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Abstract

In this paper we use the Siegert formula to derive alternative expressions for the moments
of the first passage time of the Ornstein–Uhlenbeck process through a constant threshold.
The expression for the nth moment is recursively linked to the lower-order moments
and consists of only n terms. These compact expressions can substantially facilitate
(numerical) applications also for higher-order moments.
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1. Introduction

The analysis of the Ornstein–Uhlenbeck process has a long tradition in various fields
including astrophysics [3], neurophysiology [4], queueing theory [5], and financial mathematics
[18]. The moments of the first passage time through a constant threshold are typically calculated
by evaluating derivatives for the Laplace transform of the probability density function (PDF)
of the first passage time (see [2], [12], [14], and [16]). Closed-form expressions have been
reported for the first three moments (see [2] and [16]). The dependence on derivatives in this
approach, however, implies that expressions for the moments grow substantially longer each
time a higher order is to be evaluated.

Less frequently used, the Siegert formula [17] offers a recursive representation for the first
passage time moments (see [1] and [11]). This is predominantly due to the cumbersome nature
of the resulting integral expressions. However, calculations can be simplified considerably
by rewriting integrands as series for which integrals are easier to evaluate. This simplification
ultimately also allows us to obtain a recursive expression for the moments of order 3 and higher.
In fact, the expression for the nth moment consists only of n terms that each comprise one of the
lower-order moments. The compact nature of these expressions should speed up computation
and facilitate applications such as estimation of the parameters of a diffusion process (e.g.
within the method of moments as proposed in [6] for an Ornstein–Uhlenbeck process and more
recently discussed in [8]).

In Section 2 we first derive the expressions for the first and second moments after which a
recursive formulation is obtained for the higher-order moments. A short application shows that
the values for the skewness, kurtosis, hyperskewness, and hyperflatness quickly converge to
the asymptotic values that were obtained in [13] for large thresholds. In Section 3 we use the
Siegert formula [17] to additionally derive an expression for the first moment that is valid for
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the parameter range μθ � S for which the expression in Section 2 and the Laplace transform
both diverge (see [10] and [15]).

2. The recursion formula

Let {X(t), t ≥ 0} with X(0) = x0 be an Ornstein–Uhlenbeck process with drift (−x/θ+μ),
θ > 0, and infinitesimal variance σ 2. The process is defined on the interval (−∞, +∞) and
the threshold S is an arbitrary constant with x0 < S. The Siegert formula [17] states that the
moments of the first passage time through S for this setup can be obtained via the following
recursion expression:

tn(S | x0) = n

∫ S

x0

2 dz

σ 2W(z)

∫ z

−∞
W(x)tn−1(S | x) dx for n = 1, 2, . . . , (1)

where tn(S | x0) denotes the nth moment of the first passage time and W(x) gives the steady-
state PDF with

W(x) = 1√
πσ 2θ

exp

[
− (x − μθ)2

σ 2θ

]
.

Given t0(S | x0) = 1, the first moment, t1(S | x0), can be written as

t1(S | x0) =
√

πθ

σ

∫ S−μθ

x0−μθ

exp

[
y2

σ 2θ

]{
1 + erf

[
y√
σ 2θ

]}
dy, (2)

where erf[y] is the error function [7]. The evaluation of the integral in (2) will be simplified by
expressing the integrand as a series in y. From [7, Equation 1.211.1] it follows that

exp[y2] =
+∞∑
j=0

y2j

j !

and from [7, Equation 8.253.1] the error function is specified as

erf[y] = 2y√
π

+∞∑
j=0

(−y2)j

j ! (2j + 1)
.

The integrand of (2) can then be simplified accordingly into

exp

[
y2

σ 2θ

]{
1 + erf

[
y√
σ 2θ

]}
=

+∞∑
j=0

qjy
j

with

qj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
2√

πσ 2θ

)j

for j = 0 and j = 1,

2

jσ 2θ
qj−2 for j ≥ 2.

