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Abstract

In this paper we prove the following theorem. Let f be a dominant polynomial
endomorphism of the affine plane defined over an algebraically closed field of
characteristic 0. If there is no nonconstant invariant rational function under f , then
there exists a closed point in the plane whose orbit under f is Zariski dense. This
result gives us a positive answer to a conjecture proposed by Medvedev and Scanlon,
by Amerik, Bogomolov and Rovinsky, and by Zhang for polynomial endomorphisms of
the affine plane.

1. Introduction

Denote by k an algebraically closed field of characteristic 0.
The aim of this paper is to prove the following result.

Theorem 1.1. Let f : A2
k → A2

k be a dominant polynomial endomorphism. If there are no
nonconstant rational functions g satisfying g ◦ f = g, then there exists a point p ∈ A2(k) such
that the orbit {fn(p) | n > 0} of p is Zariski dense in A2

k.

We cannot ask g in Theorem 1.1 to be a polynomial. Indeed, let P (x, y) be a polynomial
which is neither zero nor a root of unity. Let f : A2

k → A2
k be the endomorphism defined by

(x, y) 7→ (P (x, y)x, P (x, y)y). It is easy to see that g ◦ f = g if g = y/x, but there does not exist
any polynomial h satisfying h ◦ f = h.

The following conjecture was proposed by Medvedev and Scanlon [MS09, Conjecture 5.10]
and also by Amerik et al. [AB11].

Conjecture 1.2. Let X be a quasiprojective variety over k and f : X → X be a dominant
endomorphism for which there exists no nonconstant rational function g satisfying g ◦ f = g.
Then there exists a point p ∈ X(k) whose orbit is Zariski dense in X.

Conjecture 1.2 strengthens the following conjecture of Zhang [Zha06].

Conjecture 1.3. Let X be a projective variety and f : X → X be an endomorphism defined
over k. If there exists an ample line bundle L on X satisfying f∗L = L⊗d for some integer d > 1,
then there exists a point p ∈ X(k) whose orbit {fn(p) | n > 0} is Zariski dense in X(k).
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The existence of Zariski dense orbits

Theorem 1.1 settles Conjecture 1.2 for polynomial endomorphisms of A2
k.

When k is uncountable, Conjecture 1.2 was proved by Amerik and Campana [AC08].

In [Fak14], Fakhruddin proved Conjecture 1.2 for generic1 endomorphisms on projective

spaces over arbitrary algebraically closed fields k of characteristic 0. In [Xie15b], the author

proved Conjecture 1.2 for birational surface endomorphisms with dynamical degree greater

than 1. Recently, in [MS14], Medvedev and Scanlon proved Conjecture 1.2 when f := (f1(x1),

. . . , fN (xN )) is an endomorphism of ANk , where the fi are one-variable polynomials defined

over k.

We mention that in [Ame11], Amerik proved that there exists a nonpreperiodic algebraic

point when f is of infinite order. In [BGT15], Bell et al. proved that if f is an automorphism,

then there exists a subvariety of codimension 2 whose orbit under f is Zariski dense.

We note that Conjecture 1.2 is not true in the case when k is the algebraic closure of a finite

field, since in this case all orbits of k-points are finite.

Our proof of Theorem 1.1 is based on the valuative techniques developed in [FJ04, FJ07,

FJ11, Xie15a]. Here is an outline of the proof.

For simplicity, suppose that f is a dominant polynomial map f := (F (x, y), G(x, y)) defined

over Z.

When f is birational, our Theorem 1.1 is essentially proved in [Xie15b]. So, we may suppose

that f is not birational.

By [FJ11], there exists a projective compactification X of A2 for which the induced map by

f at infinity is algebraically stable, i.e. it does not contract any curve to a point of indeterminacy.

Moreover, we can construct an ‘attracting locus’ at infinity, in the sense that:

(i) either there exists a superattracting fixed point q ∈ X\A2 such that there is no branch of

the curve at q which is periodic under f ;

(ii) or there exists an irreducible component E ∈ X\A2 such that f∗E = dE + F , where d > 2

and F is an effective divisor supported by X\A2.

In Case (i), we can find a point p ∈ A2(Q̄) near q with respect to the Euclidean topology.

Then we have limn→∞ f
n(p) = q. It is easy to show that the orbit of p is Zariski dense in A2.

In Case (ii), E is defined over Q. There exists a prime number p > 3 such that fp|Ep is

dominant, where fp := f mod p and Ep := Emod p.

We first treat the case fn|E 6= id for all n > 1. After replacing f by a suitable iterate, we may

find a fixed point x ∈ Ep such that dfp(x) = 1 in F̄p. Denote by U the p-adic open set of X(Qp)

consisting of the points y such that ymod p = x. Then U is fixed by f . By [Poo14, Theorem 1], all

the preperiodic points in U ∩E are fixed. Moreover,
⋂
n>0 f

n(U) = U ∩E. Denote by S the set of

fixed points in U ∩E. Then S is finite. If S is empty, pick a point p ∈ A2(Q̄∩Qp)∩U ; it is easy to

see that the orbit of p is Zariski dense in A2. If S is not empty, by [Aba01, Theorem 3.1.4], at each

point qi ∈ S there exists at most one algebraic curve Ci passing through qi which is preperiodic.

Set Ci = ∅ if no such curve does exist. We have that Ci is fixed. Pick a point p ∈ A2(Q̄∩Qp)\C1

very close to q1. We can show that the orbit of p is Zariski dense in A2.

