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Localized drag modification in a laminar
boundary layer subject to free-stream travelling
waves via critical and Stokes layer interactions
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Perturbation of the laminar boundary layer by free-stream travelling waves was shown
to produce highly-localized skin friction modification via steady streaming. The forced
boundary layer flow was calculated numerically and studied as a function of the phase
speed, frequency and amplitude of the perturbations. Upstream-travelling waves always
produced negative streaming, whereas downstream-travelling waves produced positive or
negative streaming that varied with forcing strength and streamwise location. The sign of
the resultant streaming was explained in terms of the inclination of the induced velocity
modes, which evolved spatially in response to the streamwise variation and overlap of the
Stokes and critical layers.
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1. Background

1.1. Steady streaming

The ability of zero-mean harmonic oscillations with frequency ω̂ and wavenumber k̂ to
induce a mean flow via nonlinear advection is often referred to as steady streaming. This
streaming can occur in the presence or absence of a background mean flow, and generally
manifests itself in the vicinity of a solid boundary. The nature of the streaming can be
characterized by the phase speed of the perturbation, ĉ = ω̂/k̂. Temporal waves represent
the limit of infinite phase speed, k̂ → 0 and ĉ → ∞, whereas spatial waves represent the
zero phase speed limit, ω̂ → 0 and ĉ → 0. Early studies on streaming focused largely on
the temporal wave limit, in the absence of any background flow, in which case a net flow is
induced by advection within a thin layer of fluid near the wall, known as the Stokes layer.
For a fluid with kinematic viscosity ν̂, the Stokes layer is characterized by the length scale
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Δ̂ =
√

ν̂/ω̂. The advection that produces the net flow can be conceived as the result of a
Reynolds stress, in which the average nonlinear interaction of velocity fluctuations results
in a net transport. For a modern review, see Riley (2001) and the book-length treatment in
Telionis (1981).

While classical streaming analysis initially concentrated on situations with no mean
background flow, this focus eventually shifted to steady streaming in the presence
a background flow in the form of the canonical laminar boundary layer with mean
free-stream velocity Û and characteristic length scale �̂. In this case, in addition to the
temporal and spatial waves described above, the intermediate travelling wave perturbations
can be classified as either subcritical, with phase speed greater than the free-stream
velocity, |ĉ/Û| > 1, or critical, with phase speed less than the free-stream velocity,
|ĉ/Û| < 1.

Choi, Sreedhar & Stern (1996) reported asymptotic and numerical solutions for
the forced boundary layer equations with free-stream perturbations involving temporal,
spatial and travelling waves, and noted significant differences among the three types of
perturbations. Temporal perturbations produced a relatively small magnitude of streaming
and a simple modification to the mean velocity profile that was captured well by asymptotic
techniques. Previously, Lighthill (1954) proposed an asymptotic solution of the unsteady
momentum equations in the limit of small temporal perturbation amplitudes, ε, measured
relative to the free stream. He closed the system of leading- and second-order momentum
equations using the Kármán–Pohlhausen representation of the mean velocity profile and
obtained solutions for the streaming in the limit of small and large Strouhal numbers,
St ≡ ω̂�̂/Û. The profile of velocity fluctuations near the wall exhibited an overshoot in
amplitude, above the amplitude of the forcing, and a minimum in phase with respect to
the free stream at a wall-normal location ŷs ≈ 4

√
2Δ̂, which was originally reported by

Richardson & Tyler (1929) and often called ‘Richardson’s annular effect’. Later, Creff,
Andre & Batina (1985) noted that the overshoot can appear in developing flows also, and
was particularly strong in the developing region of a duct. The velocity overshoot is a
consequence of the phase mismatch between the pressure force acting at the wall and
momentum fluctuations of the fluid that have diffused some small distance away from the
wall, resulting in an in-phase acceleration of the fluid (see the discussion in Panton (2013)
and more detailed analysis below in § 3).