The first moment, t1(S | x0), is given by

t1(S | x0) =
√

πθ

σ

+∞∑
j=0

qj

j + 1
{(S − μθ)j+1 − (x0 − μθ)j+1}. (3)
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From (1) and straightforward but lengthy calculations the second moment, t2(S | x0), is spec-
ified as

t2(S | x0) = 2

σ
t1(S | x0)

+∞∑
j=0

qj

j + 1

{√
πθ(S − μθ)j+1 − 2

σ
s1,j

}

− 4
√

πθ

σ 3

+∞∑
j=0

qj

j + 1
{r2,S−μθ,j − r2,x0−μθ,j }, (4)

where

r2,y,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−σ 2θyj+1

2(j + 1)
for j = 0 and j = 1,

−σ 2θyj+1

2(j + 1)
+ jσ 2θ

2
r2,y,j−2 for j ≥ 2,

s1,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

j
√

π(σ 2θ)3/2

4
for j = 0 and j = 1,

jσ 2θ

2
s1,j−2 for j ≥ 2.

The expressions for the first two moments in (3) and (4) are more compact when compared
with the relations derived in [2], [12], [14], and [16]. Moreover, the recursive nature of these
expressions and especially of the coefficients q, r , and s has the advantage of allowing us to
also specify the higher-order moments in rather compact and recursive form. In fact, the third
moment, t3(S | x0), is computed as

t3(S | x0) = 3

σ
t2(S | x0)

+∞∑
j=0

qj

j + 1

{√
πθ(S − μθ)j+1 − 2

σ
s1,j

}

− 12

σ 3 t1(S | x0)

+∞∑
j=0

qj

j + 1

{√
πθr2,S−μθ,j − 2

σ
s2,j

}

+ 24
√

πθ

σ 5

+∞∑
j=0

qj

j + 1
{r3,S−μθ,j − r3,x0−μθ,j }

with

r3,y,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− σ 2θ

2(j + 1)
r2,y,j for j = 0 and j = 1,

− σ 2θ

2(j + 1)
r2,y,j + jσ 2θ

2
r3,y,j−2 for j ≥ 2,

s2,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− jσ 2θ

2(j + 1)
s1,j for j = 0 and j = 1,

− σ 2θ

2(j + 1)
s1,j + jσ 2θ

2
s2,j−2 for j ≥ 2.
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Employing (1) for subsequent orders reveals that the moments of order 3 and higher can be
specified as

tn(S | x0) = n

σ
tn−1(S | x0)

+∞∑
j=0

qj

j + 1

{√
πθ(S − μθ)j+1 − 2

σ
s1,j

}

+
n∑

k=3

vn,ktn−k+1(S | x0)

+∞∑
j=0

qj

j + 1

{√
πθrk−1,S−μθ,j − 2

σ
sk−1,j

}

+ wn

+∞∑
j=0

qj

j + 1
{rn,S−μθ,j − rn,x0−μθ,j } for n = 3, 4, . . . , (5)

where

rn,y,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− σ 2θ

2(j + 1)
rn−1,y,j for j = 0, j = 1, and n ≥ 3,

− σ 2θ

2(j + 1)
rn−1,y,j + jσ 2θ

2
rn,y,j−2 for j ≥ 2 and n ≥ 3,

sn,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− jσ 2θ

2(j + 1)
sn−1,j for j = 0, j = 1, and n ≥ 3,

− σ 2θ

2(j + 1)
sn−1,j + jσ 2θ

2
sn,j−2 for j ≥ 2 and n ≥ 3,

vn,k =

⎧⎪⎪⎨
⎪⎪⎩

−2n(n − 1)

σ 3 for k = 3 and n ≥ 3,

−2n

σ 2 vn−1,k−1 for k ≥ 4 and n ≥ 3,

wn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

24
√

πθ

σ 5
for n = 3,

−2n

σ 2 wn−1 for n ≥ 4.

The specifications for the first and second moments in (3) and (4), respectively, and the recursion
formula in (5) for order 3 and higher thus offer relatively neat and compact expressions that
should reduce computational burden and facilitate applications. It should be noted that the
recursion formula as well as the expressions for the (higher-order) moments obtained via the
Laplace transform are valid for the same range of parameters as they both rely on sums in which
essentially the same terms are raised to positive and increasing powers.

