theorem (relativized to A) allows use of a number i 
such tha t B = {i\A in the construction of B, and an index j such t h a t 
[(e, t) : e £ B *} = {j}A may be effectively calculated from i. However, a 
precise argument requires allowing for the possibility tha t some search in the 
construction never teminates and so the a t t e m p t to construct the character­
istic function of B yields only a string. If ^ is a partial function, let \//* = 
\e : (3 o-)[\p ^ a and \e)(T(e) is strongly undefined]}. (If \p = C, clearly \[/* = 
C*.) Observe tha t ({i}4)* is r.e. in A © 0', uniformly in i. Hence (\i)A)* S T 
(A © 0') ST A' uniformly in i, so there is a double sequence of sets Bs*'1 

uniformly recursive in A, such tha t lims B*yi = ({i}A)* for all i. By the 
uniformity of the construction there is a recursive function h such that , for all 
i, {h{i))A is the union of the strings as obtained from the construction when 
Bs* is replaced by B*'\ By the recursion theorem (relativized to A) there is 
a n u m b e r s such tha t {z)A = {h(z)}A. For this z, the argument tha t all searches 
terminate in the construction using Bs*'z for Bs* is easily made precise, so this 
construction yields a total function [h(z)\A which is the characteristic function 
of a 1-generic set B ^ T A. 

COROLLARY 3 (Cooper). If a is high, then a has a nonzero predecessor b 
satisfying b' = 0r, so in particular a is not minimal. 

In [1, Theorem 2] Cooper actually asserted only tha t high degrees are not 
minimal. However, it was known to Cooper tha t Corollary 3 could be obtained 
by his methods and in fact Posner has recently observed tha t his construction 
(as it s tands) produces a degree b as in Corollary 3. 

T H E O R E M 4. If a is generalized high, then there is a minimal degree b < a. 

Proof. The idea of the proof is to combine the technique of the Sacks construc­
tion of a minimal degree < 0' [9] (as simplified by Shoenfield [12]) with 
the method of Theorem 2 for replacing an oracle for 0' by one for a set of 
degree a. The construction which emerges is a priority argument in which the 
number of injuries to each requirement is finite but not apparent ly recursively 
bounded. By contrast , in the Sacks construction there is a recursive bound to 
the number of times a given requirement can be injured while the proof of 
[1, Theorem 3] is an infinite injury priority argument. (A thorough exposition 
of the full approximation method used to prove [1, Theorem 3] is given in [2].) 

We assume the reader to be familiar with some construction of a minimal 
degree below 0 r. We now specify our terminology, which is essentially from 
[12, Ch. 11]. A tree is a partial recursive function from the set of strings to the 
set of strings such that , for any string a, if one of T(a*0) and T(a*l) is defined, 
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then all of T(a), r(o-*0), and T(a*l) are defined, and r(o-*0), T(a*l) are 
incompatible extensions of T(a). A string is on a tree T if it is in the range of T. 

A set A is a branch of a tree T if infinitely many beginnings of A are on T. 

A tree T' is a subtree of a tree T if every string on V is on T. 

Two strings a, T are called e-split if }^}(r(x) and }e}r(x) are defined and un­
equal for some x. A tree T is called an e-splitting tree if T(<J*O), T(a*l) are 
e-split whenever T(a*Q) is defined. A string a on T is said to be e-splittable 

on T if it has a pair of e-split extensions on T. 

Suppose tha t all trees are reasonably Godel-numbered, and let Z{ be the 
tree with Godel number i. 

If T' is a subtree of T and a is on T, T' is called an e-splitting subtree of Tfor a 

if (i) T'(&) = a, (ii) V is e-splitting, and (iii) every string on V which is 
e-splittable on T is e-splittable on V (necessarily by its two immediate suc­
cessors on Tr). 

For every tree T, string <T on T and number e, there exists a V as above. 
(Of course T' may have many terminal nodes or even be finite.) Fur thermore 
an index for V may be effectively found from e, o-, and an index of T. 

In the limit our construction will produce a sequence of trees {Tt) and a 
sequence of strings \bs) such tha t 

I. Ti+i is a subtree of Tt for all i, 
I I . as £ ds+i for all s, 

I I I . U s ^s is a branch of 7 \ for all i, and 
IV. for all e, either (a) Te+i is an e-splitting subtree of Te above some 5SJ 

or (b) Te+i = Te and some 8S is r,ot e-splittable on Te. 

Let B be the set whose characteristic function is {J S8S. We say B is e-minimal 
if {e}B is either recursive, non-total , or of the same degree as B. S tandard 
lemmas [12, Ch. 11] show tha t B is e-minimal for all e. Specifically if {e}^ 
is total , then IV(a) implies t ha t B ST [e)B and IV(b) implies t ha t [e)B is 
recursive. 

