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Abstract

We provide a simple set of sufficient conditions for the weak convergence of discrete-time,
discrete-state Galton–Watson branching processes with immigration to continuous-time,
continuous-state branching processes with immigration.
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1. Introduction

Let (g, h) be a pair of probability generating functions. By a discrete-time, discrete-state
Galton–Watson branching process with immigration (DBI process) corresponding to (g, h)we
mean a discrete-time Markov chain {y(n), n = 0, 1, . . .} with state space N := {0, 1, . . .} and
one-step transition matrix P(i, j) defined by

∞∑
j=0

P(i, j)zj = g(z)ih(z), i = 0, 1, . . . , 0 ≤ z ≤ 1. (1.1)

The intuitive meaning of the process is clear from (1.1). In particular, if h(z) ≡ 1, we simply
call {y(n), n = 0, 1, . . .} a discrete-time, discrete-state Galton–Watson branching process (DB
process).

Kawazu and Watanabe (1971) systematically studied the limit theorems of DBI processes
and characterized the class of the limit processes completely as continuous-time, continuous-
state branching processes with immigration (CBI processes). Let us consider a special class of
the CBI processes introduced in Kawazu and Watanabe (1971). Suppose that R is a function
on [0,∞) defined by

R(λ) = βλ− αλ2 −
∫ ∞

0

(
e−λu − 1 + λu

1 + u2

)
µ(du),

where β ∈ R and α ≥ 0 are constants and min{1, u2}µ(du) is a finite measure on (0,∞), and
that F is a function on [0,∞) defined by

F(λ) = bλ+
∫ ∞

0
(1 − e−λu)m(du), (1.2)
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where b ≥ 0 is a constant and min{1, u}m(du) is a finite measure on (0,∞). A Markov
process {y(t), t ≥ 0} with state space R+ := [0,∞) is called a CBI process if it has transition
semigroup (Pt )t≥0 given by

∫ ∞

0
e−λyPt (x, dy) = exp

{
−xψt (λ)−

∫ t

0
F(ψs(λ)) ds

}
, λ ≥ 0, (1.3)

where ψt(λ) is the unique solution of

dψt
dt
(λ) = R(ψt (λ)), ψ0(λ) = λ. (1.4)

Clearly, the transition semigroup (Pt )t≥0 defined by (1.3) is stochastically continuous. In
particular, if F(λ) ≡ 0, then we simply call {y(t), t ≥ 0} a continuous-time, continuous-state
branching process (CB process).

A CBI process is said to be conservative if it does not explode, that is, Px{y(t) < ∞} = 1
for every t ≥ 0 and x ∈ R+, where Px denotes the conditional law given that y(0) = x. By
Kawazu and Watanabe (1971, Theorem 1.2), the process is conservative if and only if

∫
0+
R∗(λ)−1 dλ = ∞,

where R∗(λ) = max{0, R(λ)}. (This is a correction to Equation (1.21) of Kawazu and
Watanabe (1971).)

Let {bk} and {ck} be sequences of positive numbers such that bk → ∞ and ck → ∞ as
k → ∞. Let {yk(n), n ≥ 0} be a sequence of DBI processes corresponding to the parameters
{(gk, hk)} and assume that yk(0) = ck . Suppose that, for all t ≥ 0 and λ ≥ 0, the limits

lim
k→∞ g

[kt]
k (e−λ/bk )ck =: φ1(t, λ) and lim

k→∞

[kt]−1∏
j=0

hk(g
j
k (e

−λ/bk )) =: φ2(t, λ) (1.5)

exist and the convergence is locally uniform in λ ≥ 0 for each fixed t ≥ 0, where gjk denotes
the j -order composition of gk and [kt] denotes the integer part of kt .

Theorem 1.1. (Kawazu and Watanabe (1971, Theorem 2.1).) Suppose that (1.5) holds and
that φ1(t, λ) < 1, for some t > 0 and λ > 0. Then {yk([kt])/bk, t ≥ 0} converges in finite-
dimensional distributions to a stochastically continuous, conservative CBI process {y(t), t ≥ 0}
with transition semigroup given by (1.3).

