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Abstract

Let p and q be infinite cardinal numbers, p g q, X a set of cardinality p, and BL(X, p,q) the
Baer-Levi semigroup of type (p, q) on X. Subsemigroups of BL(X,p,q) are defined and called
bounded Baer-Levi semigroups. These semigroups are right simple and are universal in the em-
bedding sense for the class of idempotent-free, right cancellative semigroups S so that any two
elements of S have a common right identity in S. Further properties of bounded Baer-Levi
semigroups are given and the structure of their lattices of congruences is discussed.

Any right cancellative idempotent-free semigroup can be embedded in a
Baer-Levi semigroup (Baer and Levi (1932) or Clifford and Preston (1967)).
Here we investigate what we call bounded Baer-Levi semigroups which turn
out to be universal in the embedding sense for the class of right cancellative
idempotent-free semigroups in which any two elements have a common right
identity. This class of semigroups arises when considering certain semigroup
actions (Lindsey (1974) and (1975)).

In Section 1 the definitions and basic properties of a bounded Baer-Levi
semigroup are given. Sections 2 and 3 contain a discussion of the lattice of
congruences on a bounded Baer-Levi semigroup. Aside from using some
lemmas from Lindsey and Madison (1976) and standard results and terminol-
ogy from Clifford and Preston (1961) and (1967) this discussion is self-
contained. The authors are grateful to A. H. Clifford who read the original
version of this paper and made helpful suggestions for improvements.

Portions of this paper are from the first author's Ph.D. dissertation. The second author was
partially supported by the National Science Foundation.
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184 Diana Lindsey and Bernard Madison [2]

1. Bounded Baer-Levi semigroups

Let Mo be the cardinal number of a countably infinite set, and let p and q
be cardinal numbers with p g g g N0.

Let X be a set with cardinal number p, i.e., \X\ = p. The Baer-Levi
semigroup of type (p, q) on X, noted here BL(X, p, q), is the subsemigroup of
the full transformation semigroup on X consisting of one-to-one functions
a: X-»X so that | X\Xa | = q. It is known, Chapter 8 of Clifford and Preston
(1967), that BL(X, p, q) is a right cancellative, right simple semigroup without
idempotents. In fact, any right cancellative, idempotent-free semigroup S is a
subsemigroup of the Baer-Levi semigroup of type (| S |, | S |). Information
about the lattice of congruences on a Baer-Levi semigroup has been given by
Sutov (1961) and Mielke, (1972), (1973) and (1975). A complete description of
this lattice is given by Lindsey and Madison (1976).

Here we are interested in certain subsemigroups of BL(X,p,q). Let 9
be a nonempty set of subsets of X satisfying

(Bl) For each FEJf, \F\ = p and | X \ F | = q;
(B2) For each pair FUF2E9 there is FE 9 so that F, U F2CF and

\F\F1UF2\ = q.
Such a collection will be called a bounding collection for X. We define the
bounded Baer-Levi semigroup of type (p,q) on X with respect to 9, noted
BBL(X,p,q, 9), to be the subsemigroup of BL(X,p,q) consisting of func-
tions a: X-»X so that there is F E 9 with Xa C F.

PROPOSITION 1.1. Let B = BBL(X,p,q, 9) be a bounded Baer-Levi
semigroup. Then B is (a) right cancellative, (b) idempotent-free, and (c) right
simple, and (d) any two elements of B have a common right identity.

PROOF. Statements (a) and (b) follow because S is a subsemigroup of
BL(X,p, q), and (c) and (d) are routine consequences of conditions (Bl) and
(B2) on 9. •

PROPOSITION 1.2. / / S is an idempotent-free, right cancellative semigroup
in which any two elements have a common right identity then S is isomorphic to
a subsemigroup of a bounded Baer-Levi semigroup of type (\ S \,\S |).