Each tree Te is obtained from a sequence of trees Te
s such t h a t Te

s = Te for 
all sufficiently large s. The idea of the construction is t ha t once Te

s has ' 'sett led 
down" to Te we can use an oracle for the given degree a to tell us correctly 
"in the l imit" whether some beginning of B fails to be e-splittable on Te. 
With the guidance of the oracle we eventually make either IV(a) or IV(b) hold. 

T o compare this with the Sacks-Shoenfield construction, observe t ha t the 
question Qe of whether every 5S is e-splittable on Te is a n2° question in the 
context of tha t construction. Menée in t ha t construction the answer to Qe 

can be stagewise approximated recursively in 0'. T h e approximation to the 
answer to Qe changes a t most once (after Te

s has stabilized to Te) since Qe 

is a co-r.e. question relative to 0 r. In the present construction there is no 
obvious recursive bound on the number of t imes the approximation changes, 
bu t since the approximations are eventually correct the additional changes do 
not complicate the proof t ha t the construction works. 
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One difficulty which arises here but not in the Sacks-Shoenfield construction 
is t ha t the approximation may indicate tha t every 8S is £-splittable on Te 

when in fact not even the current 8S is ^-splittable on Te. The potential pitfall 
in this situation is tha t the construction could bog down in an endless vain 
search for a proper extension 8 of 8S on the appropriate ^-splitting subtree of Te. 
To avoid this pitfall, the search for such an extension of 8S is dovetailed with a 
search for a number t > s such tha t a t stage t the approximation indicates tha t 
the answer to Qe is negative. 

In the construction we work with indices te
s for the trees Te

s. There will be 
a function k(s) such tha t te

s is defined exactly for e ^ k(s). 
For any set C, let C~ = {(e, k): some beginning of C is on Zk bu t is not 

e-splittable on Zk\. (The set C~ is analogous to C* in Theorem 2.) Observe 
tha t C~ is r.e. in C © 0'. Let A be a set of the given degree a satisfying a! — 
(a U 0 / ) / . H we construct B ^TA, we will have B~ ^ T (B ® 0 ' ) ' ST 
(A © 0 ' ) ' ^ T A' so there will be a sequence of sets Bs~, uniformly recursive 
in A, such t ha t lim5 Bs~ = B~. 

As in Theorem 2, our construction will be sufficiently uniform tha t use of 
Bs~ in the construction of B is justified by the recursion theorem. (A few 
comments on this justification will be made after the proof of Lemma 5.) At 
stage 0, let k(0) = 0, and let t0° be an index of the identi ty tree, i.e. To°(a) = a 
for all a. 

Assume inductively now tha t stage 5 has been completed and tha t k(s) and 
te

s(e ^ k(s)) have been defined so tha t /0
S = /o° and for e < k(s), either 

te+is — te
s or Te+is is an ^-splitting subtree of Te

s above some 8t with t ^ s. 
(Here Te

s is the tree with index / / . ) For e ^ k(s), let ye
s be the index of an 

effectively chosen ^-splitting subtree Ye
s of Te

s above ds. 
At stage s + 1, search in an exhaustive A -recursive manner for numbers 

k, t with k ^ k(s) and t ^ .v and a string 5 properly extending ôs such tha t 
(i) for all e < k, 

te+l
s = / / <^ (e,te

s)eBr, and 

(ii) either (a) / , + i s = tk
8, (k, hs) Z Br, and Ô is on Yk° or (b) tk+1

s j* tk
s, 

(k,tk
s) e - B r a n d Ô is on Tk*. 

(N.B. For k = k(s), tk+is is undefined and the meaningless s ta tements 
tk+is = tfcs, h+is ?* h* should simply be ignored.) 

If no such t, k, 8 are ever found, we say the construction bogs down a t stage 
5 + 1. (It will be shown tha t this cannot happen.) Otherwise, let (i, k, 8) be 
the first such triple which is found. Let ôs+i = 8 and k(s + 1) = k -{- 1. 
Define te

s+1 = te
s for all e ^ k. Finally, if case (ii) (a) applies let tk+1

s+1 = yk
s, 

and otherwise let ^- + i s + 1 = tk
s. (Observe tha t ds+i is on Tk+i

s+1 in either case). 

LEMMA 5. The construction does not bog down at any stage. 

Proof. Assume for a contradiction tha t the construction bogs down a t stage 
5 + 1, so the construction produces only the string 8S instead of the total func-
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tion B. Extending the ~ operator to partial functions 8SJ one lias (e, j) G ôs~ 
if and only if for some r C 8\ r is on Z ; bu t is not e-splittable on Z ; . Now let k 
be the largest number ^ k(s) such t ha t for all sufficiently large t, 

(1) / e + i s = / / « (e, / / ) G 5 f <̂> 0 , / / ) G 5S~ for all e < k. 

Such a & exists since (1) holds vacuously for k = 0. By the maximali ty of fe, 
and the fact tha t lim f B t~ = ôs~, one also has for all sufficiently large / t ha t 

(2) tk+1° * tk
s <=> (k, tk

s) e Bt- ^ (k, tk
s) G s , - . 