Based on this theorem, Kawazu and Watanabe (1971) showed that, given each stochas-
tically continuous, conservative CBI process {y(t), t ≥ 0}, there is a sequence of positive
numbers {bk}, where bk → ∞, and a sequence of DBI processes {yk(n), n ≥ 0} such that
{yk([kt])/bk, t ≥ 0} converges in finite-dimensional distributions to {y(t), t ≥ 0}. Their
results have become the basis of many studies of branching processes with immigration; see,
for example, Pitman and Yor (1982) and Shiga and Watanabe (1973). On the other hand, since
(1.5) involves complicated compositions of the probability generating functions, it is sometimes
not so easy to verify. In view of the characterizations (1.1), (1.3), and (1.4) of the two classes
of process, we naturally expect some simple sufficient conditions for the convergence of the
DBI processes to the CBI processes given in terms of the parameters (g, h) and (R, F ). The
purpose of this note is to provide a set of conditions of this type. For the convenience of proof, we
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shall discuss the convergence of {yk([γkt])/k, t ≥ 0} for some sequence of positive numbers
{γk} with γk → ∞, which is slightly different from the scaling of Kawazu and Watanabe
(1971). Instead of the convergence of finite-dimensional distributions, we shall consider the
weak convergence on the space of càdlàg functions D([0,∞),R+).

2. The limit theorem

In this section, we prove a limit theorem for DBI processes on the space D([0,∞),R+).
Let F be defined by (1.2). For simplicity we assume that the function R is given by

R(λ) = βλ− αλ2 −
∫ ∞

0
(e−λu − 1 + λu)µ(du), λ ≥ 0, (2.1)

where β ∈ R and α ≥ 0 are constants and min{u, u2}µ(du) is a finite measure on (0,∞).
Suppose that {y(t), t ≥ 0} is a CBI process corresponding to (R, F ). Let {yk(n), n ≥ 0}
be a sequence of DBI processes corresponding to the parameters {(gk, hk)} and let {γk} be a
sequence of positive numbers. For 0 ≤ λ ≤ k, set

Fk(λ) = γk

[
1 − hk

(
1 − λ

k

)]
(2.2)

and

Rk(λ) = kγk

[(
1 − λ

k

)
− gk

(
1 − λ

k

)]
. (2.3)

Let us consider the following set of conditions.

(A) As k → ∞, we have γk → ∞ and γk/k → γ0, for some γ0 ≥ 0.

(B) As k → ∞, the sequence {Fk} defined by (2.2) converges to a continuous function.

(C) The sequence {Rk} defined by (2.3) is uniformly Lipschitz on each bounded interval, and
converges to a continuous function as k → ∞.

We remark that conditions (B) and (C) parallel the sufficient conditions for the convergence
of continuous-time, discrete-state branching processes with immigration; see, for example,
Li (1992) for discussion in the setting of measure-valued processes. Based the results of
Li (1991), the following lemma can be proved by modifying the arguments of the proofs of
Li (1992, Lemmas 3.4 and 4.1).

Lemma 2.1. (i) Under conditions (B) and (C), the limit functions F and R of {Fk} and {Rk}
have representations (1.2) and (2.1), respectively.

(ii) For any (F,R) given by (1.2) and (2.1), there are sequences {γk} and {(gk, hk)} as above
such that conditions (A), (B), and (C) hold with Fk → F and Rk → R.

For λ ≥ 0 we set Sk(λ) = kγk[(1 − λ/k)− gk(e−λ/k)].
Lemma 2.2. Under conditions (A) and (C), let R = limk→∞ Rk . Then we have

lim
k→∞ Sk(λ) = R(λ)− γ0λ

2

2
and lim

k→∞ γk[1 − gk(e
−λ/k)] = γ0λ (2.4)

uniformly on each bounded interval.
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Proof. By the mean value theorem, we obtain

Sk(λ) = Rk(λ)− kγkg
′
k(ηk)

(
e−λ/k − 1 + λ

k

)
, (2.5)

where 1 − λ/k < ηk < e−λ/k and g′
k denotes the derivative of gk . Under condition (C),

the sequence R′
k(λ) = γk[g′

k(1 − λ/k) − 1] is uniformly bounded on each bounded interval
λ ∈ [0, l], l ≥ 0. Thus, g′

k(1 − λ/k) → 1 uniformly on each bounded interval. In particular,
we have g′

k(ηk) → 1, and the first equality in (2.4) follows from condition (A) and (2.5). The
second equality in (2.4) follows by a similar argument.