PROOF. It is known, Clifford and Preston (1967), that there is a set X,
| X | = | S |, with 5 embedded in BL(X, \S\,\S\). Consider S as a subsemi-
group of BL(X,\S\,\S\) and let 9 = {Xa:aES}. Now for each F E 9,
|F | = |X|, and if FuF2E 9 let Xa = Fi and Xb = F2. If c is a common right
identity for a and b then c is the identity function when restricted to Fi U F2.
Since Xc = FE 9 we must have | F\F, U F2| = | X|. Consequently 9 is a
bounding collection. Now by design S CBBL(X,\S\,\S\,9). •
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We note that there is not necessarily a unique bounding collection that
determines a bounded Baer-Levi semigroup. Let & and $ be two bounding
collections for X. Clearly if &CS then BBL(X,p,q, &)CBBL(X,p,q, <$); in
fact, if for F£& there is G G <g so that FCG then BBL(X,p,q,&)C
BBL(X,p,q, <$). If, in addition, for each G E <& there is F e & so that G C F
then BBL(X,p,q, 9)= BBL(X,p,q, CS). Consequently any two such "inter-
laced" bounding collections determine the same bounded Baer-Levi semi-
group. Conversely, any two bounding collections 9 and ^ so that
BBL(X,p,q,'£) = BBL(X,p,q,9') are interlaced. Among all bounding col-
lections that are interlaced with a given cF there is a unique maximal one, §'.
It is easy to see that & is the set of ranges of elements of BBL(X, p, q, SF). On
the other hand, there is not always a bounding collection that is minimal with
respect to being interlaced with &, but there is one of smallest cardinality
whose cardinal number we will designate by c{3F).

A one-to-one function <$> from X onto X, i.e., a permutation of X, in-
duces an isomorphism <J>: BL(X, p, q)^> BL(X, p, q) given by a<f> = <&~'a4>.
Now if 2F is a bounding collection for X then 3FQ = {F<1>: F G 3F) is a bound-
ing collection for X and BBL(X,p, q, &)<& = BBL(X,p, q, &<$>), i.e., the con-
jugate by permutations of bounded Baer-Levi semigroups are bounded
Baer-Levi semigroups. Whether or not every pair of isomorphic bounded
Baer-Levi subsemigroups of BL(X,p,q) are conjugates is unknown to the
authors. A related problem is whether or not every automorphism of
BL(X,p,q) is inner, i.e., induced by a permutation of X. We give below two
non-isomorphic bounded Baer-Levi subsemigroups of BL(X, Ko, No) where X
is a countable set. We drop the N0's to simplify notation.

EXAMPLE 1.3. Let X be the set {(m, n): m and n are positive integers}.
Let 3< be any countable tower that satisfies the conditions (Bl) and (B2) of a
bounding collection, say $F = {F,, F2, • • •} where F CFi+1 for each i. Now there
is a sequence, e,, e2, • • •, of elements of BBL(X, 3?) so that e< is the identity
when restricted to F. Consequently if a G BBL(X, 2F) there is an n so that
aen = a. Clearly any isomorphic copy of BBL{X,3F) contains such a se-
quence. Conversely, if BBL(X,^)is a bounded subsemigroup of BL(X)and
there is such a sequence, say fufi, • • •, let CS' = {Gn G <£: Xfn C Gn for n =
1,2,3, • • •}. It is easy to see that CS' is a bounding collection for X, and since
<S'C% BBL(X, ^')CBBL(X, <S). If a G BBL(X, <S) then there is n so that
afn = a and consequently Xa C Gn G «'. Thus BBL(X, «§') = BBL(X, <$). In
particular we have seen that $ contains a subset ^ ' which is a tower, and if
Geif, there is G' G <S' so that G c G ' . Now let 3if be the collection of sub-
sets of X that are finite unions of graphs of functions from the positive inte-
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gers to the positive integers. Clearly "X is a bounding collection that does not
contain a tower as above. Consequently BBL(X, &) and BBL(X, X) are not
isomorphic.

2. Difference set congruences on bounded Baer-Levi semigroups

In this and the next section the lattice of congruences on bounded
Baer-Levi semigroups is discussed. If X is an infinite set we will say that a
bounding collection & for X is an effective bounding collection if U 3 = X.
Except in the following result, which justifies the term "effective", we will as-
sume that any bounding collection is effective.

PROPOSITION 2.1. Let B = BBL(X, p, q, 3F) with U&not necessarily all of
X. Let p = {(a, b)G B x B: sa = sb ior each s E B}. Then p is a congruence on
B and B/p is isomorphic to BBL(U &, p, q, &).