Next, we treat the case f |E = id. By [Aba01, Theorem 3.1.4], at each point q ∈ E there

exists at most one algebraic curve Cq passing through q which is preperiodic. Set Cq = ∅ if such

1 An endomorphism f : PN
k → PN

k satisfying f∗OPN
k

(1) = OPN
k

(d) is said to be generic if it conjugates by a suitable

linear automorphism on PN
k to an endomorphism [x0 : · · · : xN ] 7→ [

∑
|I|=d a0,Ix

I : · · · :
∑
|I|=d aN,Ix

I ], where the

set {ai,I}06i6N,|I|=d is algebraically independent over Q̄.
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curve does not exist. We have that Cq is fixed and transverse to E. If Cq = ∅ for all but finitely

many q ∈ E, then there exist q ∈ E and a p-adic neighborhood U of q such that for any point

y ∈ U ∩E, Cy = ∅, f(U) ⊆ U and
⋂
∞ f

n(U) = U ∩E. Then, for any point p ∈ A2(Q̄∩Qp)∩U ,

the orbit of p is Zariski dense in A2. Otherwise there exists a sequence of points qi ∈ E such

that Ci := Cqi is an irreducible curve. Since f |Ci is an endomorphism of Ci ∩ A2 of degree at

least 2, Ci has at most two branches at infinity. Since Ci is transverse to E at qi, we can bound

the intersection number (E ·Ci). By the technique developed in [Xie15a], we can also bound the

intersection of Ci with the other irreducible components of X\A2. Then we bound the degree of

Ci, which allows us to construct a nonconstant invariant rational function.

The article is organized in two parts.

In Part I, we gather some results on the geometry and dynamics at infinity and metrics on

projective varieties defined over a valued field. We first introduce the valuative tree at infinity in

§ 2, and then we recall the main properties of the action of a polynomial map on the valuation

space in § 3. Next, we introduce the Green function on the valuative tree for a polynomial

endomorphism in § 4. Finally, we give background information on metrics on projective varieties

defined over a valued field in § 5.

In Part II, we prove Theorem 1.1. We first prove it in some special cases in § 6. In most of

these cases, we find a Zariski dense orbit in some attracting locus. Then we study totally invariant

curves in § 7 and prove Theorem 1.1 when there are infinitely many such curves. Finally, we finish

the proof of Theorem 1.1 in § 8.

Part I. Preliminaries

In this part, we denote by k an algebraically closed field of characteristic 0. We also fix affine

coordinates on A2
k = Spec k[x, y].

2. The valuative tree at infinity

We refer to [Jon15] for details; see also [FJ04, FJ07, FJ11].

2.1 The valuative tree at infinity

In this article by a valuation on a unitary k-algebra R we shall understand a function v : R →

R ∪ {+∞} such that the restriction of v to k∗ = k − {0} is constant equal to 0, and v satisfies

v(fg) = v(f)+v(g) and v(f+g) > min{v(f), v(g)}. It is usually referred to as a semivaluation in

the literature; see [FJ04]. We will however make a slight abuse of notation and call it a valuation.

Denote by V∞ the space of all normalized valuations centered at infinity, i.e. the set of

valuations v : k[x, y] → R ∪ {+∞} satisfying min{v(x), v(y)} = −1. The topology on V∞ is

defined to be the weakest topology making the map v 7→ v(P ) continuous for every P ∈ k[x, y].

The set V∞ is equipped with a partial ordering defined by v 6 w if and only if v(P ) 6 w(P )

for all P ∈ k[x, y]. Then −deg : P 7→ −deg(P ) is the unique minimal element.

Given any valuation v ∈ V∞\{−deg}, the set {w ∈ V∞ | −deg 6 w 6 v} is isomorphic as a

poset to the real segment [0, 1] endowed with the standard ordering. In other words, (V∞,6) is

a rooted tree in the sense of [FJ04, Jon15].

Given any two valuations v1, v2 ∈ V∞, there is a unique valuation in V∞ which is maximal

in the set {v ∈ V∞ | v 6 v1 and v 6 v2}. We denote it by v1 ∧ v2.
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The segment [v1, v2] is by definition the union of {w | v1 ∧ v2 6 w 6 v1} and {w | v1 ∧ v2 6
w 6 v2}.

Pick any valuation v ∈ V∞. We say that two points v1, v2 lie in the same direction at v if the

segment [v1, v2] does not contain v. A direction (or a tangent vector) at v is an equivalence class

for this relation. We write Tanv for the set of directions at v.

When Tanv is a singleton, then v is called an end point. In V∞, the set of end points is

exactly the set of all maximal valuations. When Tanv contains exactly two directions, then v

is said to be regular. When Tanv has more than three directions, then v is a branch point.

Pick any v ∈ V∞. For any tangent vector ~v ∈ Tanv, denote by U(~v) the subset of those

elements in V∞ that determine ~v. This is an open set whose boundary is reduced to the singleton

{v}. If v 6= −deg, the complement of {w ∈ V∞ | w > v} is equal to U(~v0), where ~v0 is the tangent

vector determined by −deg.

It is a fact that finite intersections of open sets of the form U(~v) form a basis for the topology

of V∞.

2.2 Compactifications of A2
k

A compactification of A2
k is the data of a projective surface X together with an open immersion

A2
k → X with dense image.

A compactification X dominates another one X ′ if the canonical birational map X 99K X ′

induced by the inclusion of A2
k in both surfaces is in fact a regular map.

The category C of all compactifications of A2
k forms an inductive system for the relation of

domination.

Recall that we have fixed affine coordinates on A2
k = Spec k[x, y]. We let P2

k be the standard

compactification of A2
k and denote by l∞ := P2

k\A2
k the line at infinity in the projective plane.

An admissible compactification of A2
k is by definition a smooth projective surface X endowed

with a birational morphism πX : X → P2
k such that πX is an isomorphism over A2

k with the

embedding π−1|A2
k

: A2
k → X. Recall that πX can then be decomposed as a finite sequence of

point blow-ups.

We shall denote by C0 the category of all admissible compactifications. It is also an

inductive system for the relation of domination. Moreover, C0 is a subcategory of C and, for

any compactification X ∈ C, there exists X ′ ∈ C0 that dominates X.

2.3 Divisorial valuations

Let X ∈ C be a compactification of A2
k = Spec k[x, y] and E be an irreducible component of

X\A2. Set bE := −min{ordE(x), ordE(y)} and vE := b−1E ordE . Then we have vE ∈ V∞.

By Poincaré duality, there exists a unique dual divisor Ě of E defined as the unique divisor

supported on X\A2 such that (Ě · F ) = δE,F for all irreducible components F of X\A2.

Remark 2.1. Recall that l∞ is the line at infinity of P2. Let s be a formal curve centered at some

point q ∈ l∞. Suppose that the strict transform of s in X intersects E transversally at a point

in E which is smooth in X\A2. Then we have (s · l∞) = bE .

