In 1959, Professor N. A. Court [2] generated synthetically a twisted cubic C circumscribing a tetrahedron T as the poles for T of the planes of a coaxal family whose axis is called the Lemoine axis of C for T. Here is an analytic attempt to relate a normal rational curve r^n of order n, whose natural home is an n-space $[n]$, with its Lemoine $[n—2]$ L such that the first polars of points in L for a simplex S inscribed to r^n pass through r^n and the last polars of points on r^n for S pass through L. Incidentally we come across a pair of mutually inscribed or Moebius simplexes but as a privilege of odd spaces only. In contrast, what happens in even spaces also presents a case, not less interesting, as considered here.

1. Polarity for a simplex

(a) If P be a point (p_0, p_1, \ldots, p_n) referred to a simplex $S = A_0A_1\cdots A_n$, the first polar of P for S is the primal $(P) \equiv \sum(p_i|x_i) = 0$ of order n, and the last or nth polar is the prime $p \equiv \sum(x_i|p_i) = 0$ (i = 0, 1, \ldots, n) as a well known fact. Thus: If the polar prime $q \equiv \sum(x_i|q_i) = 0$ of a point $Q(q_1)$ for S pass through P; i.e., $(p_i|q_i) = 0$, (P) passes through Q. Or, (P) is the locus of the poles for S of the primes through P.

(b) Let the secant through P to an edge A_iA_j of S and its opposite $[n—2]$ a^i meet the edge in a point P_{ij}, and Q_{ij} be the point on this edge as the harmonic conjugate of P_{ij} w.r.t. the pair of the vertices A_i, A_j. That is, $H(A_iA_j, P_{ij}Q_{ij})$ or $(A_iP_{ij}A_jQ_{ij}) = -1$. The $\binom{n+1}{2}$ points Q_{ij} then all lie in the polar prime p of P for S [4; 7—11]. Conversely, if a prime p cuts A_iA_j in Q_{ij} and P_{ij} be such that $H(A_iA_j, P_{ij}Q_{ij})$, the $\binom{n+1}{2}$ primes $a^i|p_{ij}$ concur at the pole P of p for S.

Hence, if p pass through A_i, Q_{ij} and therefore P_{ij} both coincide at A_i which then becomes the pole of p for S. Or, the pole of a prime through a vertex of S for S lies at this vertex.

* Attached at present to the College of Science, University of Baghdad, as a Visiting Professor for the Academic year 1965—1966.
2. Normal rational curve

(a) The normal rational curve (n.r.c.) \(r^n \) is generated by the corresponding primes of \(n \) related pencils whose \(n \) vertices \([n-2]\)'s form its chords [14]. As the prime \(p \) in 1(b) varies in a pencil cutting the \(n \) edges \(A_iA_j \) of the simplex \(S \) through its vertex \(A_i \) in the \(n \) points \(Q_{ij} \), the \(n \) corresponding primes \(a^iP_{ij} \) of the \(n \) pencils with vertices as the \([n-2]\)'s \(a^i \) of the prime \(a^i \) of \(S \) opposite \(A_i \) generate \(r^n \) as the locus of the poles of primes \(p \) of the given pencil for \(S \). From the symmetry of the result follows the following:

Theorem 1. The locus of the poles of the primes of pencil for a simplex \(S \) in \([n]\) is an n.r.c. \(r^n \) through its vertices.

(b) Conversely we may have the following:

Theorem 2. The polar primes of the points of an n.r.c. \(r^n \) circumscribing a simplex \(S \) for \(S \) form a coaxal family.

Proof 1. Following Court [2], we can prove synthetically the proposition by induction. For it is true in plane \((n = 2)\) and solid \((n = 3)\).

Proof 2. Let \(r^n \) be represented parametrically by the \(n+1 \) coordinates \(x_i = 1/(k-u_i) \) of a point \(P \) on \(r^n \), \(k \) being the parameter [14; p. 220]. The polar prime \(p \) of \(P \) for \(S \) by 1(a) is

\[
\sum (k-u_i)x_i = 0, \text{ or } k \sum x_i - \sum u_ix_i = 0.
\]

This equation shows that \(p \) passes through the \([n-2]\) \(L \) common to the 2 primes: \(\sum x_i = 0, \sum u_ix_i = 0 \), thus proving the proposition.