However, Choi et al. (1996) noted that the streaming behaviour for spatial and
travelling waves was significantly more complex than the case of temporal forcing.
Spatial waves were observed to produce a significantly stronger streaming response,
such that the streaming could no longer be considered a small perturbation to a base
flow, and thus asymptotic methods were insufficient to describe the resulting flow field.
And, as expected, travelling waves bridged the two extremes; they behaved similarly to
temporal waves in the limit of high phase speeds, and showed the complex behaviour of
spatial waves at lower phase speeds. This complex low-phase-speed behaviour was also
noted by Hoepffner & Fukagata (2009) and Mamori, Fukagata & Hoepffner (2010) in
computations of a forced channel flow with travelling wave, suction and blowing at the
wall. They reported significant modifications to the mean drag for perturbations with
non-dimensional phase speeds 0 < ĉ/Û < 1 – in other words, for perturbations whose
phase speeds matched the local mean velocity of the base flow. This special range of phase
speeds results in the generation of a critical layer, a phenomenon not widely discussed
in the classical streaming literature but fundamental to the problem of transition to
turbulence.
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1.2. Critical layers and transition
Similar to studies on streaming, transition studies also focus on the introduction of a small
unsteady perturbation to a base laminar flow. In streaming research, the key challenge
is to estimate the streaming velocity and its implications for skin friction and heat
transfer, whereas in transition studies, the emphasis is on the shape and growth rate of
the fluctuating velocity modes induced in the flow. When an infinitesimal travelling wave
perturbation is applied to a laminar shear flow, the wall-normal location ŷc, where the
phase speed of the perturbation matches the local mean velocity ĉ = û(ŷ = ŷc), exhibits
a singularity under a linearized inviscid stability analysis using the Rayleigh equation.
The singularity at this critical point is ultimately resolved by the action of viscosity in
a thin layer about the singularity, called the critical layer, as described by the viscous
Orr–Sommerfeld equation. The consequence of the singularity is that low-phase-speed
perturbations excite velocity modes within the flow that exhibit a prominent amplitude
peak within the viscous critical layer along with a distinctive π phase jump far from the
wall.

The use of travelling wave forcing can therefore produce two separate viscous regions
in wall-bounded flows: the Stokes layer, characteristic of any temporal oscillations, and
the critical layer, resulting from the travelling wave singularity (described in more detail
in Godreche & Manneville (1998), § 2.7.4). Whether the critical layer is distinct or
overlapping with the Stokes layer depends on the location of the critical layer and the
relative thickness of the critical and Stokes layers. For infinitesimally small disturbances,
asymptotic analysis can be applied to the linear Orr–Sommerfeld equation to obtain
scalings for each of the layer thicknesses in terms of the small parameter (k̂�̂ Re), where
the Reynolds number is defined as Re ≡ Û�̂/ν̂. In addition, Lin (1946) and Reid (1965)
obtained an asymptotic approximation for the location of the critical point itself. However,
these asymptotic results were developed assuming that the perturbations were vanishingly
small and that the flows were quasi-parallel and thus do not capture the variation of the
critical and Stokes layer length scales with streamwise extent or the case of nonlinear
perturbations. Smith & Bodonyi (1980) reported the critical layer length scale for different
regions within a developing channel flow, avoiding the quasi-parallel assumption. And
Haberman (1972) and Bodonyi, Smith & Gajjar (1983) both reported results for nonlinear
critical layers, in which the critical layer location varies with perturbation amplitude, ε,
and Reynolds number, Re, without direct dependence on the wavenumber.

1.3. Boundary layer streaming experiments and calculations
Efforts to measure experimentally streaming in the laminar boundary layer have
been exceedingly rare across all forms of unsteady perturbations. Hill & Stenning
(1960) performed experiments on temporal wave disturbances and observed a strong
correspondence with the theoretical streaming predictions of Lighthill (1954) and
Nickerson (1957), at least for high and low Strouhal numbers, but weak correspondence
at intermediate oscillatory frequencies. The primary travelling wave experiments were
performed by Patel (1975), in which an oscillating flap in an open loop wind tunnel was
used to introduce downstream-travelling free-stream velocity oscillations above a flat plate.
The free-stream velocity Û was fixed at 10 m s−1, and flap oscillation frequencies varied
from 1 to 10 Hz, with the amplitude of velocity fluctuations reaching up to 10 % of the free
stream. The phase speed of the travelling wave, ĉ/Û, was estimated to be 0.77. Patel (1975)
also extended the theory of Lighthill (1954) to finite wave speeds in order to reproduce
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the experimental amplitude and phase profiles of the fluctuating velocity modes measured
across the laminar boundary layer. However, significant differences were observed between
those experiments and the modified asymptotic theory.

