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Abstract

We present a new algorithm which uses a cohomological approach to determine the groups of order
p", where p is a prime. We develop two methods to enumerate p-groups using the Cauchy-Frobenius
Lemma. As an application we show that there are 10494213 groups of order 29.
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1. Introduction

A central problem in attempting to determine the groups of order p", where p is
a prime, is that the number of such groups grows exponentially with increasing n.
Higman [6] and Sims [15] provide asymptotic estimates which show that the number
of groups of order p" is p^/^+o(^)_

The p -group generation algorithm ([9, 10]) is a practical algorithm to generate
descriptions of the groups of order p". Here we present an alternative which uses
cohomological techniques to do this task. Both algorithms produce a complete and
irredundant list of descriptions of the p -groups of a given order — that is, a represen-
tative of each isomorphism type is present and no two elements in the list have the
same isomorphism type. A central feature of both algorithms is that the isomorphism
problem is solved by explicitly computing certain orbits.

If we want simply to enumerate the groups of order p", we no longer need explicit
descriptions of the groups, but instead need only to determine the number of groups or
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192 Bettina Eick and E. A. O'Brien [2]

equivalently of orbits. We modify the cohomology algorithm to exploit the Cauchy-
Frobenius Lemma to count the number of orbits, and hence obtain a practical method
to enumerate p -groups. We also develop a variant of the p -group generation algorithm
to enumerate the groups of exponent-p class 2.

In a 1967 lecture, Sims outlined a method for enumerating p -groups, by stepping
down the lower exponent-/? central series and finding orbits of a second cohomology
group under the action of automorphisms. (We thank J. Neubiiser for drawing our
attention to a report of his lecture in [8].)

The problem of determining all groups of a given order was initiated by Cayley in
1854. A bibliography on group enumerations, determinations, and classifications is
provided by O'Brien in [13].

The p -group generation algorithm was used to determine the 2328 groups of order
128 (see [7]), the 56 092 groups of order 256 ([11]), and the groups of order dividing
36. Besche and Eick [1] developed algorithms to determine the groups of order m,
for a given integer m. Besche and Eick [2, 3] determined the non-nilpotent groups of
order at most 1000. Combining these results, we now have explicit descriptions for the
groups of order at most 1000 with one exception: those of order 512. O'Brien in [11]
showed that there are at least 8 445 538 such groups. Since existing computational
resources did not readily permit the determination of all of these groups, our initial
motivation was the development of methods to enumerate these.

The organisation of this paper is as follows. In Section 2 we consider computa-
tionally useful descriptions of p -groups. In Section 3 we introduce the cohomology
method to determine up to isomorphism the/?-groups of a given order; we also outline
the p-group generation method and compare the two algorithms. In Section 4 we
present enumeration variants of these algorithms. In Section 5 we discuss implemen-
tations of the algorithms. Finally, we report on an application which shows that there
are 10494 213 groups of order 512.

2. Describing/?-groups

A group G of order p" has a composition series with factors of order p, say
G = C\ > C2 > • • • > Cn E> Cn+i = {1}. If we choose g, e C, \ C1+1, then we obtain
a polycyclic generating sequence {g\,... , gn) of G. A central feature of a polycyclic
generating sequence is that every element of G may be written as a normal word
S? <?22 •••8n" w h e r e 0 < a,- < p. Further, (#, , . . . , gn) is a polycyclic generating
sequence of C,. Thus each polycyclic generating sequence determines a composition
series of G.

A polycyclic generating sequence (gu ... , gn) of G determines a (finite) power-
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commutator presentation of G with defining relations of the form

where all exponents fi(i,j, k) e {0,. . . , p — 1}. The given polycyclic generating
sequence determines the presentation uniquely. These presentations are important in
effective computation with /?-groups (see [16, Chapter 9]).

The lower exponent-p central series of G is the descending sequence of sub-
groups G = &i(G) > g*2(G) !>•••!> &C(G) > 0Pc+i(G) = {1}, where ^ ( G ) =
[^,_i(G), G]^,_i(G)pforr > 1. If c is the smallest integer such that &c+dG) = 1,
then G has exponent-p class c. A group with exponent-/? class c has nilpotency class
at most c.