(Ignore the first clause if k = ks). 
Fix / ^ 5 satisfying (1) and (2). I t is clear t ha t all par t s of (i) and (ii) of 

the construction not referring to 8 are satisfied by this k and t so it remains to 
produce an appropriate 8. To do this we first show by induction on e t h a t there 
is a proper extension of 8S on Te

s for e ^ k. This is clear for e = 0 since every 
string is on the identi ty tree. Also the induction step is immediate if le+\s — te

s. 
So assume e < k and te+i

s ^ te
s. Then by (1), (e, / / ) G 8S~, so 8S is e-splittable 

on Te
s. Since / e + i s ^ £/, 7\,+is is an ^-splitting subtree of Te

s containing ds and 
so ôs is e-splittable on Te+is. Therefore there is a proper extension of ds on 
Te+is as required. In part icular there is a proper extension 5 of 8S on Tk

s. 

If (k, tk
s) G 731~, then tk+1

s ^ /A
s (or k = ks) by (2) and so we may satisfy 

(ii)(b) in the construction by letting 8 = 8. Otherwise (k, tk
s) (/Br and so 

by (2) it follows tha t (k, tk
s) G 8S~ so 8S is &-splittable on Tk

s. T h u s there is a 
8 2 as on F / , SO (ii) (a) is satisfied for this 8. This completes the proof of 
Lemma 5. 

At this point we remark tha t the recursion theorem (relativized to A ) may 
be used to justify the use of Bs~ in the definition of B in essentially the same 
way it was used in Theorem 1 to justify the use of B* in the definition of B. 
Of course the proof of Lemma 5 is now used to show tha t {z}A is total , where 
z is the ''fixed point" obtained as before from the recursion theorem. 

By Lemma 5, VJS 8S is the characteristic function of a set B. Since the con­
struction may be carried out recursively in A, B is recursive in A. The proof 
tha t B is e-minimal for all e is almost identical to the corresponding proof in 
the construction of a minimal degree below 0'. Specifically, one shows by 
induction on e t ha t te

s is defined and equal to a limiting value te for all suffi­
ciently large s. This is clear for e = 0. Assume inductively t ha t te

s = te for 
5 ^ SQ. Choose Si ^ so so tha t (e, te) G B~ <^ (e, h) G Bt~ for all / ^ sx. If 
te+iSl is defined, then te+1

Sl = / / for s ^ sx. Otherwise k(si) = e, so te+iSl+l is 
defined and te+1

s +1 = te
s for all s ^ S\. Let Te be the tree with index te. I t is 

easy to see tha t s ta tements / — IV a t the beginning of the proof hold, and B is 
^-minimal for the reasons outlined there. 

Let b be the degree of B. T o see tha t b is minimal it remains to show tha t B 
is nonrecursive. The nonrecursiveness of B may be easily arranged by choosing 
functions ho, hi, . . . , uniformly recursive in A and including all recursive 
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functions, and modifying the construction so tha t 8s+i is incompatible with 
hs for all s. (Such a sequence h0, hi . . . exists by [5] since a' ^ 0".) However, 
the following lemma, due to Posner, shows tha t this modification is un­
necessary. 

LEMMA 6 [3]. Suppose for each n, B is a branch of a tree 7 „ + i such that either 
Tn+i is an n-splitting tree or B has a beginning on Tn+i which is not n-splittable on 
Tn. Then B is not recursive. 

Proof. Suppose B were recursive. Choose e so that , for all C, 

,e]c(x) = fC(x) if (ly) C(y) * B(y) 
(undefined otherwise 

If cr C B, then {e}a(x) is undefined for all x, and so a is not par t of any 
^-splitting pair on Te+X. By assumption then there is a string a on Te+i such 
tha t a is not e-splittable on Te+i. We may assume also tha t {e}a = a whenever 

Let 5i and <52 be two strings on Te+i which extend ô and are incompatible 
with each other and with B. (Such strings may be obtained by choosing two 
distinct beginnings of B on Te+i each extending <5, say pti, fi2, and then choosing 
ôi to be the immediate successor of /xz- on Te+i which is incompatible with B.) 
Then b\ and <52 witness tha t ô is <?-splittable on Te+i. This is a contradiction. 

We close with some remarks about requirements which may be imposed 
on the jump and double j ump of a minimal degree b which is constructed 
belowr a given generalized high degree a. I t follows from the recent result 
cited a t the beginning of the paper tha t every minimal degree b satisfies 
b" = ( 6 U 0 'y . Thus if a, b are as above, one has b" = (bU 0 ' ) ' ^ 
(aUO') ' = af. 

One may also require tha t b' 9^ b \J 0r in Theorem 4. In fact one may 
require tha t b' % C for any fixed degree C satisfying d S o!. The proof is 
based on the idea of Sasso's proof [11] tha t there is a minimal degree b satisfying 
b' ?£ b\J 0' together with the refinements of Sasso, Epstein, and Cooper 
used to push b below 0r (cf. [11] or [13]). However, additional technical 
complications of no great interest arise, and we omit the proof. 
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