2.4 Classification of valuations

There are four kinds of valuations in V∞. The first one corresponds to the divisorial valuations

which we have defined above. We now describe the three remaining types of valuations.
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Irrational valuations. Consider any two irreducible components E and E′ of X\A2
k for some

compactification X ∈ C of A2
k intersecting at a point p. There exists local coordinates (z, w) at

p such that E = {z = 0} and E′ = {w = 0}. To any pair (s, t) ∈ (R+)2 satisfying sbE + tbE′ = 1,

we attach the valuation v defined on the ring Op of germs at p by v(
∑
aijz

iwj) = min{si+ tj |
aij 6= 0}. Observe that it does not depend on the choice of coordinates. By first extending v to

the common fraction field k(x, y) of Op and k[x, y] and then restricting it to k[x, y], we obtain

a valuation in V∞, called quasimonomial. It is divisorial if and only if either t = 0 or the ratio

s/t is a rational number. Any divisorial valuation is quasimonomial. An irrational valuation is

by definition a nondivisorial quasimonomial valuation.

Curve valuations. Recall that l∞ is the line at infinity of P2
k. For any formal curve s centered

at some point q ∈ l∞, denote by vs the valuation defined by P 7→ (s · l∞)−1 ord∞(P |s). Then we

have vs ∈ V∞ and we call it a curve valuation.

Let C be an irreducible curve in P2
k. For any point q ∈ C ∩ l∞, denote by Oq the local ring

at q, mq the maximal ideal of Oq and IC the ideal of height 1 in Oq defined by C. Denote by Ôq
the completion of Oq with respect to mq, m̂q the completion of mq and ÎC the completion of IC .

For any prime ideal p̂ of height 1 containing ÎC , the morphism Spec Ôq/p̂ → Spec Ôq defines a

formal curve centered at q. Such a formal curve is called a branch of C at infinity.

Infinitely singular valuations. Let h be a formal series of the form h(z) =
∑∞

k=0 akz
βk with

ak ∈ k∗ and {β}k an increasing sequence of rational numbers with unbounded denominators.

Then P 7→ −min{ord∞(x), ord∞(h(x−1))}−1 ord∞ P (x, h(x−1)) defines a valuation in V∞ called

an infinitely singular valuation.

A valuation v ∈ V∞ is a branch point in V∞ if and only if it is divisorial, it is a regular point

in V∞ if and only if it is an irrational valuation and it is an end point in V∞ if and only if it

is a curve valuation or an infinitely singular valuation. Moreover, given any smooth projective

compactification X in which v = vE , one proves that the map sending an element V∞ to its

center in X induces a map Tanv → E that is a bijection.

2.5 Parameterizations

The skewness function α : V∞ → [−∞, 1] is the unique function on V∞ that is continuous on

segments and satisfies

α(vE) =
1

b2E
(Ě · Ě),

where E is any irreducible component of X\A2
k of any compactification X of A2

k and Ě is the

dual divisor of E as defined above.

The skewness function is strictly decreasing and upper semicontinuous. In an analogous

way, one defines the thinness function A : V∞ → [−2,∞] as the unique, increasing, lower

semicontinuous function on V∞ such that for any irreducible exceptional divisor E in some

compactification X ∈ C, we have

A(vE) =
1

bE
(1 + ordE(dx ∧ dy)).

Here we extend the differential form dx ∧ dy to a rational differential form on X.
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2.6 Computation of local intersection numbers of curves at infinity

Let s1, s2 be two different formal curves at infinity. We denote by (s1 · s2) the intersection

number of these two formal curves in P2. This intersection number is always nonnegative, and

it is positive if and only if s1 and s2 are centered at the same point.

Denote by l∞ the line at infinity in P2
k. Denote by vs1 , vs2 the curve valuations associated to

s1 and s2.

By [Xie15a, Proposition 2.2], we have

(s1 · s2) = (s1 · l∞)(s2 · l∞)(1− α(vs1 ∧ vs2)).

3. Background on dynamics of polynomial maps

Recall that the affine coordinates have been fixed, A2
k = Spec k[x, y].

3.1 Dynamical invariants of polynomial mappings

The (algebraic) degree of a dominant polynomial endomorphism f = (F (x, y), G(x, y)) defined

on A2
k is defined by

deg(f) := max{deg(F ),deg(G)}.

It is not difficult to show that the sequence deg(fn) is submultiplicative, so that the limit

λ1(f) := limn→∞(deg(fn))1/n exists. It is referred to as the dynamical degree of f , and it is a

theorem of Favre and Jonsson that λ1(f) is always a quadratic integer; see [FJ11].

The (topological) degree λ2(f) of f is defined to be the number of preimages of a general

closed point in A2(k); one has λ2(fg) = λ2(f)λ2(g).

It follows from Bézout’s theorem that λ2(f) 6 deg(f)2 and hence

λ1(f)2 > λ2(f). (3.1)

The resonant case λ1(f)2 = λ2(f) is quite special and the following structure theorem for

these maps is proven in [FJ11].

Theorem 3.1. Any polynomial endomorphism f of A2
k such that λ1(f)2 = λ2(f) is proper,2 and

we are in exactly one of the following two exclusive cases.

(1) deg(fn) � λ1(f)n; there exists a compactification X of A2
k to which f extends as a regular

map f : X → X.

(2) deg(fn) � nλ1(f)n; there exist affine coordinates x, y in which f takes the form

f(x, y) = (xl + a1x
l−1 + · · ·+ al, A0(x)yl + · · ·+Al(x)),

where ai ∈ k and Ai ∈ k[x] with degA0 > 1, and l = λ1(f).

Remark 3.2. Regular endomorphisms as in (1) have been classified in [FJ11].

2 We say that a polynomial endomorphism f of A2
k is proper if it is a proper morphism between schemes. When

k = C, it means that the preimage of any compact set of C2 is compact.
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3.2 Valuative dynamics
Any dominant polynomial endomorphism f as in the previous section induces a natural map on
the space of valuations at infinity in the following way.

For any v ∈ V∞, we set

d(f, v) := −min{v(F ), v(G), 0} > 0.