Let Sf = (gi,... , gn) be a polycyclic generating sequence of G. If the composition
series determined by & refines the lower exponent-/? central series of G, then we assign
a weight wt to each generator g,; that is, u>, is the largest integer such that &W.(G)
contains gt. The corresponding power-commutator presentation is now weighted, a
useful feature for many applications; such a presentation can be constructed for a
p-group described in various ways.

3. Generating/?-groups

Let G be a finite p -group of exponent-p class c. A group H is a descendant of G
if H/£?c+i(H) is isomorphic to G. We say that H is an immediate descendant of G
if it is a descendant of G and has exponent-/? class c + 1.

Note that ^ 2 (G) = <J> (G). The rank d of the elementary Abelian p -group G/<£>(G)
is the cardinality of a minimal generating set of G and hence G is a d-generator
group. Since £?c+l(H) < £P2(H) = <£(#)> every descendant of G is also a rf-
generator group. Thus, by induction, every ^/-generator p -group is a descendant of
the elementary Abelian /?-group of rank d.

In this section we present two methods to construct /?-groups: the cohomology
algorithm and the well-known /?-group generation algorithm. In summary, both
compute power-commutator presentations for the immediate descendants of a finite
p -group.

3.1. The cohomology algorithm Let G be a group of order p" and exponent-/? class
c, and let h be a positive integer. We present a method to construct up to isomorphism
the immediate descendants H of G where \H\ = pn+h. A standard reference for
background material assumed here is Robinson ([14, page 315]).

3.1.1. Notation and background Let M be an elementary Abelian /?-group acted
on by G. Let Z2(G, M) be the set of all 2-cocycles of G with coefficients in M
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and let B2(G, M) be the subset of Z2(G, M) consisting of all 2-coboundaries. More
precisely:

Z2(G, M) ={(p : G x G -* M \

4>(b, c)(p(a, be) = <f>(ab, c)<p(a, b)c for all a, b, c € G},

B2(G, M) ={</> : G x G -> M \ <p € Z2(G, M) and there

exists a map G —>• M : g i-» mx with 0 (a , &) = mabm~bm^1}.

Setting (<l>i<t>2)(a, b) = <p\{a, b)4>2(a, b), we obtain that Z2(G, M) is an Abelian group.
Since M is an elementary Abelian p-group, Z2(G, M) is also elementary Abelian.
Then the second cohomology group H2(G, M) is Z2(G, M)/B2(G, M).

Each 2-cocycle <p e Z2(G, M) defines an extension E(<p) of G by M. This
extension can be viewed as the Cartesian product E(4>) = G x M on which a
multiplication is denned by the rule:

(gi. mi)(g2, m2) = (g\g2, <j>(gu g2)mfm2).

Observe that M(4>) = {(1, m) | w e M) is a normal subgroup of £($) isomorphic
toM. Note that (1, m)(g-n) = (1, wi?) form, n e M andg e G; that is, the conjugation
action of E((p) on M(0) coincides with the action of G on M. Further, for each such
extension E((p) we have an epimorphism \j/ : E(<p) —>• G : (g, m) H>- g with kernel

Two 2-cocycles are equivalent if they are in the same coset of B2(G, M). Two
extensions E(4>\) and E(<p2) are equivalent if 4>i and 02 are equivalent. It is well-known
that equivalent extensions are isomorphic; the converse is not necessarily true.

Clearly, the trivial 2-cocycle 1 : G x. G -> M : (g, h) \-+ 1 defines the split
sxtension £(1) of G by M and thus each 4> € B2(G, M) defines an extension E(<j>)
isomorphic to the split extension. Here, the converse is true - each split extension is
defined by a 2-cocycle in B2(G, M).

3.1.2. A computationally useful view of H2(G, M) We now restrict our attention
:o elementary Abelian p -groups M with trivial G-action, although most of the ideas
jresented below work for arbitrary G-modules M.

Let (gi , . . . , gn) be a poly cyclic generating sequence of G; we use the notation of
section 2 for the corresponding power-commutator presentation. Let (mi, . . . , mh)
)e a polycyclic generating sequence of M and let <p e Z2(G, M). Then ((gu 1 ) , . . . ,
[gn, 1), (1, mi),... , (1, mh)) is a polycyclic generating sequence of E(<p) and deter-
nines a unique power-commutator presentation of E{(j>) on these generators.