PROOF. It is well known and routine to verify that p is a congruence. For
a G b let ap denote the p-class of a. Define <I>: B/p —> BBL{\J&, p, q, 9) by
letting (ap)<$> be the restriction of a to Uf. If ap = bp and x £ U ^ choose
d G BBL(U&,p,q, 9) and y G \J& so that (y)d = x. Hence (x)a = (y)da =
(y)db = (x)b. Thus $ is a function. That <t> is a one-to-one homomorphism
follows from the fact that if b G B then XfeCUf. That <J> is onto follows from
property (B2) for 9. •

For the remainder of this section we assume that | X | = p is infinite, q is
an infinite cardinal number, q S p, 3F is an effective bounding collection for X,
and B = BBL(X,p,q,&).

If a and b are transformations of X then the difference set of a and b,
noted D(a, b), is the set {x G X: xa^ xb}. The following lemma is routine to
verify but is frequently used hereafter.

LEMMA 2.2. If a, b, and c are transformations of X, then
(i) D(a,c)CD(a,b)UD(b,c);
(ii) D(ca, cb) = (D(a,b))c-1; and
(iii) if c is one-to-one, then D(ac, bc)= D(a, b). •

If / is a cardinal number, we note by /+ the smallest cardinal number
larger than /. If r is a cardinal number and No = r = p+, define the r-difference
relation on B by 8, = {(a,b)G B x B:\D(a,b)\< r}. Define the

difference relation on B by

)r = {(a, b)EBxB:\D(a,b)nF\<rtor each F e f }

We argue now that this relation is independent of the choice of a bounding
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collection yielding the same B. We recall that BBL(X,p,q,&) =
BBL(X, p, q, <S) is equivalent to 9 and ® being interlaced, i.e., if F E & there
is G £ 8 so that FCG and vice versa. Thus if so and (a, b)E 8(^)n i.e.,
| D(a, b)HF\<r for each F £ f , then \D(a,b)DG\<r for each G £ «
and ( a , i ) 6 8 ( « ) . Thus 8(3?), CS(^) , and vice versa.

We single out the following statement for emphasis.

PROPOSITION 2.3. For any infinite cardinal number r, Sr C8(!W),. •

PROPOSITION 2.4. The relations 8, and 8{9^)r are congruences on B.

PROOF. It follows from Lemma 2.2 that 8, is a congruence and 8(SF)r is a
right compatible equivalence relation. To see that 8(3*), is left compatible let
(a, b) G 8(&)r and s G B. There is F G 9 so that Xs CF, and, by Lemma 2.2,
D(sa, sb) = D(a, b)s~\ Therefore

D(a, b)s~' = D(a, b)s'i D Fs'1 = (D(a, fc) n F)s'1

and the latter set has cardinality less than r since s is one-to-one and (a, b) G
8(^) , . Consequently (sa, s d ) £ & C S ( f ) , •

Sutov (1961) has shown that in the case where p = q the only proper
congruences on BL(X,p,p) are the r-difference congruences; in fact, the
following proofs are similar to proofs of some of Sutov's results. From Lind-
sey and Madison (1976) the only non-trivial non-group congruences on
BL(X,p,q) are the r-difference congruences. As we see in Section 3 this is
not the case with BBL(X,p, q, 9).

PROPOSITION 2.5. / / \&\^r then 8{&)r C«r*.

PROOF. (We first remark that the c ( ^ ) defined in Section 1 can be used
instead of | & \.) If (a, b)G 8(&)r then | D(a, b)\ = \ U F e , ( D ( a , i ) D F ) | s
rr~r<r*. D

We note that 8,+ is never a subset of 8{5F)r, i.e., if 8(2F),£8r+ then these
congruences do not compare.

Proofs of the next two lemmas are given in Lindsey and Madison (1976).

LEMMA 2.6. Ifa,bEB and D is an infinite subset ofD(a, b), then there is
a subset Y of D with \Y\ = \D\ so that Yaf)Yb = 0. •

LEMMA 2.7. If p is a congruence on a semigroup S, (a, b) E. p, and for some
s,t,uE S, at = au and bs = bu, then (as, bt) E p. •

LEMMA 2.8. If a is a congruence on B, F E 3F, and there is (a,b)Ea with
\D(a,b)nF\>q, then there is (a',b')Eo- with \D(a',b')D F\ = q.