In this way, we get a nonnegative continuous decreasing function on V∞. Observe that
d(f,−deg) = deg(f). It is a fact that f is proper if and only if d(f, v) > 0 for all v ∈ V∞.

We now set:
• f∗v := 0 if d(f, v) = 0;
• f∗v(P ) = v(f∗P ) if d(f, v) > 0.

In this way one obtains a valuation on k[x, y] (that may be trivial); we then get a continuous
map

f• : {v ∈ V∞ | d(f, v) > 0}→ V∞

defined by
f•(v) := d(f, v)−1f∗v.

This map extends to a continuous map f• : {v ∈ V∞ | d(f, v) > 0} → V∞. The image of any
v ∈ ∂{v ∈ V∞ | d(f, v) > 0} is a curve valuation defined by a rational curve with one place at
infinity.

We now recall the following key result [FJ11, Proposition 2.3, Theorem 2.4 and
Proposition 5.3].

Theorem 3.3. There exists a valuation v∗ such that α(v∗) > 0 > A(v∗) and f∗v∗ = λ1v∗.
If λ1(f)2 > λ2(f), this valuation is unique.
If λ1(f)2 = λ2(f), the set of such valuations is a closed segment in V∞.

This valuation v∗ is called the eigenvaluation of f when λ1(f)2 > λ2(f).

4. The Green function of f

4.1 Subharmonic functions on V∞
We refer to [Xie14, § 3] for details.

To any v ∈ V∞, we attach its Green function

Zv(w) := α(v ∧ w).

This is a decreasing continuous function taking values in [−∞, 1], satisfying gv(−deg) = 1.
Given any positive Radon measure ρ on V∞, we define

Zρ(w) :=

∫
V∞

Zv(w) dρ(v).

Observe that gv(w) is always well defined as an element in [−∞, 1] since gv 6 1 for all v.
Then we recall the following result.

Theorem 4.1 [Xie14]. The map ρ 7→ Zρ is injective.

One can thus make the following definition.

Definition 4.2. A function φ : V∞ → R ∪ {−∞} is said to be subharmonic if there exists a
positive Radon measure ρ such that φ = Zρ. In this case, we write ρ = ∆φ and call it the
Laplacian of φ.
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4.2 Basic properties of the Green function of f
We refer to [Xie15a, § 12] for details.

Let f be a dominant polynomial endomorphism on A2
k with λ1(f)2 > λ2(f).

By [Xie15a, § 12], there exists a unique subharmonic function θ∗ on V∞ such that:

(i) f∗θ∗ = λ1θ
∗;

(ii) θ∗(v) > 0 for all v ∈ V∞;

(iii) θ∗(−deg) = 1;

(iv) for all v ∈ V∞ satisfying α(v) > −∞, we have θ∗(v) > 0 if and only if d(fn, v) > 0 for all
n > 0 and

lim
n→∞

fn• (v) = v∗.

5. Metrics on projective varieties defined over a valued field

A field with an absolute value is called a valued field.

Definition 5.1. Let (K, | · |v) be a valued field. For any integer n > 1, we define a metric dv on
the projective space Pn(K) by

dv([x0 : · · · : xn], [y0 : · · · : yn]) =
max06i,j6n |xiyj − xjyi|v

max06i6n |xi|v max06j6n |yj |v

for any two points [x0 : · · · : xn], [y0 : · · · : yn] ∈ Pn(K).

Observe that when | · |v is Archimedean, then the metric dv is not induced by a smooth
Riemannian metric. However, it is equivalent to the restriction of the Fubini–Study metric on
Pn(C) or Pn(R) to Pn(K) induced by any embedding σv : K ↪→ R or C.

More generally, for a projective variety X defined over K, if we fix an embedding ι : X ↪→ Pn,
we may restrict the metric dv on Pn(K) to a metric dv,ι on X(K). This metric depends on the
choice of embedding ι in general, but, for different embeddings ι1 and ι2, the metrics dv,ι1 and
dv,ι2 are equivalent. Since we are mostly interested in the topology induced by these metrics, we
shall usually write dv instead of dv,ι for simplicity.

Part II. The existence of Zariski dense orbits

The aim of this part is to prove Theorem 1.1.

6. The attracting case

In this section, we prove Theorem 1.1 in some special cases. In most of these cases, we find a
Zariski dense orbit in some attracting locus. We also prove Theorem 1.1 when λ21 = λ2 > 1.

Denote by k an algebraically closed field of characteristic 0. Let f : A2
→ A2 be a dominant

polynomial endomorphism defined over k. We have the following result.

Lemma 6.1. If λ22(f) > λ1(f) and the eigenvaluation v∗ is not divisorial, then there exists a
point p ∈ A2(k) whose orbit is Zariski dense in A2.
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Proof of Lemma 6.1. After replacing k by an algebraically closed subfield of k containing all the
coefficients of f , we may suppose that the transcendence degree of k over Q̄ is finite.

By [FJ11, Theorem 3.1], there exist a compactification X of A2 defined over k and a
superattracting point q ∈ X\A2

k such that for any valuation v ∈ V∞ whose center in X is q,
we have fn• v → v∗ as n →∞.

By embedding k in C, we endow X with the usual Euclidean topology. There exists a
neighborhood U of q in X such that:

(i) I(f) ∩ U = ∅;

(ii) f(U) ⊆ U ;

(iii) for any point p ∈ U , fn(p) → q as n →∞.

Since A2(k) is dense in A2(C), there exists a point p ∈ A2(k) ∩ U . If the orbit of p is not
Zariski dense, then its Zariski closure Z is a union of finitely many curves. Since fn(p) → q,
p is not preperiodic. It follows that all the one-dimensional irreducible components of Z are
periodic under f . Let C be a one-dimensional irreducible component of Z. Since there exists
an infinite sequence {n0 < n1 < · · · } such that fni(p) ∈ C for i > 0, we have that C contains
q = limi→∞ f

ni(p). Then there exists a branch C1 of C at infinity satisfying q ∈ C1. Thus, vC1

is periodic, which is a contradiction. It follows that O(p) is Zariski dense. 2

In many cases, for example λ1(f)2 > λ2(f) and v∗ is divisorial, there exist a projective
compactification X of A2 and an irreducible component E of X\A2 satisfying f•(vE) = vE . The
following result proves Theorem 1.1 when f |E is of infinite order.