We now determine relations for this presentation. Clearly, [(1, my), (1, m,)] =
1,1) and (1, mk)

p = (1, 1) for 1 < / < j < h and 1 < k < h, since M(cf>) is
in elementary Abelian p-group; also [(1, m^), (g,, 1)] = (1, 1) for 1 < j < h and
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I < i < n, since E(<p) acts trivially on M(<j>). These relations are independent of
the 2-cocycle <f>. It remains to determine the relations corresponding to the powers
(#,, i y and commutators [(gj, 1), (gh 1)].

LEMMA 3.1. Let E(<p) be an extension of G by M, let & = (gi, ... , gn) be a
polycyclic generating set of G and let w(g{,... , gn) = Wi • • -ws be a word in
& U &-x. Then w((gu 1) (gn, 1)) = (w(gu . . . . gn), mw) where

mw — I I $(">*> ™k+l • • • Ws)<t>k € M,

and(pk := 4>(wk, wk
l)~l ifwk e Sf"1, and<pk := 1 ifwk £ S .̂

PROOF. We use induction on the length s of the given word. Clearly, the lemma is
true for the empty word. Assume it is true for the sub word v(g\,... , gn) := w2- • • ivs.

If wi = gi, a generator in Sf, then

t , 1), . . . , (gn, 1)) = (gh l)v((glt 1), . . . , (gn, 1))

i, ... ,gn),mv)

i,--- ,gn),4>(gi,v)mv)

= (w(gu... ,gn),mw)

as required, since <p(gi, v)mv = (p(wu w2 • • • ws)mv = mw.
If u;, = g~l, the inverse of a generator in &, then

W((gi, 1), . . . . (gn, 1)) - (gi, \TlV((gu 1), . . . , (gn, 1))

= (gT^'Pigi, g~l)~l)(v{gu . . . , gn), mv)

= (g7]v(gi< • • • . gn), <t>(g~\ v)<p(gi, g;xylmv)

= (w(gu... ,gn),mu)

as required, since <p(g~l, v)<p(gi, g~l)~lmv = (j>(u)i, w2 • • • ws)(j)(wu w^l)~lmv =
mw. The result follows. D

For example, consider w(gu... , gn) := ([gj,gi])~lgf+[iJ+i) • • • g^iJtn) corre-
sponding to a relator in the power-commutator presentation of G. By Lemma 3.1,
there exists an element XQ (<j>) := mw e M such that

W((gu 1), . . . , (gn, 1)) = (W(gl, ... , gn), XtJ ($)) = (1, JCy

We now compute the normal form of xi;- (<p) in the generators (m\,... , mh) of M,

say xtJ (4>) = mf( ' J>+I ) • • • m{(U-n+h). Then

[(gj, 1), (gi, 1)] = f l <**' l)mm TV1' ^)POJ'n+k)

k=j+l it=l
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is the relation of £(<£) of the desired type. Similarly, we compute elements xu(<j>) for
the power relations (gt, l)p and thus determine that

n h

k=i+l k=\

The exponents 8(i, j , I) of these relations depend on the corresponding relations
of G for / < n and on the elements xtj ((/>) for / > n. Therefore, if the pre-
sentation of G and the generating set of M are fixed, then the tuple X(<p) :=
Qci,i(0), Jtii2(0), ••• , *n,n(0)) defines the power-commutator presentation of E((p)
determined by ((#,, 1 ) , . . . , (gn, 1), (I, mi), . . . , (l,mA)).

By Lemma 3.1, the elements xtj (4>) are words in the images of <p. Thus E{<pi4>2)
has a power-commutator presentation defined by the tuple

Hence, we obtain a group homomorphism X : Z2(G, M) -> M x • • • x M : 0 (->•

LEMMA 3.2. Ler Z and B be the images under X of Z2(G, M) and B2(G, M),
respectively. Then H2(G, M) = Z/B.

PROOF. The kernel of X consists of those <p e Z2(G,M) with xu (</>) = 1 for all
i,j. Thus X((f>) defines a power-commutator presentation of the split extension of
G by M. Therefore E(4>) is equivalent to E{\), the extension of the trivial cocycle.
Thus <$> € B2(G, M) and so ker(X) < B2(G, M). Hence, Z/B = H2(G, M). •

Since, for computational efficiency, we represent/?-groups by power-commutator
presentations, it is most sensible to represent H2(G, M) explicitly as Z/B. Moreover,
we can view the elementary Abelian p -group M as a vector space over GF(p) and
this induces in turn an explicit description of Z and B as vector spaces over GF(/>).