Remark 1. Theorem 1 could be proved by taking the vertex \([n-2]\) of the pencil as \(L \) above and deduce the parametric equations \(x_i = 1/(k-u_i) \) of the \(r^n \).

Definition. \(L \) is said to be the Lemoine \([n-2]\] of \(r^n \) for the simplex \(S \).

Theorem 3. Any \(n+3 \) general points in \([n]\) determine an n.r.c. \(r^n \) in \(\binom{n+3}{2} \) ways by choosing any \(n+1 \) of them to form a simplex inscribed to it thus giving us \(\binom{n+3}{2} \) Lemoine \([n-2]\)'s, one for each simplex.

Proof. Theorem 2 tells us that an \(r^n \) is determined by \(n+3 \) points, \(n+1 \) forming a simplex \(S \) and the other two points being the poles for \(S \) of a couple of primes through the Lemoine \([n-2]\) of \(r^n \) for \(S \).

3. Polar and Cevian quadrics

The polar quadric of a point \(P \) on an \(r^n \) circumscribing a simplex \(S \) with coordinates \(x_i = 1/(k-u_i) \) for \(S \) is
Simplex inscribed in a normal rational curve

(ii) \[\sum (k-u_i)(k-u_j)x_ix_j = 0 \]

or

\[k^2 \sum x_ix_j - k \sum (u_i+u_j)x_ix_j + \sum u_iu_jx_ix_j = 0, \]

showing that it belongs to a special net [5] determined by the 3 quadrics:

\[\sum x_ix_j = 0, \sum (u_i+u_j)x_ix_j = 0, \sum u_iu_jx_ix_j = 0. \]

The cevian quadric [10] of \(P \) for \(S \) touching the edges of \(S \) at the feet thereat of its bicevians through \(P \) is

\[\sum (k-u_i)^2x_i^2 - 2 \sum (k-u_i)(k-u_j)x_ix_j = 0, \]

or,

\[4 \sum (k-u_i)(k-u_j)x_ix_j - (\sum k-u_i)^2 = 0 \]

showing that it too belongs to a special net, and has ring contact with the corresponding quadric of the net (ii) along the polar prime \(p \) (i) of \(P \) for \(S \). Thus we have

Theorem 4. The polar as well as cevian quadrics of the points of an n.r.c. \(r^n \) circumscribing a simplex \(S \) for \(S \) belong respectively to two special nets such that the pair of quadrics corresponding to a point \(P \) on \(r^n \) have ring contact along the polar prime \(p \) of \(P \) for \(S \).

4. Lemoine axes

Theorem 5. The Lemoine \([q-2]\)'s of the n.r. curves in the \([q]\)'s of a simplex \(S \) in \([n]\), which are projections therein of an n.r.c. \(r^n \) circumscribing \(S \) from the opposite \([n-q-1]\)'s, all lie in the Lemoine \([n-2]\) \(L \) of \(r^n \). In particular, the Lemoine axes of the cubic projections of \(r^n \) in the solids of \(S \) from the opposite \([n-4]\)'s and the Lemoine points of the conic projections of \(r^n \) in the planes of \(S \) from the opposite \([n-3]\)'s lie in \(L \).

Proof. The polar prime \(p \) of a point \(P \) for simplex \(S \) in \([n]\) passes through the polar \([q-1]\) \(p_q \) of the projection \(P_q \) of \(P \) in a \([q]\) of \(S \) from its opposite \([n-q-1]\) for its \(q \)-simplex in this \([q]\). If \(p \) varies in a pencil through an \([n-2]\) \(L \), \(p_q \) too varies in a pencil through the \([q-2]\) \(L_q \) which is a section of \(L \) by the \([q]\). Thus \(P_q \) traces an n.r.c. \(r^q \), as a projection of \(r^n \) traced by \(P \) from the chordal \([n-q-1]\), having Lemoine \([q-2]\) as \(L_q \).