Theorem 2.1. Suppose that conditions (A), (B), and (C) hold with F = limk→∞ Fk and R =
limk→∞ Rk . If yk(0)/k converges in distribution to y(0), then {yk([γkt])/k, t ≥ 0} converges
in distribution on D([0,∞),R+) to the CBI process {y(t), t ≥ 0} corresponding to (R, F )
with initial value y(0).

Proof. Let (Pt )t≥0 denote the transition semigroup of the CBI process corresponding to
(R, F ). Forλ > 0 and x ≥ 0, set eλ(x) = e−λx . We denote byD1 the linear hull of {eλ, λ > 0}.
Then D1 is an algebra which strongly separates the points of R+. Let C0(R+) be the space
of continuous functions on R+ vanishing at infinity. By the Stone–Weierstrass theorem, D1
is dense in C0(R+) for the supremum norm; see, for example, Hewitt and Stromberg (1965,
pp. 98–99). For λ > 0 we set

Aeλ(x) = −e−λx[xR(λ)+ F(λ)], x ∈ R+, (2.6)

and extend the definition of A to D1 by linearity. Then A := {(f,Af ), f ∈ D1} is a linear
subspace of C0(R+)× C0(R+). Since D1 is invariant under (Pt )t≥0, it is a core of A; see, for
example, Ethier and Kurtz (1986, p. 17). In other words, the semigroup (Pt )t≥0 is generated
by the closure of A; see, for example, Ethier and Kurtz (1986, p. 15 and p. 17). Note that
{yk(n)/k, n ≥ 0} is a Markov chain with state space Ek := {0, 1/k, 2/k, . . .} and one-step
transition probability Qk(x, dy) determined by

∫
Ek

e−λyQk(x, dy) = gk(e
−λ/k)kxhk(e−λ/k).

Then the (discrete) generator Ak of {yk([γkt])/k, t ≥ 0} is given by

Akeλ(x) = γk[gk(e−λ/k)kxhk(e−λ/k)− e−λx]
= γk[exp{xkαk(λ)(gk(e−λ/k)− 1)} exp{βk(λ)(hk(e−λ/k)− 1)} − e−λx],

where
αk(λ) = (gk(e

−λ/k)− 1)−1 log gk(e
−λ/k)

and βk(λ) is defined by the same formula with gk replaced by hk . Under conditions (A), (B),
and (C), it is easy to show that

lim
k→∞(gk(e

−λ/k)− 1) = lim
k→∞(hk(e

−λ/k)− 1) = 0

and
lim
k→∞αk(λ) = lim

k→∞βk(λ) = 1.
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Then we have

Akeλ(x) = −e−λx[xαk(λ)Sk(λ)+ xγk(αk(λ)− 1)λ+Hk(λ)] + o(1), (2.7)

where
Hk(λ) = γkβk(λ)(1 − hk(e

−λ/k)).
By elementary calculations we find that

αk(λ) = 1 + 1
2 (1 − gk(e

−λ/k))+ o(1 − gk(e
−λ/k)),

and so limk→∞ γk(αk(λ)− 1) = γ0λ/2 by Lemma 2.2. It follows that

lim
k→∞[αk(λ)Sk(λ)+ γk(αk(λ)− 1)λ] = R(λ).

By the argument of the proof of Lemma 2.2, we can show that

lim
k→∞Hk(λ) = lim

k→∞Fk(λ) = F(λ).

In view of (2.6) and (2.7), we obtain

lim
k→∞ sup

x∈Ek
|Akeλ(x)− Aeλ(x)| = 0,

for each λ > 0. This clearly implies that

lim
k→∞ sup

x∈Ek
|Akf (x)− Af (x)| = 0,

for each f ∈ D1. From Ethier and Kurtz (1986, p. 226 and pp. 233–234) we find that
{yk([γkt])/k, t ≥ 0} converges in distribution on D([0,∞),R+) to the CBI process
corresponding to (R, F ).