3.1.3. Computing Z and B Wegner in [19] describes a practical algorithm to
compute Z/B, following a suggestion of Leedham-Green and Plesken. We include a
brief outline of this method for completeness.

To compute Z we must determine which tuples (xu, xh2,... , xn,n) 6 M x • • • x
M are in the image of X. Clearly, each such tuple defines a power-commutator
presentation of some extension H of G by M, but the order of H may be smaller than
| G\ \M \. We want to find the consistent presentations of this type - namely, those for
extensions of order | G \ | M \.

The consistency-enforcement algorithm of Vaughan-Lee [18] exploits the fact that
certain equations on products of elements are satisfied in a consistent power-commu-
tator presentation. We adapt his method by viewing the elements xu,... , xn,n as
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unknowns and write down a power-commutator presentation for a 'generic' extension
of G by M containing these unknowns. Then we evaluate these equations and obtain
a system of homogeneous linear equations in x M , . . . ,*„,„. Since xtj e M, we can
treat this system as one of homogeneous linear equations over GF(p) and determine
Z as the null space of the system.

To compute B, we consider the definition of B2(G, M). A 2-cocycle $ is in
B2(G, M) if there exists a mapping 8 : G -> M : g H-> mg such that <p{x, y) =
mxym~xm~l. But each mapping 8 : G -> M : g H> mg defines a 2-coboundary
via this formula. Thus we consider all such mappings 8 and compute X (</>) for the
2-cocycle <p defined by 8.

For each <5 there is a monomorphism G -*• E(<p) :£(-»• (g,mg). In particular,
the elements (g\, mgl),... , (gn, mgn) satisfy the relations of G. Thus we may insert
these elements (gi,mgi) = (g,, l)(l,mg.) in the relations of a power-commutator
presentation of G and then 'collect' the elements (1, mgi) to the left. By this process
we obtain the elements xtJ (<f>) as words in the elements (1, mg!).

To obtain a basis of B, we must compute the tuples ( x u , . . . , jcn,B) for all mappings
8 : G —>• M. For this purpose, we consider the elements mgi to be arbitrary elements
of M. Thus, instead of fixed elements mgl, we insert a basis of M in the relations of
G and so obtain a basis of B.

3.1.4. 77ie subset ofH2(G, M) corresponding to descendants An extension E(<f>)
of G by M is an immediate descendant of G if £'((^)/^2'c+1(£'((^)) = G. Observe
that E((p)/M((f)) = G. Since G has exponent-/? class c, we have {1} = ^ c +

£?c+i(E(<f>)/M(<P)) = &c+x{E(<t>))M{<t>)/M{cP). Hence, ^ + , ( £ ( 0 ) ) <
Thus £(0) is an immediate descendant of G if and only if M(</>) = £?c+\ (E(4>)).

Our aim is to find a description of those equivalence classes of 2-cocycles which
correspond to immediate descendants. To facilitate this, we assume that the given
power-commutator presentation of G is weighted. Let gr+i,... , gn be the generators
of G of highest weight c and so <^C(G) = {gr+u • • • , gn)- Then gj = 1 and
[gj > gi] = 1 for r + 1 < j < « and 1 < i < n.

LEMMA 3.3. Let E((f>) be an extension of G by M and let the power-commutator
presentation of G be weighted. Then E((j>) is an immediate descendant of G if and
only if {xu (0) | r + 1 <i < n and 1 < j < i) = M.

PROOF.

= [&c(E(<p)), E{<t>)}&c{E(<t>))p

= ([(£,, 1), (gj, 1)1 (gi, I ) ' I r + 1 < i < R and 1 < j < i)

= (d, Jcy (0)), (1, x,,,(0)) | r + 1 < i < n and 1 < > < i>

= «l,xfV(</>)) \r + 1 < i < « and 1 < j < i).
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Since E(<p) is an immediate descendant of G if and only if ^ c + i (£(<£)) = M(<p), the
result follows. D

Hence, we can decide readily from X(cf>) whether or not E{<f>) is an immediate
descendant of G. By Lemma 3.3, we are interested only in extensions E(4>) of G
by M where no maximal subgroup of M contains all of the elements xitj (<p) for
r + 1 < i < n and 1 < j < i. Let C = Z/B. We introduce the following notation
for maximal subgroups U of M.

Z(U) := (X(0) 6 Z | xtJ ((/>) G U for r + 1 < i < n and 1 < ; < i},

C(U) :=Z(U)B/B.