Conversely we have

Theorem 6. If the Lemoine \([q-2]\)'s of certain n.r.c.s. in the \([q]\)'s of a simplex \(S \) in \([n]\) all lie in an \([n-2]\) \(L \), every such \(r_q \) is then the projection of an \(r^n \) circumscribing \(S \) from its \([n-q-1]\) opposite its \([q]\) of the \(r^q \).
5. First polars

THEOREM 7. The $n-1$ first polars for a simplex S in $[n]$ of any $n-1$ independent points determining an $[n-2]$ L determine or have an n.r.c. r^n common such that the first polar of any point of L for S passes through r^n.

PROOF. The first polar of a point for a simplex in $[n]$ is a primal of order n and dimension $n-1$, and contains the $\binom{n+1}{2}$ $[n-2]$'s of S once, the $\binom{n+1}{3}$ $[n-3]$'s twice, \ldots, the $\binom{n+1}{r}$ $[n-r]$'s $(r-1)$-times, \ldots and $\binom{n+1}{n-2}$ edges of S $(n-1)$-times. Thus the intersection of the first polars of 2 points for S is of dimension $n-2$ but order $n^2-\binom{n+1}{2}=\binom{n}{2}$, that of 3 independent points is of dimension $n-3$ but order $n\binom{n}{2}-2\binom{n+1}{3}=\binom{n}{3}$, \ldots, that of r independent points is of dimension $n-r$ but order $n\binom{n}{r-1}-(r-1)\binom{n+1}{r}=\binom{n}{r}$, \ldots and that of $n-1$ independent points is of dimension 1 but order $\binom{n}{n-1}=n$.

THEOREM 8. L of the preceding theorem is the Lemoine $[n-2]$ of the r^n for the simplex S.

PROOF. Let us take L to be the $[n-2]$ given by the pair of linear equations: $\sum x_i=0$, $\sum u_i x_i=0$, and P be a point (p_0, p_1, \ldots, p_n) in L such that $\sum p_i=0=\sum u_i p_i$. Now the first polar of P is $(P)\equiv \sum (p_i x_i)=0$ which obviously passes through the r^n given by the coordinates $x_i=1/(k-u_i)$ of any point on it because of the two conditions satisfied by P. Hence, by the definition of the Lemoine $[n-2]$ of an r^n, follows the theorem.

6. Tangents

THEOREM 9. The meets of the primes a^i of a simplex S in $[n]$ with the tangents, at its opposite vertices A_i, of an n.r.c. r^n circumscribing S are the poles of the $[n-2]$ projections therein, of the Lemoine $[n-2]$ L of r^n for S from A_i, for the respective $(n-1)$-simplexes of S.

PROOF. The equations of the tangent line of an n.r.c. r^n at any point with coordinates $x_i=(k-u_i)^{-1}$ on it are given by
\[
0 = \begin{pmatrix}
x_0 & \cdots & x_i & \cdots & x_n \\
(k-u_0)^{-1} \cdots (k-u_i)^{-1} \cdots (k-u_n)^{-1} \\
(k-u_0)^{-2} \cdots (k-u_i)^{-2} \cdots (k-u_n)^{-2}
\end{pmatrix}
\]
following the notations of Professor T. G. Room [14]. To find the tangents at the vertices of the simplex S of reference, we may write (iv) as
Simplex inscribed in a normal rational curve

\[\begin{pmatrix} x_0(k-u_0)^2 & \cdots & x_i(k-u_i)^2 & \cdots & x_n(k-u_n)^2 \\ (k-u_0) & \cdots & (k-u_i) & \cdots & (k-u_n) \\ 1 & \cdots & 1 & \cdots & 1 \end{pmatrix} = 0 \]

and put \(k = u_i \) in (v) to find one at the vertex \(A_i \) of \(S \). Thus the tangent of \(r^n \) at \(A_i \) is given by the equations

\[x_0(u_i-u_0) = \cdots = x_{i-1}(u_i-u_{i-1}) = x_{i+1}(u_i-u_{i+1}) = \cdots = x_n(u_i-u_n) \]

meeting the opposite prime \(x_i = 0 \) of \(S \) in the point \(A'_{i} \) whose \(n \) coordinates other than \(x_i \) are then \(x_j = (u_i-u_i)^{-1} \).