Lemma 6.2. Let X be a projective compactification of A2 defined over k. Then f extends to
a rational selfmap on X. Let E be an irreducible component of X\A2 satisfying f•(vE) = vE ,
d(f, vE) > 2 and fn|E 6= id for all n > 1. Then there exists a point p ∈ A2(k) whose orbit is
Zariski dense in A2.

Proof of Lemma 6.2. There exists a finitely generated Z-subalgebra R of k such that X, E and
f are defined over the fraction field K of R.

By [Bel06, Lemma 3.1], there exist a prime p > 3, an embedding of K into Qp and a Zp-
scheme XZp such that the generic fiber is X, the specialization Ep of E is isomorphic to P1

Fp
, the

specialization fp : Xp 99K Xp of f at the prime ideal p of Zp is dominant and deg fp|Ep = deg fE .

Since there are only finitely many points in the orbits of I(fp) and the orbits of ramified points
of fp, by [Fak03, Proposition 5.5], there exists a closed point x ∈ Ep such that x is periodic, Ep

is the unique irreducible component of Xp\A2
p containing x, x 6∈ I(fnp ) for all n > 0 and fp|Ep is

not ramified at any point on the orbit of x. After replacing Qp by a finite extension Kp, we may
suppose that x is defined over OKp/p. After replacing f by a positive iterate, we may suppose
that x is fixed by fp.

The fixed point x of fp defines an open and closed polydisc U in X(Kp) with respect to the
p-adic norm | · |p. We have f(U) ⊆ U . Observe that f∗E = d(f, v)E in U and d(f, v) > 2. So, for
all points q ∈ U ∩ A2(Kp), we have dp(f

n(q), E) → 0 as n →∞.
Since fp|Ep is not ramified at x, after replacing f by some positive iterate, we may suppose

that dfp|Ep(x) = 1. By [Poo14, Theorem 1], we have that for any point q ∈ U ∩E, there exists a
p-adic analytic map Ψ : OKp → U ∩ E such that for any n > 0, we have fn(q) = Ψ(n).

If there exists a preperiodic point q in U ∩ E, then there exists m > 0 such that fm(q) is
periodic. Then there are infinitely many n ∈ Z+ ⊆ OKp such that Ψ(n) = fm(q). The fact that

1666

https://doi.org/10.1112/S0010437X17007187 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007187


The existence of Zariski dense orbits

OKp is compact shows that Ψ is constant. It follows that q is fixed. Thus, all preperiodic points
in U ∩ E are fixed by f |E .

Let S be the set of all fixed points in U ∩ E. Since fn|E 6= id for all n > 1, S is finite.
We first treat the case S = ∅. Pick a point p ∈ U ∩ A2(Q̄). Then p is not preperiodic. If

O(p) is not Zariski dense, we denote by Z its Zariski closure. Pick a one-dimensional irreducible
component C of Z. We have C ∩ E ∩ U 6= ∅ and, for all points q ∈ C ∩ E ∩ U , q is preperiodic
under f |E . This contradicts our assumption, so O(p) is Zariski dense.

Next, we treat the case S 6= ∅. Since |df |E(qi)|p = 1 for all i = 1, . . . ,m, we have df |E(qi) 6= 0.
By embedding K in C, we endow X with the usual Euclidean topology. By [Aba01, Theorem
3.1.4], for any i = 1, . . . ,m, there exists a unique complex analytic manifold W not contained in
E such that f(W ) = W . It follows that there are at most one irreducible algebraic curve Ci 6= E
in X such that qi ∈ Ci and f(Ci) ⊆ Ci. For convenience, if such an algebraic curve does not
exist, we define Ci to be ∅.

For any n > 1, by applying [Aba01, Theorem 3.1.4] for fn, if C is a curve satisfying qi ∈ C and
f(C) ⊆ C, then C = Ci. Moreover if C ′ is an irreducible component of f−1(Ci) such that q ∈ C ′,
then, for any point y ∈ C ′ near q with respect to the Euclidean topology, we have f(p) ∈ C.
Then, by [Aba01, (iv) of Theorem 3.1.4], we have p ∈ C. It follows that C ′ = C. Thus, there
exists a small open and closed neighborhood Ui of qi with respect to the norm | · |p such that for
all j 6= i, qj 6∈ Ui, f(Ui) ⊆ Ui and f−1(Ci ∩ Ui) ∩ Ui = Ci ∩ Ui.

Observe that A2(Q̄ ∩Kp) is dense in A2(Kp) with respect to | · |p.
There exists a Q̄-point p in U1\C1(Kp). If the orbit O(p) of p is not Zariski dense, denote by

Z its Zariski closure. Since dp(f
n(p), E) → 0 as n→∞, p is not preperiodic. It follows that there

exists a one-dimensional irreducible component C of Z which is periodic. There exist a, b > 0
such that fan+b(p) ∈ C for all n > 0. Since dp(f

n(p), E) → 0 as n →∞ and U1 is closed, there
exists a point q ∈ C ∩E ∩U1. It follows that q is periodic under f |E . Then q is fixed and q = q1.
This implies that C = C1. Since f b(p) ∈ C1 ∩ V and f−1(C1) ∩ V = C1, we have p ∈ C1, which
is a contradiction. It follows that O(p) is Zariski dense. 2

Proposition 6.3. If λ22(f) = λ1(f) > 1, then Theorem 1.1 holds.

Proof of Proposition 6.3. By [FJ11, Proposition 5.1] and [FJ11, Proposition 5.3], there exists a
divisorial valuation v∗ ∈ V∞ satisfying f•(v∗) = v∗ and d(f, v∗) = λ1 > 2. Moreover, there exist
a compactification X of A2 and an irreducible component E in X\A2 satisfying v∗ = vE and
deg(f |E) = λ1 > 2. We conclude our theorem by invoking Lemma 6.2. 2

7. Totally invariant curves

Let f : A2
→ A2 be a dominant polynomial endomorphism defined over an algebraically closed

field k of characteristic 0. Let X be a compactification of A2
k. Then f extends to a rational

selfmap on X.
As in [Can10], a curve C in X is said to be totally invariant if the strict transform f#C

equals C.
If there are infinitely many irreducible totally invariant curves in A2

k, then [Can10,
Theorem B] shows that f preserves a nontrivial fibration.