Numerical techniques were also applied to achieve better matching to the travelling
wave streaming experiments. Much earlier, Lin (1957) had developed a semi-analytical
procedure to calculate the streaming velocity in the boundary layer by separating
the instantaneous flow into mean and fluctuating contributions via the Reynolds
decomposition. Although his approach was not adopted directly, Lam (1988) simplified
the basic idea by assuming a fixed Blasius mean velocity profile and then integrating (by
marching) an equation for the coupled velocity fluctuations. The incoming fluctuations
were initialized by means of a series solution of the fluctuating equation about the leading
edge of the plate. The resulting disturbance profiles showed much better agreement with
the experiments of Patel (1975) than asymptotic approaches. But because the mean velocity
profile was assumed fixed, this numerical approach was not able to resolve the streaming
behaviour or the effect of the perturbations on the mean skin friction. Moreover, the
experimental characterization of the disturbances used in Patel (1975) was subsequently
re-examined by Ishaq & Bernstein (1987), who noted technical issues with the accuracy
of the reported phase speeds, making exact theoretical comparisons difficult. Choi et al.
(1996) used both boundary layer and full Navier–Stokes numerical solutions, and also
reported difficulty matching the experiments of Patel (1975).

The travelling wave experiments emphasized the fluctuating velocity mode shapes
and focused only on Stokes layer behaviour, without addressing the effect of critical
layers at all. In fact, experimental work related to laminar critical layers is confined
largely to the transition literature. The effect of critical layer forcing was first studied
by Schubauer & Skramstad (1947), who disturbed a laminar boundary layer with an
oscillating wire, thereby introducing a travelling wave disturbance with an effective
wave speed ĉ/Û ≈ 0.35. The velocity modes measured from this disturbance fit the
predictions of an asymptotic solution of the Orr–Sommerfeld equation performed earlier
by Schlichting (1950). Of course, in the context of transition, the effect of streaming was
neglected and the base profile was assumed undisturbed. More recent studies regarding
travelling wave wall forcing by Hoepffner & Fukagata (2009) and Mamori et al. (2010)
noted significant differences between systems with critical and subcritical disturbances,
although these observations were confined to fully developed channel flows. The question
of the practical consequences of critical layers on streaming in developing flows remains
unexplored.

1.4. Approach
The presence of the two viscous layers – critical and Stokes – is key to understanding
the increased complexity in travelling wave streaming behaviour in developing flows like
the boundary layer. However, the interaction between these different layers as they evolve
spatially, and the practical consequences of that interaction, are not well understood.

In § 2, we outline the forced unsteady boundary layer system and its numerical
solution by extending the procedure of Lin (1957), and provide validation against the
limited experiments and numerical simulations done previously. In § 3, we explain
the streaming behaviour for the subcritical Stokes layer case for both upstream and
downstream-travelling waves, and in § 3.1 we show how the sign of the streaming depends
on the shape of the induced velocity modes. We then explore how the mode shapes change
for the downstream-travelling critical layer case in §§ 3.2 and 3.3. In § 3.4, we show how
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the proximity of the two viscous layers is the primary determinant in the shape of the
modes and thus the sign of the induced streaming. We report the effect of the localized
variation in streaming on the skin friction in § 3.5, and finally we examine the dependence
of the skin friction on the forcing strength, as described in § 3.6.

2. Forced laminar boundary layer model

A finite-amplitude travelling wave disturbance was introduced to the free stream above
an otherwise zero-pressure-gradient flat-plate laminar boundary layer. Prandtl’s boundary
layer equation was used to model the laminar flow in order to reduce the computational
complexity of the problem. However, due to the free-stream oscillatory motion, stricter
Reynolds number assumptions were applied in order to assure the applicability of the
boundary layer assumption, as discussed in Telionis (1981) and below. The boundary
layer equation was then decomposed using a Reynolds decomposition, and the mean and
fluctuating velocity fields were solved numerically, in order to obtain the resulting changes
in the mean velocity profile due to the travelling wave disturbances.

2.1. Forced boundary layer scaling
The free-stream velocity û∞(x̂, t̂) was assumed to be the result of a steady contribution,
Û, perturbed by a streamwise travelling wave disturbance, u1, of the general form

û∞(x̂, t̂) = Û(1 + εu1), (2.1)

where Û is assumed constant and u1 = u1[k̂(x̂ − ĉt̂)] is a dimensionless travelling wave
moving downstream for ĉ > 0 and upstream for ĉ < 0. The hat, (̂·), denotes dimensional
variables in the streamwise/wall-normal coordinates, (x̂, ŷ). The wavelength of the
disturbance, λ̂ = 2π/k̂, was assumed greater than the boundary layer thickness, δ̂99.