The above results can be used to illustrate the effects on (standardized) moments of increas-
ing S (see [11] and [13]). The first six moments are connected to the mean, variance, skewness,
kurtosis, hyperskewness, and hyperflatness via the following relations:

mean = t1(S | x0),

variance = μ2 = t2(S | x0) − t2
1 (S | x0),

skewness = 1

μ
3/2
2

{t3(S | x0) − 3t1(S | x0)t2(S | x0) + 2t3
1 (S | x0)},
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kurtosis = 1

μ2
2

{t4(S | x0) − 4t1(S | x0)t3(S | x0) + 6t2
1 (S | x0)t2(S | x0) − 3t4

1 (S | x0)},

hyperskewness = 1

μ
5/2
2

{t5(S | x0) − 5t1(S | x0)t4(S | x0) + 10t2
1 (S | x0)t3(S | x0)

− 10t3
1 (S | x0)t2(S | x0) + 4t5

1 (S | x0)},
hyperflatness = 1

μ3
2

{t6(S | x0) − 6t1(S | x0)t5(S | x0) + 15t2
1 (S | x0)t4(S | x0)

− 20t3
1 (S | x0)t3(S | x0) + 15t4

1 (S | x0)t2(S | x0) − 5t6
1 (S | x0)}.

It was noted in [11] that the numerical values for the skewness in [2] approached 2 for large values
of S. In fact, [11] showed that an exponential PDF approximates the first passage-time PDF well
for large thresholds. Subsequently, [13] proved that tn(S | x0) ∼ n! [g(S)]n for n = 1, 2, . . .

for large S with g(S) = (S/
√

2π) exp[−S2/2] such that the skewness indeed moves to 2 when
S increases. Likewise, the kurtosis, hyperskewness, and hyperflatness approach 9, 44, and 265,
respectively, when S becomes large. Convergence to these values is confirmed from Figure 1, in
which the latter standardized moments are scaled by their asymptotic values for the parameter
values θ = 20, μ = 0.5, σ 2 = 10, and x0 = 3. As required, the ratios (quickly) decrease to 1
but can be sizeable for smaller boundaries.

3. A series expression for the first moment for μθ � S

As discussed in, for example, [10] and [15], the Siegert formula and the Laplace transform
fail to produce reliable results for the first moment in the parameter range μθ � S. Indeed,
the first moment in (3) diverges on account of the presence of large terms that are raised to
positive and increasing powers. This divergence finds its origin in the fact that the series
expansion for the error function in Section 2 produces inaccurate results for highly negative
arguments. However, [7, Equation 8.254] and the properties of the error function offer the

Figure 1: Standardized moments scaled by their asymptotic value for large values of the threshold S:
skewness (solid line), kurtosis (broad dashed line), hyperskewness (dashed line), and hyperflatness (dotted

line) for the parameter values θ = 20, μ = 0.5, σ 2 = 10, and x0 = 3.
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following alternative expansion for large negative values of the argument

erf[y] = −1 − exp[−y2]
y
√

π

p∑
j=0

(−1)j (2j − 1)! !
(2y2)j

,

where (2j −1)! ! = (2j −1)(2j −3) · · · 3 ·1 and (−1)! ! = 1! ! = 1. For notational brevity, the
term O|y|−2p−y is omitted as the expression below for the first moment is extremely accurate
even for small values of p. The integrand in (2) then can be rewritten as

exp

[
y2

σ 2θ

]{
1 + erf

[
y√
σ 2θ

]}
= 1√

π

p∑
j=0

(−1)j+1(2j − 1)! !(σ 2θ)j+1/2

2j y2j+1 ,

which allows the first moment to be specified as

t1(S | x0) = −θ ln

[
S − μθ

x0 − μθ

]
+θ

p∑
j=1

(−1)j (2j − 1)! !
j2j+1

{(
S − μθ

σ
√

θ

)−2j

−
(

x0 − μθ

σ
√

θ

)−2j}
.

(6)
The expression in (6) comprises two terms of which the first has been discussed in [10] as the
first moment for σ → 0, i.e. for the deterministic case. The sum in (6) then represents the
added effect of nonzero σ on t1(S | x0) and as required reduces to 0 for σ → 0. The first
moment in (6) then offers an alternative to the ad hoc method for nonzero σ that was proposed
in [9].

Numerical examinations showed that the expression for t1(S | x0) in (6) clearly is to be
preferred over (3) for values of ((S−μθ)/σ

√
θ) and ((x0 −μθ)/σ

√
θ) below −5. Indifference

between the two expressions arises for values between −4 and −5, whereas the expression in
(3) is superior for values that exceed −4.
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