Proposition 7.1. If there are infinitely many irreducible curves in A2
k that are totally invariant

under f , then there is a nonconstant rational function g satisfying g ◦ f = g.
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In this section, we give a direct proof of this result.

Proof of Proposition 7.1. Let {Ci}i>1 be an infinite sequence of distinct irreducible totally
invariant curves in A2

k. Since the ramification locus of f is of dimension at most 1, after replacing
{Ci}i>1 by an infinite subsequence, we may suppose that Ci is not contained in the ramification
locus of f for any i > 0. Then we have ordCi f

∗Ci = 1 for all i > 0.
Let E1, . . . , Es be the set of irreducible curves in A2 contracted by f . Let V be the Q-subspace

in Div(A2) ⊗ Q spanned by Ei, i = 1, . . . , s. Then we have f∗Ci = Ci + Fi, where Fi ∈ V for
all i > 1. Set Wi :=

⋂
j>i(

∑
t>j QFt) ⊆ V . We have Wi+1 ⊆ Wi for i > 1. Since V is of finite

dimension, there exists n0 > 1 such that Wi =Wn0 for all i> n0. We may suppose that n0 = 1 and
set W := Wn0 . Moreover, we may suppose that W is generated by F1, . . . , Fl, where l = dimW .

For all i > l + 1, we have Fi =
∑l

j=1 a
i
jFj , where aij ∈ Q. Since Fi = f∗Ci − rCi, we have

f∗(Ci−
∑l

j=1 a
i
jCj) = r(Ci−

∑l
j=1 a

i
jCj). There exists ni ∈ Z+ such that nia

i
j ∈ Z for all j = 1,

. . . , l. Then we have f∗(niCi−
∑l

j=1 nia
i
jCj) = r(niCi−

∑l
j=1 nia

i
jCj). Up to multiplication by a

nonzero constant, there exists a unique gi ∈ k(x, y)\{0} such that Div(gi) = niCi−
∑l

j=1 nia
i
jCj .

It follows that f∗gi = Aigi, where Ai ∈ k\{0}. Since niCi −
∑l

j=1 nia
i
jCj 6= 0 for i > l + 1, gi is

nonconstant for i > l + 1. This concludes the proof. 2

Corollary 7.2. If f is birational, then either there is a nonconstant rational function g
satisfying g ◦ f = g, or there exists a point p ∈ A2(k) with Zariski dense orbit.

Proof of Corollary 7.2. There exists a finite generated Q-subalgebra R of k such that f is defined
over R. Denote by K the fraction field of R.

By [Bel06, Lemma 3.1], there exist a prime p > 3 and an embedding of R into Zp such that
all coefficients of f are of p-adic norm 1. Denote by F the algebraic closure of Fp. Then the degree
of the specialization fp : A2

F 99K A2
F of f equals deg f .

By [Xie15b, Proposition 6.2], there exists a noncritical periodic point x ∈ A2(F). After
replacing Qp by a finite extension Kp, we may suppose that x is defined over OKp/p. Replacing
f by a suitable iterate, we may suppose that x is fixed. Since x is noncritical, dfp(x) is invertible.
After replacing f by a suitable iterate, we may suppose that dfp(x) = id.

The fixed point x defines an open and closed neighborhood U in A2(Kp) with respect to dp
such that f(U) ⊆ U . By applying [Poo14, Theorem 1], we have that for any point q ∈ U , there
exists a p-adic analytic map Ψ : OKp → U such that for any n > 0, we have fn(q) = Ψ(n).

Arguing by contradiction, we suppose that the orbit O(q) of q is not Zariski dense for any
q ∈ A2(k ∩Kp). As in the proof of Lemma 6.2, if q is preperiodic, then q is fixed. Suppose that
q is nonpreperiodic. There exists an irreducible curve C such that fn(q) ∈ C for infinitely many
n > 0. Let P be a polynomial such that C is defined by P = 0. Then P ◦Ψ is an analytic function
on OKp having infinitely many zeros. It follows that P ◦Ψ ≡ 0 and then fn(q) ∈ C for all n > 0.
Then we have f(C) = C. Since f is birational, a curve C is totally invariant by f if and only if
f(C) = C. We may suppose that f 6= id. Since Q∩Kp ⊆ k and the Q∩Kp-points in U are Zariski
dense in A2

Kp
, there are infinitely many irreducible totally invariant curves in A2. We conclude

our corollary by invoking Proposition 7.1. 2

8. Proof of Theorem 1.1

Let f : A2
→ A2 be a dominant polynomial endomorphism defined over an algebraically closed

field k of characteristic 0.
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After replacing k by an algebraically closed subfield which contains all the coefficients of f ,
we may suppose that the transcendence degree of k over Q̄ is finite.

By Lemma 6.1, Proposition 6.3 and Corollary 7.2, we may suppose that λ21 > λ2 > 1
and v∗ is divisorial. Suppose that v∗ = vE for some irreducible exceptional divisor E in some
compactification X. If fn|E 6= id for all n > 1, Lemma 6.2 concludes the proof. So, after replacing
f by a suitable iterate, we may suppose that f |E = id.

By choosing a suitable compactification X ∈ C0, we may suppose that E ∩ I(f) = ∅. There
exists a subfield K of k which is finitely generated over Q such that X, f,E, I(f) are defined
over K. Moreover, we may suppose that E ' P1 over K.

By [Bel06, Lemma 3.1], there exists a prime p > 3 such that we can embed K into Qp.
Further, there exists an open and closed set U of X(Qp) with respect to the norm | · |p containing
E and satisfying U ∩ I(f) = ∅, f(U) ⊆ U and dp(f

n(p), E) → 0 as n →∞ for any p ∈ U .
By [Aba01, Theorem 3.1.4], for any point q ∈ E(K̄ ∩ Qp), there is at most one irreducible

algebraic curve Cq 6= E in X such that q ∈ Cq and f(Cq) ⊆ Cq. For convenience, if such an
algebraic curve does not exist, set Cq := ∅. Further, if Cq 6= ∅, Cq is smooth at q and intersects
E transitively.