Following Telionis (1981), the streamwise length scale of the oscillatory motion, �̂1 =
|Û/ω̂|, was used to define an oscillatory Reynolds number Re1 = Û�̂1/ν̂, which was also
assumed large, Re1 � 1. Re1 represents the time scale of the advection of the oscillating
perturbation, whose characteristic velocity is the local mean velocity within the boundary
layer, here approximated by the free-stream velocity Û. The Strouhal number, St = ω̂�̂/Û,
is related to the two Reynolds numbers by Re = St Re1. The vertical (diffusive), oscillatory
length scale of the Stokes layer, Δ̂, is also related to the two Reynolds numbers by

Δ̂/�̂ = St−1/2Re−1/2 = Re−1Re1/2
1 . (2.2)

Although this scale is typically used only for temporal perturbations, it also describes the
Stokes layer associated with travelling waves sufficiently far downstream from the leading
edge, as discussed below in § 3.4.

The instantaneous velocity field (û, v̂) was non-dimensionalized according to (u, v) =
(û, v̂)/Û. The coordinates were non-dimensionalized as (x, y, t) = (x̂/�̂, ŷ/�̂, t̂ω̂), and the
pressure was non-dimensionalized as p = p̂/ρ̂Û2 where ρ̂ is the fluid density, assumed
constant.

In order to rewrite the instantaneous momentum equation in parameter-free form,
with all the parameters expressed within only the perturbation velocity waveform, u1,
we adopt the inertial stretching (u, v, X, Y, T) = (u, v, x Re, y Re, t Re/St), which differs
from the traditional coordinate stretching used in previous studies by e.g. Telionis &
Romaniuk (1978). Capital letters here represent stretched coordinates. This choice of
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coordinates results in a perturbation velocity of the form u1 = u1[|c Re1|−1(X − cT)], and
a free-stream velocity

u∞(X, T) = 1 + εu1

[
|c Re1|−1 (X − cT)

]
, (2.3)

where ε, Re1 and c are domain-independent and constitute the three fundamental
parameters of the system. The quantity |c Re1| represents the wavelength for the
perturbation and is assumed large compared to the scale of X-variations of quantities
within the boundary layer. In this formulation, the stretched coordinate X is just the
Reynolds number, Rex = Ûx̂/ν̂, based on streamwise distance. Typically, �̂ is taken as
a characteristic length scale in the wall-normal direction, such as the boundary layer
thickness δ̂99 (or its asymptotic equivalents, the displacement thickness δ̂∗ or momentum
thickness θ̂ ), in which case the Reynolds number Re is related to X by Re ∼ √

X under the
boundary layer assumptions.

2.2. Forced boundary layer equations
Employing the inertial scaling, the instantaneous boundary layer equations appear as

∂u
∂T

+ u
∂u
∂X

+ v
∂u
∂Y

= − ∂p
∂X

+ ∂2u
∂Y2 , v(X, Y) = −

∫ Y

0

∂

∂X
u(X, s) ds, (2.4a,b)

where the wall-normal velocity v is defined through continuity, and the pressure gradient
is defined through the free-stream dynamics,

∂u∞
∂T

+ u∞
∂u∞
∂X

= − ∂p
∂X

, (2.5)

and we assume that ∂p/∂Y is negligible (based on the boundary layer approximation).
The time-averaging method of Lin (1957) was used to formulate an equation for the

mean dynamics of the perturbed system by employing a Reynolds decomposition of
the form q = q̄ + q̃ to separate time-averaged contributions, denoted (·), and temporal
fluctuations, (̃·). The fluctuating quantities are then stretched such that they appear as
leading-order terms, with q′ = q̃/ε.