Then the subset of C containing equivalence classes of 2-cocycles which correspond
to immediate descendants of G is given by

D:=C\ ( J C{U).

3.1.5. Isomorphism classes of immediate descendants Two non-equivalent 2-
cocycles in D may lead to isomorphic extensions. Hence, we determine the subsets
of D that correspond to distinct isomorphism types of immediate descendants. This
is a special case of the method described in Besche and Eick [1, Section 3.3]; we give
only an outline here.

First, we define an action of A := Aut G x Aut M on C. Let (a, v) e A and let
<p : G x G ->• M be an element of Z2(G, M). Then we define

4>ia-v) :GxG^M:(x,y)h+ {xa'\ ya~')\

This yields an action of A on Z2(G, M) which leaves B2{G, M) setwise invariant.
We obtain an induced action of A on H2(G, M) and thus on C.

Next, we define an equivalence relation between extensions. Two extensions
E(<(>i) and E(<p2) of G by M are strongly isomorphic if there exists an isomorphism
i : £(0i) -> E(<f>2) with M(4>xy = M{<p2). We are interested in this equivalence
because of the following result of Besche and Eick [1, Theorem 3.6].

THEOREM 3.4. The orbits of A on H2(G, M) are in one-to-one correspondence to
the strong isomorphism types of extensions of G by M.

Let £(0i) and E(<p2) be two extensions of G by M which are immediate descendants
of G. Then M(0<) = ,^+1 (£(<£,)) for i = 1, 2. Thus the embedding of M in each
of these extensions is a subgroup which is invariant under isomorphisms; that is, for
each isomorphism i : E(4>\) -+ E((f>2) we have that M(0i)' = ^c+i(E((pi)y =
.i^+i(£•(</>!)') = ,^c+i(2s(02)) = M(<f>2). Hence, strong isomorphism is equivalent
to isomorphism for immediate descendants. We obtain the following corollary to
Theorem 3.4.
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COROLLARY 3.5. Two immediate descendants E((j>\) and E(<f>2) are isomorphic if
and only if the cosets <piB2(G, M) and </>2B

2(G, M) are contained in the same orbit
under the action of A on H2(G, M).

3.1.6. Listing the distinct isomorphism types We obtain the list of isomorphism
types of immediate descendants of G having order p"+H as the extensions of G by
M defined by orbit representatives in D c C = H2(G, M) under the action of
A - Aut G x Aut M.

Since C is a subgroup of the /-fold Cartesian product of M, we may view C as
a subspace of the (//z)-dimensional vector space over GF(p). The action of A on
Z2(G, M) and thus on C is linear. Therefore we can represent A as a matrix group
acting on C. To apply Lemma 3.4, we compute orbits of the vectors in D under the
action of a matrix group.

3.1.7. A reduction of the orbit computation Consider the elements of C as / x h
matrices. Then the action of Aut M on C is the natural action of GL(h, p) by
matrix multiplication from the right. Hence, for each element in C we can compute
a 'standard representative' of its Aut M orbit by Gaussian elimination, and so we do
not need to list explicitly the Aut M orbits of C. To determine the Aut G x Aut M
orbits on C, we now compute the Aut G orbits of the Aut M orbits on C.

3.2. The p -group generation algorithm We now briefly outline the p -group
generation algorithm of O'Brien [10]. Let G be a ^-generator p-group of order p"
and exponent-p class c and let F be the free group on d generators. Then G = F/R
for some R. Assume we wish to construct the immediate descendants of G having
order pn+h for fixed h > 0. First, we compute a power-commutator presentation for
the maximal central, elementary Abelian Frattini extension of G. This extension G*
is the p-covering group of G and is defined by G* = F/[R, F]RP. Thus, G* has a
normal subgroup M where G*/M = G and M is elementary Abelian, central and
contained in the Frattini subgroup of G*. The subgroup M is the p -multiplicator of G.
Further, G* has exponent-/? class at most c+\ and iV := kc+l (G*) < M is the nucleus
of G. Now, G* has the property that every immediate descendant of G is a factor group
G* I U, where U is a supplement of N in M. Also, Aut G, the automorphism group of
G, induces a linear action on M and the orbits of Aut G on supplements of index ph

in M to N are in one-to-one correspondence with isomorphism class representatives
of immediate descendants of G having order p"+h.