If there are only finitely many points q ∈ E(K̄ ∩Qp) such that Cq is an algebraic curve, there
exist a point q ∈ E and an open and closed set V with respect to the norm | · |p containing q
such that f(V ) ⊆ V and Cx = ∅ for all x ∈ V ∩ E(K̄ ∩ Qp). Pick a point p ∈ V ∩ A2(K̄ ∩Qp);
then p is not preperiodic. If O(p) is not Zariski dense, we denote by Z its Zariski closure.
There exists a one-dimensional irreducible component C of Z which is periodic under f . Since
C ∩ O(p) is infinite, C is defined over K̄ ∩ Qp. Since dv(f

n(p), E) → 0 as n → ∞, we have
C ∩E(K̄ ∩Qp)∩ V 6= ∅. Pick q ∈ C ∩E(K̄ ∩Qp)∩ V ; then we have that Cq = C is an algebraic
curve, which contradicts our assumption. Thus, O(p) is Zariski dense.

Otherwise there exists an infinite sequence of points qi, i > 1, such that Ci := Cqi is an
algebraic curve. Since f |Ci is an endomorphism of Ci of degree λ1 > 1, every Ci is rational and
has at most two branches at infinity. We may suppose that E is the unique irreducible component
of X\A2 containing qi for all i > 1 and Ci 6= Cj for i 6= j. We need the following result, which is
proved below.

Lemma 8.1. After replacing {Ci}i>1 by an infinite subsequence, we have that either deg(Ci) is
bounded or Theorem 1.1 holds.

Suppose that deg(Ci) is bounded. Pick an ample line bundle L on X. Then there exists
M > 0 such that (Ci · L) 6M for all i > 1.

There exist a smooth projective surface Γ, a birational morphism π1 : Γ →X and a morphism
π2 : Γ → X satisfying f = π2 ◦ π1. We denote by f∗ the map π2∗ ◦ π∗1 : DivX → DivX. Let
Eπ1 be the union of exceptional irreducible divisors of π1 and E be the set of effective divisors
in X supported by π2(Eπ1). It follows that for any curve C in X, there exists D ∈ E such that
f∗C = deg(f |C)f(C) +D.

For any effective line bundle M ∈ Pic(X), the projective space HM := P(H0(M))
parameterizes the curves C in the linear system |M |. Since Pic0(X) = 0, for any l > 0, there are
only finitely many effective line bundles satisfying (M · L) 6 l.

Then H l :=
∐

(M ·L)6lHM is a finite union of projective spaces and it parameterizes the
curves C in X satisfying (C · L) 6 l.

There exists d > 1 such that dL−f∗L is nef. Then, for any curve C in X, we have (f∗C ·L) =
(C ·f∗L) 6 d(C ·L). It follows that f∗ induces a morphism F : H l

→Hdl by C → f∗C for all l > 1.
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For all l > 1, a ∈ Z+ and D ∈ E, there exists an embedding ia,D : Hl →Hal+(D·L) by C 7→ aC+D.

Let Z1, . . . , Zm be all irreducible components of the Zariski closure of {Cj}j6−1 inHM of maximal
dimension. For any i ∈ {1, . . . ,m}, there exists l 6 M such that (C · L) = l for all C ∈ Zi. Let
S be the finite set of pairs (a,D), where a ∈ Z+, D ∈ E satisfying al + (D · L) 6 dM . Then
we have F (Zi) ⊆

⋃
j=1,...,m

⋃
(a,D)∈S ia,D(Zj). It follows that there exist a unique ji ∈ {1, . . . ,m}

and a unique (a,D) ∈ S such that F (Zi) = ia,D(Zji). Observe that the map i 7→ ji is a one to
one map of {1, . . . ,m}. After replacing f by a positive iterate, we may suppose that ji = i and
F (Zi) ⊆ iaZi

,DZi
Zi for all i = 1, . . . ,m. Set Z := Z1, a = aZ1 and D = DZ1 . We may suppose

that Ci ∈ Z for all i > 1. Since f(Ci) = Ci for all i > 1, we have i−1aZ1
,DZ1

◦ F |Y = id.

For any point t ∈ Z, denote by Ct the curve parameterized by t. Then f(Ct) = Ct for all
t ∈ Z. Since Ci intersects E transversely at at most two points, there exists s ∈ {1, 2} such that
Ct intersects E transversely at s points for a general t ∈ Z. It follows that, for a general point
t ∈ Z, there are exactly s points q1t , . . . , q

s
t ∈ E such that Ct = C

qjt
for j = 1, . . . , s.

Set Y := {(p, t) ∈ X × Z | p ∈ Ct}. Denote by π1 : Y → X the projection to the first
coordinate and by π2 : Y → Z the projection to the second coordinate. Since Ct ∩ E is not
empty for general t ∈ Z, the map π2|π∗1E is dominant. We see that f induces a map T : Y → Y
defined by (p, t) → (f(p), t). Since there are infinitely many points in E contained in π1(π

∗
1E),

π1|π∗1E : π∗1E → E is dominant. For a general point t ∈ Z, there are exactly s points in π∗1E.
It follows that the map π2|π∗1E is generically finite of degree s. For a general point q ∈ E, there
exists only one point (q, Cq) ∈ π∗1E. Hence, π1(π

∗
1E) : π∗1E → E is birational. It follows that Z

is a rational curve and Y is a surface. Thus, the morphism π1 : Y → X is generically finite. Let
p be a general point in A2. If #π−11 (p) > 2, then there are t1 6= t2 ∈ Z such that p ∈ Ct1 ∩ Ct2 .
Since there exists M ′ > 0 such that degCt 6 M ′ for all t ∈ Z, we have #(Ct1 ∩ Ct2) 6 M ′2.
It follows that there exist a < b ∈ {0, . . . ,M ′2} such that fa(p) = f b(p). This contradicts the
assumption that p is general. It follows that the morphism π1 : Y → X is birational. Identify Z
with P1. Set g := π2 ◦ π−11 . Then we have g ◦ f = g, which completes the proof.