PROOF. By Lemma 2.6 choose Y CD(a,b)f\F so that \Y\ = q and
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Ya PI Yb = 0. Note that Y (1 Yba'1 = 0 . Define c G B so that (y)c = y for
each y £ Y and Yba''n Xc = 0. This is clearly possible since |F\(YU
Yba ~')| = p and the hypotheses imply that p > q. Note that Xca D Vcfc = 0
since if not there i s x E X and y E V s o that (x)ca = (y)cb = (y)b and thus
(x)c = (y)ba'1 contradicting Yba ' D Xc = 0 . Define i G f l s o that (x)f = x
if x G (Xca U Xcb)\ Ycb and (x)f / x if x G Ycb. Since there are F,, F2 G & so
that Xca U Xcb CF, CF2 and | F2\F, | = q, t can map X\(Xca U Xcfc) U Ycb
into F2\Fi. Now (caf, cbt) = (ca, cbt) G a and (ca, cb)Eo- imply that
(cb, cfcr)G o-. Now if x G Y, (x)cbt/ (x)cb. If x G X\ Y then (x)cbt = (x)cb.
Consequently D(cb,cbt)= Y. Since Y CF, D(cb, cbt)C\ F = Y. •

LEMMA 2.9. If a is a congruence on B, r is a cardinal number, N 0 = r g q ,
and there is F G 9 and (a, b) G <r with \D(a,b)C\F\ = r then 8r+ C a.

PROOF. By Lemma 2.6 there is a subset Y CD(a,b)fl F so that \Y\ =
| D(a, b) n F | = r and Ya D Yb = 0 . Let (c, d) G 5r+, and denote D(c, d) by
D for convenience. We show that (c, d) G <r. If r = p, choose s G B so that
Xs C Y If r/ p, choose s G B so that DsCY and {X\D)s C[X\D(a, b)] D F.
This is possible since | D | g | Y | and | (X\D(a, fo)) n F | = p. Now (5a, sfe) G <r
and since Dsa C Ya and Dsfc C Yfe, we have Dsa (1 Dsfe = 0 . Let f, G B be
defined so that on Xsa, t\ = (sa^c, i.e., satt = c. There are F,F''G & so that
Xc CFCF' and | F ' \F | = q. Let f, map X\Xsa into F'\F. Define r2G B so
that /2=(sfc)"1d on Xsb. There are F", F'" G & with Xd CF", F' U F" CF'",
and F"'\F' U F" | = q. Let f2 map X\Xs6 into F'"\(F' U F"). Since Dsfcf! D
Dsaf2 = 0 and D(sa, sfo) = D = D(c, d) we note that if z G Xsa D Xsb then
z = xsa = xsb for x G X\D. Thus (x)fi = (x)c = (x)d = (x)/2. Consequently
we can define t G B to agree with fi on Xsb and to agree with t2 on Xsa, i.e.,
sbt = sbti and sat = sat2. Since | X\(Xf, U Xf2) j = q there is sufficient room to
complete the definition of t. Finally {sbtu sat2) = (sbt, sat) G a; (sbtu sati) G a,
and (sbt2, sat2) G a. Thus (c, d) = (satu sbt2) G cr. •

COROLLARY 2.10. If p = q f/ien 8{3F)P is the unique maximum congruence
on B.

PROOF. Apply Lemma 2.9 with r = p = q. •

Whether or not 5(^)p is a maximal (or the unique maximum) congru-
ence on B when p^ q is unknown to the authors. In the case that p/ q the
congruence 8(&)P induces a congruence on the group B/Sq*. (See 2.14
below.) The authors expect to investigate this group and its congruences in fu-
ture work.

COROLLARY 2.11. Let H0^r^q. If a is a congruence on B, either
r or Sr*C(T.
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PROOF. If aft8{&), there is (a, fc)G <r\8(&)r, i.e., for some
\D(a, b)DF\^r. By Lemma 2.8 there is (a',b')Gcr so that \D(a',b')n

F\ = r and by Lemma 2.9, 8,+Co: •

COROLLARY 2.12. // H0^r^q then 5(^)rA5r+ is r/ie unique maximal
congruence on B below 5r*.