The equation of the \([n-2]\) projection in the prime \(x_i = 0 \) of \(S \), of the Lemoine \([n-2]\) of the \(r^n \) for \(S \) from the opposite vertex \(A_i \) is found to be \(\sum_{j \neq i} (u_i-u_j)x_j = 0 \) showing it to be the last polar \((1a)\) of \(A'_i \) for the \((n-1)\)-simplex of \(S \) in the prime under consideration.

Remark 2. \(r^n \) being the locus (Theorem 1) of the poles, for \(S \), of the primes through \(L \), \(A_i \) being the pole of the prime \(LA_i \) for \(S \) \((1b)\) and the tangent of \(r^n \) at \(A_i \) being the limit of the chords of \(r^n \) through \(A_i \), the Theorem 9 follows immediately from the definition of the pole and polar for a simplex \((2; 4; 7-11)\).

Theorem 10. The \(n \) tangents of the \(n \) \(r^n_{n-1} \) projections of an \(n.r.c. \) \(r^n \) circumscribing a simplex \(S \) in \([n]\), in its \(n \) primes through a vertex \(A_i \) of \(S \) from the opposite vertices, at their common point \(A_i \) meet its \(n \) opposite \([n-2]\)'s in the \(n \) points \(A'_{ij} \) which form a Cevian \((n-1)\)-simplex of the \((n-1)\)-simplex of \(S \) opposite \(A_i \) for the meet \(A'_{i} \) of its prime \(a^i \) with the tangent of \(r^n \) at \(A_i \) \([10]\).

Proof. The tangent of the n.r.c. \(r^{n-1} \) projection of \(r^n \), in the prime \(x_i = 0 \) of \(S \) from the opposite vertex \(A_j \), at the vertex \(A_i \) meets the opposite \([n-2]\) \(a^{ij} \) \((1b)\) in the point \(A'_{ij} \) whose coordinates referred to \(S \) are \(x_i = 0 = x_j, \ x_k = 1/(u_i-u_k) \) for all values of \(k \) other than \(i, j \) \((7a)\). Thus \(A_j, A'_{i}, A'_{ij} (\neq A'_{i}) \) are collinear.

Remark 3. In view of Remark 2, Theorem 10 can also be deduced from the definition of the pole and polar for a simplex \([2]\).

7. Even spaces

If we put down the \(n+1 \) coordinates \((6a)\) of the meet \(A'_{i} \) of a prime \(a^i \) of the simplex \(S \) of reference with the tangent of an n.r.c. \(r^n \) circumscribing \(S \) at its opposite vertex \(A_i \) as the \(i \)th row of a matrix \(M \) \((i = 0, \cdots, n)\), we find \(M \) to be skew symmetric such that its determinant \(|M| = 0\), thus showing that the \(n+1 \) points \(A'_{i} \) are co-primal if \(n \) is even. Hence follows the following:
Theorem 11. The $2m+1$ meets of the $2m+1$ primes of a simplex S in $[2m]$ with the tangents of an n.r.c. r^{2m} circumscribing S at its opposite vertices all lie in a prime which coincides with the Lemoine axis of a triangle for a conic circumscribing it when $m = 1$ [11].

8. Odd spaces

Theorem 12. The $2m$ meets of the $2m$ primes of a simplex S in $[2m−1]$ with the tangents of an n.r.c. $r^{2m−1}$ circumscribing S at its opposite vertices form another simplex S' Moebius or mutually inscribed with S [1—3; 6; 12].

Proof. The first minor of a skew symmetric matrix obtained by crossing its i^{th} row and i^{th} column is also skew symmetric. Hence if we substitute the $n+1$ coordinates $x_i = 1, x_j = 0$ (for all $j \neq i$) of a vertex A_i of a simplex S in the ith row of the matrix M of the preceding section, we find $|M| = 0$ thus showing that A_i lies in the prime determined by the n points A'_i if n is odd.

Thanks are due to the referee for the present presentation of the paper.

References

Indian Institute of Technology, Kharagpur
and
College of Science, University of Baghdad