3.3. A comparison of the two algorithms In both cases, isomorphism classes
of immediate descendants are obtained by computing certain orbits and taking a
representative of each orbit. The central difference between the methods lies in the
objects permuted.
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Using the cohomology method, we determine orbits of vectors under the action of
Aut G x Aut M or orbits of Aut M orbits under the action of Aut G; using p -group
generation, we determine orbits of subspaces under the action of Aut G.

This suggests that the cohomology algorithm will not yield a significantly better
approach to the determination of p -groups than the p -group generation algorithm.

One important advantage of the cohomology algorithm is that it may be modified
easily to a general enumeration method; such a modification for the p -group generation
algorithm is more complex and has been developed only for exponent-/? class 2 groups.

4. Enumeration variants of the algorithms

Recall that isomorphism classes of immediate descendants are obtained by comput-
ing certain orbits and taking a representative of each orbit. Their explicit computation
is the practical limitation in applying these algorithms.

Consider the task of enumerating the groups of order p". We no longer need
explicit descriptions of the groups, but instead need only to determine the number of
orbits. Hence, we can use the Cauchy-Frobenius Lemma (see, for example, Robinson
[14, page 42]) to count the number of orbits.

LEMMA 4.1. Let G be a finite group acting on a finite set Q. Let ^ be a set of
conjugacy class representatives of G and let cl(g) be the conjugacy class of g e G.
Let Fixg(£2) = [a e Q | ag = a}. The number k of orbits ofGonQ is given by

k = 7F? E

4.1. Using the cohomology method to enumerate p -groups It is easy to incor-
porate this observation into the cohomology algorithm of Section 3.1. Recall that C
is a vector space defined over GF(p) and D is a subset of C. We want to compute the
number of orbits of A = Aut G x Aut M in its action on D. Computing the conjugacy
classes of A reduces to the separate computation of conjugacy classes of Aut G and
Aut M = GL(h,p). Let a e A and define Fa := Fixfl(Q. Then |Fixa(D)| can be
computed using the following formula.

|Fixa(D)| = \Fa \Fixa(Uu<MC(U))\

= |Fa|-|Fixa(tWC(£/))|

= \Fa\~\Fan(Uu<MC(U})\

Since A acts as a matrix group on D, the subspace Fa of C can be computed as the
nullspace of Ma — I, where Ma is the matrix representation of a on C. Variants of
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Gaussian elimination can be used to compute intersections of the subspaces Fa D C( U).
It is more difficult to compute the cardinality of the union of subspaces of the form
Fa n C( U), since this is not usually a subspace; we use a recursive procedure and the
formula | W U V\ = | W\ + \ V\ - | W n V\.

4.2. Enumerating exponent-/? class 2 groups If our goal is only to enumerate the
groups of exponent-/? class 2, we can simplify details of the calculations. In practice,
if our motivation is to obtain a good estimate for the number of groups of order /?",
then this limitation is not significant, since 'almost all' p-groups have class 2 [6, 15].

Since the conjugacy class of an element of GL(m, p) is determined by its (primary)
rational canonical form, it is an easy task to write down representatives and lengths
for the conjugacy classes of GL(m, p). Hence, we can readily compute the conjugacy
class information required for the relevant automorphism group.

4.2.1. Using p -group generation to enumerate class 2 groups If G is a ̂ -generator
elementary Abelian p -group, then its p -multiplicator M has rank d+(*) and coincides
with the nucleus, N.

To apply the Cauchy-Frobenius Lemma to count the number of immediate descen-
dants of G, we must now determine the number of subspaces of a particular dimension
of M which are fixed under the action of an element of Aut G on M. How do we
calculate this?

We first consider the following problem. Let A be an Abelian p-group of order p".
How many subgroups of A have order/?*?

Let A be isomorphic to Ylt>i C(p')a'- Define a, = a, 4- ai+y + • • •. Then the
partition {ot\ > a2 > • • •) of n specifies the isomorphism type of A. Observe that
|£2iA/ft,_iA| = pa(i)- If B < A, then the type 0 of B is (ft > ft > • • •), where
Pi < oi i for all i.

Let (£) be the number of ^-dimensional subgroups of an n-dimensional vector
space over GF(/>).

LEMMA 4.2 (Birkhoff [4]). Letf(a, fi,p) denote the number of subgroups of type
0 in the finite Abelian p-group of type a. Then

7>f

Hence, the number of subgroups of A having order pk is Ylef (a> P> P) where 0
runs over the dual of each restricted partition of k.