PROOF. Apply Corollary 2.11. •

LEMMA 2.13. The quotient semigroup B/8(9')q is idempotent-free.

PROOF. For any a G B we show (a, a2) £ 5(^), . There are F, F' G ^ so
that X f l C F c F and |F ' \F | = q. Then F \ F C X \ X a C { X : x a ^ x } =
D(a,a2). Thus | D(a, a2)n F'\ g 4 or (a, a2 )£ 8(3*),. D

PROPOSITION 2.14. The congruence 8q+ is the unique minimal group con-
gruence on B.

PROOF. If p = q then 8q+ = B x B and there is a unique maximal congru-
ence, namely 8(^F), by 2.10, below 5,* and by 2.13, BI8(2F)q is not a group. If
q < p and a £ B then (a, a2) G 5,* if and only if a is the identity on a set A,
| A | = p, and | X\A \ = q. To see this note that D(a, a2) is the set X\{x: xa =
x}. Clearly there is such an a in B. Further any two such elements of B, say a
and a', are 8q+ related. Consequently S/5,» has a unique idempotent and this
along with right simplicity yields a group. To see that 5,* is minimal let a be a
group congruence on B. By Corollary 2.11 either a- C8(&)q or 8q+Co-. Since
by Lemma 2.13 B/8(&)q is idempotent-free it cannot be that a C 8(&)q. Thus
V Co: •

PROPOSITION 2.15. The Ho-difference set congruence 8 ,̂ is the unique min-
imal congruence on B.

PROOF. The proof that 5*,, is minimal is the same as the proof that 8^ is
minimal on BL(X,p,q), Lindsey and Madison (1976). To see that 8^ is uni-
que minimal let a be a non-trivial congruence on B. By Lemma 2.11 either
o-CS(^)Woor 8^Co-. If < r C S ( ^ let (a, b)e<7 with a^ b. There i s F e f
so that D(a,b)DF/ 0 . Choose s E B so that Xs = F. Then D(sa, sb)/0
and is finite since (a, b) G 5(^)KO. Consequently a f~l 8^^ A and hence since
5K,, is minimal a n S ,̂ = 5^, i.e., §«„ C cr. •

3. Other congruences on BBL (X, p, q, 3F)

According to Corollary 2.12, if r is a cardinal number with H0^r^q,
then there are no congruences between S(^)r (~l 8r+ and 8,+. We see here that,
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in general, there are many congruences between 8, and 8(3F),. We will con-
struct two classes of congruences that are in this interval and discuss their
properties. Again let B = BBL(X,p,q, &).

If C and D are subsets of X we say that C is r-almost contained in D,
written CCrD if | C\D | < r. The sets C and D are said to be r-almost equal,
written C = ,D, if CC,D and DC,C.

If r is a cardinal number and A CX, then we will note by a;(A) the set
{(a, b)<EB xB:D(a, b)CrA}. The set A will be said to be r-scattered in & if
for each F £ 9, \ F n A | < r. We will note by Scr(^) the set of subsets of X
that are r-scattered in /.

PROPOSITION 3.1. If A £ Scr(!¥) then cr,(A) is a congruence on B and 8, C
o-r(A)C8(&),.

PROOF. First 8, Car(A)C8(^)r is clear. Also it is easy to see that crr(A)
is a right compatible equivalence relation. If ft £ B and (c, d ) £ cr,{A) then
since A £ Sc,(3P) and ft is bounded it follows that (be, bd)E. 8r. •

We note that if | A | < r then <rr(A) = 5r.

PROPOSITION 3.2. 7/A, A ' £ Sc,^) then in the lattice of congruences on B
we have o-,(A) A CXV(A') = ar(A n A')-

PROOF. NOW <xr (A) A <T, (A') = crr (A) D ov (A') and the result follows set
theoretically. •

LEMMA 3.3. / / a,b£B, A CX, Aa D Ab = 0, D(a,b)=A, and
c,d £ B with D(c,d)CA, then (c, d)G ((a, b)), the smallest congruence con-
taining the pair (a, b).