By Lemma 2.1 and Theorem 2.1, for any functions (R, F ) given by (1.2) and (2.1), there
is a sequence of positive numbers {γk} and a sequence of DBI processes {yk(n), n ≥ 0} such
that {yk([γkt])/k, t ≥ 0} converges in distribution on D([0,∞),R+) to the CBI process
corresponding to (R, F ).

3. Generalized Ray–Knight theorems

As an example of the applications of their limit theorems, Kawazu and Watanabe (1971)
re-proved the Ray–Knight theorems of diffusion characterizations of the Brownian local time.
In this section, we generalize the results to the case of a Brownian motion with drift. We refer
the reader to Le Gall and Le Jan (1998) for another adequate formulation of the Ray–Knight
theorems for general Lévy processes.

Let A = αd2/dx2 + βd/dx for given constants α > 0 and β ∈ R. Then A generates a
one-dimensional Brownian motion with drift (Xt ,Ft ,Px). The local time of {Xt, t ≥ 0} is
a continuous two-parameter process {l(t, x), t ≥ 0, x ∈ R} such that the following property
holds almost surely:

2
∫
B

l(s, x) dx =
∫ t

0
1B(Xs) ds, B ∈ B(R).

Here B(R) denotes the Borel σ -algebra of R and 1B is the indicator function of B. For a fixed
a ≥ 0, let

l−1(u, a) = inf{t ≥ 0 : l(t, a) = u}.
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Theorem 3.1. The process

ξu(t) = l(l−1(u, a), a + t), t ≥ 0,

is a diffusion generated by

x
d2

dx2 + β

α
x

d

dx
.

Proof. We follow the ideas of Kawazu and Watanabe (1971, Example 2.2). For c ∈ R let
σc = inf{t ≥ 0 : Xt = c}. Let δ > 0 and let uδ(x) = Px{σδ < σ−δ} = 1 − Px{σδ > σ−δ}.
Then uδ(·) satisfies

α
d2

dx2 uδ(x)+ β
d

dx
uδ(x) = 0, |x| ≤ δ,

with uδ(δ) = 1 and uδ(−δ) = 0. Solving this boundary value problem, we find that

uδ(x) = exp{βδ/α} − exp{−βx/α}
exp{βδ/α} − exp{−βδ/α} .

By a δ-downcrossing at x ∈ R before time T > 0 we mean an interval [u, v] ⊂ [0, T ) such
that Xu = x + δ, Xv = x, and x < Xt < x + δ for all u < t < v. Let ηδ denote the number
of δ-downcrossings at 0 before time σ−δ . By the property of independent increments of the
Brownian motion with drift, we have

E0[zηδ ] =
∞∑
i=0

(1 − p)(pz)i = q

1 − pz
,

where p = uδ(0), q = 1 − p, and E0 denotes the expectation under P0. Let xi = a + i/k for
i ≥ 0 and k ≥ 1 and let Zk(i) denote the number of (1/k)-downcrossings at xi before time
l−1(u, a). It is easy to see that Zk(i+ 1) is the sum of Zk(i) independent copies of η1/k . Thus,
{Zk(i), i = 0, 1, . . .} is a DB process corresponding to the generating function

gk(z) = qk

1 − pkz
,

where pk = u1/k(0) and qk = 1 − pk . By a standard result for local times of diffusion
processes, we obtain

lim
k→0

Z1/k([kt])
k

= l(l−1(u, a), a + t) = ξu(t);

see Itô and McKean (1965, p. 48 and p. 222). Then Theorem 2.1 implies that the limit
{ξu(t), t ≥ 0} is a CB process corresponding to

R(λ) = lim
k→∞ k

2
[(

1 − λ

k

)
− gk

(
1 − λ

k

)]
= β

α
λ− λ2.

This proves the desired result.

Kawazu and Watanabe (1971, Theorem 2.3 and Example 2.2) proved the result of
Theorem 3.1 in the special case β = 0. In that case the generating function gk is actually
independent of k ≥ 1. In the general case, it seems difficult to check condition (1.5) for the
sequence {gk}. By arguments similar to those used above, we obtain the following theorem.
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Theorem 3.2. The process

ηu(t) = l(l−1(u, a), a − t), 0 ≤ t ≤ a,

is a diffusion generated by

x
d2

dx2 + β

α
x

d

dx
+ d

dx
.
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