Clearly, this enables one to count the number of subgroups of a given order in any
finite Abelian group, or the number of submodules of a given order in a finite module
over any principal ideal domain. When the principal ideal domain is the polynomial
algebra GF(q)[x], where q = pe, the question may be paraphrased as follows.
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Let g be an element of GL(w, q) and let V denote the vector space on which this
group naturally acts. How many g-invariant subspaces of dimension k does V have?

Of course, the answer depends on g and, more precisely, on the conjugacy class
of g in GL(«, q), which may be identified by giving the distinct irreducible factors
/ i , . . . ,fr of the characteristic polynomial of g and the numbers n,j of the inde-
composable blocks with characteristic polynomial / / in the (primary) rational normal
form of g.

Write vu = «,v + n,v+) -\ ; then n, = ]T\ vu = l ] ; ; n , j . Let v, be the
partition of «, so defined: namely,

Then V is a direct sum of subspaces V/ where

Vt = {ve V | vf,(gy = 0}.

How do we count the ^-invariant subspaces of dimension ki Let S = (Si,... , 8r)
range over all sequences of non-negative integers such that k = ^ ( . St deg(/,) and
<5, < /I,- for f = 1 , . . . , r. For each such S = (Si,... , Sr), we first count the number
of (g)-submodules of Vt having composition length St. We next form the product of
these values over i, and finally we sum the products over each S.

How do we compute the number of (g)-submodules of V/ with composition length
Sj? Let y =? (yi > y2 > • • •) be a partition of 5, such that Yj < vtj for ally. Then the
number of (g)-submodules of Vt of isomorphism type y is / (v,, y, pdee(fi)).

In summary, the number of ^-invariant subspaces of dimension k is

5. Implementations

GAP 4 [17] provides most of the underlying machinery needed to implement the
cohomology algorithm and its enumeration variant. In particular, GAP 4 can compute
the explicit descriptions of C and D and the matrix action of A on C. Using GAP 4b3
on a 400Mhz Pentium Pro machine under Linux, it takes approximately 20 minutes
of CPU time to compute the information of Table 1.

We also implemented the enumeration variant of p -group generation in MAGMA
[5]. Our implementation counts: the subgroups of an Abelian p-group; given g e
GL(d, q), the number of ^-invariant subspaces of a given dimension; the number of d-
generator p -groups of exponent-p class 2. Using MAGMA V2.4 on a Sun UltraSPARC
Enterprise 4000 server, it takes approximately 2 minutes of CPU time to compute the
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TABLE 1. Number of d-generator groups of order 2" and exponent-p class 2

203

d
1
2
3
4
5
6
7
8
9

n
2

1

Total || 1

3

3

4

3
4

7

5

1
15
6

22

6

28
54
7

89

7

15
604
151
9

779

8

4
3 566

26065
433
10

30078

9

1
6 709

5 829109
2948 829

1112
12

8 785 772

10

3 566
378 628 831

47 698 016406
726 843 973

2933
13

48 803495 722

TABLE 2. Number of groups of order 512 having exponent-/? class at least 3

Order
25

26

27

28

k
2
27
263

12105

Total ||

t
9

30759
218 225

1459447
1708440

information of Table 1. It is particularly easy to extend these results. For example,
we counted the number of exponent-/? class 2 groups of order at most p10 for primes
p at most 7; see [13] for results.

6. An application

Our primary application is the enumeration of the 2-groups of exponent-/? class 2
and order dividing 1024. The results are recorded in Table 1.

We used the variant of the cohomology algorithm to enumerate the remaining
groups of order 512: those having exponent-p class at least 3. The algorithm takes
as input both a power-commutator presentation for the given p -group and a descrip-
tion of its automorphism group. For each relevant group of order dividing 256, its
automorphism group was computed using an extension developed by the authors of
O'Brien's algorithm [12].

For each relevant order 2", we record in Table 2 the number k of groups of this
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order having immediate descendants of order 512 and the total number t of immediate
descendants of these k groups. Hence, the number of groups of order 512 is 10 494 213.

Since the figures obtained agree with those already known for the groups of order
dividing 256, it provides some assurance that our implementations are correct. Ours
is the first enumeration, independent of p -group generation, of the groups of order
256 and so it is a cross-check for the results of [11].
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