PROOF. First we note that | A j Si q since D(a, b)= A and Aa C\ Ab = 0 .
Thus there are functions s, t £ B so that as = c, bt = d, and Afc n Aaf = 0 .
Further, there is a function u £ S which agrees with s on Xft, agrees with t on
Xa, and assumes the common value of s and t on X\(Aa U Aft). Hence fts =
bu and af = au. By Lemma 2.7 (c, d) = (as, bt) £ ((a, ft)}. •

Define Sc*(&) = {A £ S c r ( ^ ) : | A | S q and for each cardinal number
f <r there is F £ 3^ so that | F n A | a f}.

We will call a congruence cr on a semigroup S monogenic if there is a pair
(a, ft) £ S x S so that o- = ((a, ft)).

PROPOSITION 3.4. 7/ Ho ^ r ^ q and A £ Sc*(&), then ar(A) is a
monogenic congruence on B.

PROOF. Let a, ft £ B so that D(a,b) = A and Aa D Ab = 0 . This is pos-
sible since | A | S q . Let (c, <i)£CTv(A), i.e., D(c, d) Cr A. Let c',d'GB where
c ' = c except on D(c, d)\A, d'= d except on D(c,d)\A, and c'= d' on

https://doi.org/10.1017/S1446788700018188 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700018188


[9] Bounded Baer-Levi semigroups 191

D(c,d)\A. Then D(c',d')CA and by Lemma 3.3, (c',d')E{(a,b)). Further
(c, c') and (d, d') are in 8r. We now claim that 8, C((a, b)). To see this we note
that A E Sc *(3F) and Lemma 2.9 yield the following: If f is a cardinal number
and f <r there is cardinal number r ^ f so that 8r-+ C((a, b)). Now (a, b) E 8,
implies | D(a, b) \ = f < r and thus (a, b) G Sf*. Further if f < r and (a, b) G Sf»
then | D(a, b)\<f+^r. Thus (a, b) G 8r. It follows that 5, = U!<r8f+ and that
S,C((a, b)). Consequently (c,c'), (c',d'), and (d',d) are all in ((a, b)). By
transitivity, (c, d)G ((a, b)) and crr(A) = ((a, b)). D

PROPOSITION 3.5. In the lattice of congruences on B, if A and A' are in
Sc*(&) then a,(A)v <rr(A')= a,(A U A').

PROOF. If A and A' are in Sc *{&) then so is A U A'. Hence <r,(A U A')
is a congruence on B and a; (A) v a, (A') C <r, (A UA') . Now let (a, i»)G
ov(AUA') so that D(a, 6 ) = A U A ' and (A U A')a n (A U A')b = 0 .
Define s G B by (JC)S = (x)a if x G A, (x)s = (x)b is x G A'\A, and (x)s =
(x)a=(x)b if x G X \ ( A U A ' ) . Then D(a,s)CA' and D(s,b) = A. Thus
(a, S)GCTV(A') and (s,b)Ear(A), and hence (a, b)G cr,(A) v <rr(A'). Thus
((a, b))Ccrr(A) v cr,(A') and by Proposition 3.4 and its proof, crr(A UA' ) =
((a,b)). D

We observe that in many special cases the previous result yields a dis-
tributive sublattice of the lattice of congruences on B. The simplest case is
where p = q = r = Ko. Other such cases result when the cardinality of & is
"small".

We now define another collection of congruences on B. If M C2X and r is
an infinite cardinal number we set pr{M) = {(a, b)G 8(3F),: Ma = rMb for all
MEM}. Now if si = {M' C2X: p,(M')= p,(M)} then p,(M)= p(\JM) and
Ustf is the unique maximal collection ^ so that pri^) = p,(M). We shall fre-
quently assume that we are representing p,{M) by using this maximal collec-
tion as M.

PROPOSITION 3.6. If M C2X and r is an infinite cardinal number, then
p,{M) is a congruence on B and 8, Cpr(M)C8(2F)r.