Proof of Lemma 8.1. If Ci has only one place at infinity for all i > 1, then degCi = bE . So, we
may suppose that Ci has two places at infinity for all i > 1.

We first suppose that #Ci ∩E = 2 for all i > 1. We may suppose that Ci ∩E ∩ Sing(X\A2)
= ∅ for all i > 1. Then, for all i > 1, we have degCi = 2bE .

Then we may suppose that Ci ∩ E = {qi} for all i > 1. Let ci be the unique branch of C
at infinity centered at qi and wi the unique branch of C at infinity not centred at qi. Since
f(Ci) = Ci, we have f•(ci) = ci and f•(wi) = wi.

We first treat the case θ∗ = Zv∗ , where v∗ ∈ V∞ is divisorial. It follows that λ2/λ1 ∈ Z+.
Observe that deg(f |Ci) = λ1 for i large enough.

If λ1 = λ2, then the strict transform f#(Ci) equals Ci for i large enough, and the lemma
follows from Proposition 7.1.

Otherwise we have λ2/λ1 > 2. Set v∗ := vE′ . Then we have d(f, v∗) = λ2/λ1 > 2 and
deg(f |E′) = λ1 > 1. By Lemma 6.2, Theorem 1.1 holds.

Next, we treat the case θ∗ = Zv∗ , where v∗ ∈ V∞ is not divisorial. Since α(v∗) = 0, v∗ cannot
be irrational. Thus, v∗ is infinitely singular and hence an end point in V∞. Then f is proper.

By [Xie15a, Proposition 15.2], there exists v1 < v∗ such that for any valuation v 6= v∗ in
U := {w ∈ V∞ | w > v1}, there exists N > 1 such that fn• (v) 6∈ U for all n > N . It follows
that there is no curve valuation in U which is periodic under f•. Let UE be the open set in
V∞ consisting of all valuations whose center in X is contained E. It follows that wi 6∈ U ∪ UE
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for all i > 1. Hence, wi 6∈ U ∪ f−N• (UE) for all N > 0. Set W−4 := {v ∈ V∞ | α(v) > −4}. By
[Xie15a, Proposition 11.6] and the fact that W−4\U is compact, there exists N > 0 such that
fN• (W−4\U) ⊆ UE . Then we have W−4 ⊆ U ∪ f−N• (UE).

Since the boundary ∂(V∞\(U ∪f−N• (UE))) of V∞\(U ∪f−N• (UE)) is finite and wi ∈ V∞\(U ∪
f−N• (UE)) for all i > 1, we may suppose that there exists w ∈ ∂(V∞\(U ∪ f−N• (UE))) satisfying
wi > w for all i > 1.

If, for all i > 1, we have (wi · l∞) 6 1/2 deg(Ci), then degCi = (wi · l∞) + (ci · l∞) 6
1/2 deg(Ci) + bE . It follows that deg(Ci) 6 2bE .

Thus, we may suppose that (wi ·l∞) > 1/2 deg(Ci) for all i > 1. For any i 6= j, the intersection
number (Ci · Cj) is the sum of the local intersection numbers at all points in Ci ∩ Cj . Since all
the local intersection numbers are positive, we have

deg(Ci) deg(Cj) > (ci · cj) + (wi · wj).
By the calculation in § 2.6, we have

(ci · cj) + (wi · wj) > b2E(1− α(vE)) + (wi · l∞)(wj · l∞)(1− α(w))

> b2E(1− α(vE)) + 5/4 deg(Ci) deg(Cj).

Thus, deg(Ci) deg(Cj) 6 −4b2E(1− α(vE)) < 0, which is a contradiction.

Finally, we treat the case when # Supp ∆θ∗ > 2. By [FJ11, Theorem 2.4], we have θ∗ > 0
on the set W0 := {v ∈ V∞ | α(v) > 0}. Set W−1 := {v ∈ V∞ | α(v) > −1} and Y := {v ∈
W−1 | θ∗(v) = 0}. By [Xie15a, Proposition 11.2], Y is compact. For any point y ∈ Y , there
exists wy < y satisfying α(wy) ∈ (−1, 0). Set Uy := {v ∈ V∞ | v > wy}. There are finitely many

points y1, . . . , yl such that Y ⊆
⋃l
i=1 Uyi . Pick r := 1/2 min{−α(wyi)}i=1,...,l. Then r ∈ (0, 1) and

W−r ∩ (
⋃l
i=1 Uyi) = ∅. It follows that there exists t > 0 such that θ∗ > t on W−r. By [Xie15a,

Proposition 11.6], there exists N > 0 such that fN• (W−r) ⊆ UE . Then we have W−r ⊆ f−N• (UE).
Since the boundary ∂(V∞\(U ∪f−N• (UE))) of V∞\(U ∪f−N• (UE)) is finite and wi ∈ V∞\(U ∪

f−N• (UE)) for all i > 1, we may suppose that there exists w ∈ ∂(V∞\(U ∪ f−N• (UE))) satisfying
wi > w for all i > 1.

Pick δ ∈ (0, r/2(1 + r)). If, for all i > 1, we have (wi · l∞) 6 (1 − δ) deg(Ci), then degCi =
(wi · l∞) + (ci · l∞) 6 (1− δ) deg(Ci) + bE . It follows that deg(Ci) 6 bE/δ.

Thus, we may suppose that (wi · l∞) > (1− δ) deg(Ci) for all i > 1. For any i 6= j, we have

deg(Ci) deg(Cj) > (ci · cj) + (wi · wj) > b2E(1− α(vE)) + (wi · l∞)(wj · l∞)(1− α(w))

> b2E(1− α(vE)) + (1− δ)2(1 + r) deg(Ci) deg(Cj).

Set t := (1− δ)2(1 + r)− 1; then we have

t > (1− 2δ)(1 + r)− 1 > (1− r/(1 + r))(1 + r)− 1 = 0

and hence deg(Ci) deg(Cj) 6 −t−1b2E(1 − α(vE)) < 0, which is a contradiction. This concludes
the proof. 2
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