PROOF. That p,{M) is a right compatible equivalence relation is clear. If
MEM, bEB, and (c, d) G pr{M)C8{&)r, then there is F G & with Mb CF.
Further | D(c, d) C\ F\ < r. Consequently Mbc = ,Mbd, and hence (bc,bd)E
p,(M). The containments are obvious. •

PROPOSITION 3.7. Let p,(M) and pr(M') be congruences of the type above
with M and M' maximal collections. Then p,(M)Cp,(M') if and only if
M'CM.
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PROOF. If M' CM then clearly pr(M)Cp,(M'). If M'EM'\M, since M is
maximal, there is a pair (a, b)E B x B so that Ma=rMb for each MEM but
M'a^.M'b. Consequently if M'itM then p,{M) ft p,(M'). •

PROPOSITION 3.8. The collection {pr(M): M C2X} is a distributive lattice of
congruences on B.

PROOF. From 3.7 it is easy to see that pr(M)v pr(M') = p,(M D M') and
pr(M)/\ pr(M') = p,(M U M'). (We do not claim that this supremum is the sup-
remum in the lattice of all congruences on B.) The distributivity follows. •

The next two results compare the p,(J<)'s and the pr(A)'s.

PROPOSITION 3.9. Let M C2X and assume it is the maximal collection for
the congruence p,(M). Let A E Scr(8F). Then p,(M)Cp,(A) if and only if
2XSA CM.

PROOF. Suppose pr(M)Ccrr(A). Let (a,b)Epr(M) and J E2X^A. Since
D(a, b)C,A it follows that Ja=rJb and hence JEM since M is maximal.
Conversely, suppose 2XXA CM. Let (a,b)Epr(M). It there is a set JCX\A,
\J\^r, and J CD(a, b), then by Lemma 2.6 there is a set Y CJ, | Y | = r so
that Va n yfc = 0 . Thus y £ ^ . Consequently D(a, b)C,A. •

PROPOSITION 3.10. Lef J C 2 X , r g ^ , and A £ Scr(^). Then
crr(A)Cpr(M) if and only if for each M E M, M CrX\A.

PROOF. Suppose mEM and M ft,X\A, i.e., | M n A | ^ r. Let
y C M n A with I y I = r. Since r^q there are a,bEB so that ya D Yb =
0 and a and b agree otherwise. Then (a, fe)E av(A) and (a, b)& p,(M). Thus
ov(A)£p,(./«). Conversely, if (a,b)Eo-,(A) then D(a, fc)C,A. Thus if ME
M we have M CrX\A C,X\D(a,b). Therefore Ma=,Mb and (a, b)E
pr(M). •

Although we do not know if all congruences on B can be described in
terms of those given here, one can routinely conclude some properties of quo-
tients of B. If p is any congruence on B then B/p is right simple and right can-
cellative, and any two elements of B/p have a common right identity.
Further, either B/p is a group or E(B/p) = 0 . If, in addition, « , S p < S(^),
then B/p is not left reductive.

We conclude with a simple example of a bounded Baer-Levi semigroup
B(X, p, q, SF) where the four types of congruences (for a given r) are different.

Let X = {1,2,3, • • •}, p = q = r = Ho = | X \, and let {A,: i = 1,2,3, • • •} be
a collection of pairwise disjoint subsets of X with | Af | = Mo for each i and
X = U 7=i A,. Let F, = U T-i A, and ^ = {Fn: n = 1,2,3, • • •}. It is clear that
S*,, is properly contained in S ^ ) ^ . Choose A CX with 0 < | A D At | < No for
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;ach i. Then \ A n Fn \ < Mo for each n and | A | = No. Consequently
A £ SCKO(^)

 a nd M ^ ) is a congruence on B = B(X, No, Ko, ^ ) . It is easy to
>ee that a-^A) is properly between SKO and S^)^- Now choose ^ = {A}.
From Propositions 3.9 and 3.10 it follows that PHJ^M) and cr^A) do not com-
pare. From Proposition 3.6 we know that SNoCpH(,(Jl)CS(^)Mo. Choose a, b G
B so that D(a,b) = A and Aa C\ Ab = 0. Then ( a , l i ) 6 « ( ^ and
[a, b) & PHJ^M). Clearly there are pairs (c, d) G p^(M), i.e., Ac and Ad differ
jy finitely many points, and | D (c, d) | = No. Consequently pHo(M)£ 5^. Hence
5«o, cr^A), PK, , ^ ) , and 5(^)K<, are distinct congruences in B.
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