Substituting the decomposition and re-scaling into (2.4a,b) and time-averaging yields

ū
∂ ū
∂X

+ v̄
∂ ū
∂Y

= ∂2ū
∂Y2 + ε2

(
−u′ ∂u′

∂X
− v′ ∂u′

∂Y

)
︸ ︷︷ ︸

f (X,Y)

, v̄(X, Y) = −
∫ Y

0

∂

∂X
ū(X, s) ds,

(2.6a,b)

where the sum of the two ‘Reynolds stress’ type terms is denoted f (X, Y) and represents
the forcing to the mean dynamics from the fluctuations (also called the ‘apparent friction
force’ in Schlichting & Gersten (2000), § 5.3). The mean pressure gradient, ∂ p̄/∂X, is zero
for the flat-plate flow.
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Subtracting the mean (2.6a,b) from instantaneous (2.4a,b) dynamics, and substituting
the pressure gradient from (2.5), yields the fluctuating dynamics

∂u′

∂T
− ∂2u′

∂Y2 − ∂u1

∂T
=

(
∂u1

∂X
− ū

∂u′

∂X
− v̄

∂u′

∂Y

)
+

(
−u′ ∂ ū

∂X
− v′ ∂ ū

∂Y

)

+ ε

{(
u1

∂u1

∂X
− u′ ∂u′

∂X
− v′ ∂u′

∂Y

)
− f (X, Y)

}
,

v′(X, Y) = −
∫ Y

0

∂

∂X
u′(X, s) ds.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.7)

Note that in the free stream, the v′ velocity component takes the form v′ =
−Y(∂/∂X){u1[|c Re1|−1(X − vT)]} and thus is unbounded as Y → ∞, due to the fact
that the free-stream forcing is energetically unbounded, encompassing the entire domain.
However, the forcing term f (X, Y), along with all of the other terms in (2.6a,b), remains
bounded. It is also important to note that (unlike ensemble-averaging) time-averaging and
spatial differentiation/integration do not commute, due to the travelling wave form of the
velocity forcing, thus the forcing cannot be easily expressed in the form of a Reynolds
stress.

The streamwise mean dynamics (2.6a,b) depend on the dynamics of the streamwise
fluctuations (2.7) via f (X, Y) and were solved, iteratively, subject to the following
boundary conditions:

(X, Y = 0) : u′ = v′ = ū = v̄ = 0,

(X = 0, Y) : u′ = u1(−Re−1
1 T), v′ = 0, ū = 1, v̄ = 0,

(X, Y → ∞) : ū = 1,

⎫⎪⎬
⎪⎭ (2.8)

which describe no-slip conditions at the wall for both mean and fluctuating quantities,
followed by conditions for the uniform mean and temporal wave fluctuations at the inlet,
with no wall-normal components. Finally, the free-stream matching condition was applied
directly to the mean flow. The matching of the fluctuating streamwise velocity u′ was
satisfied automatically via the pressure forcing (2.5), which is uniform in the Y-direction
under the boundary layer assumptions.

Utilizing a simple sine wave for the free-stream travelling wave perturbation, u1 =
sin (· · · ), and substituting into (2.5), yields

ε
(1 − c)
|c Re1|

{
sin

[π

2
− |c Re1|−1 (X − cT)

]
+ ε/2

(1 − c)
sin

[
2|c Re1|−1 (X − cT)

]}
= − ∂p

∂X
.

(2.9)

Therefore, even though the velocity forcing (2.3) contains only the fundamental frequency
Re−1

1 , the pressure forcing (2.5) exhibits a 2Re−1
1 frequency component due to advection.

The two non-dimensional forcing components are out of phase with each other by π/2,
and have amplitudes that differ by a factor of (ε/2)/(1 − c).

The 2Re−1
1 forcing component is negligible on the assumption of low phase speed, i.e.

c � 1, because ε/2(1 − c) � 1. Therefore, many authors have followed the approach
of Lighthill (1954) and simply Fourier-filtered the entire velocity field to eliminate
this component altogether. However, Patel (1975) noted that if the second frequency is
neglected, then as the phase speed approaches the mean free-stream velocity, c → 1, there

937 A10-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.108


T. Agarwal, B. Cukurel and I. Jacobi

would be no actual pressure forcing in the problem at all, and the free-stream forcing would
modify the boundary layer only via diffusion. Retaining the second frequency component
is therefore necessary in the neighbourhood of phase speeds where (1 − c) ∼ ε/2. And in
the limit c → 1, this second frequency component becomes the dominant contribution to
the (low-amplitude) forcing.

It is worth noting that even retaining the second forcing frequency throughout the
boundary layer, as it reaches the outer edge of the boundary layer, the fluctuating velocity
will exhibit only the fundamental frequency due to the advective terms in the streamwise
momentum balance, and thus will satisfy (2.5) exactly.

2.3. Numerical approach
The mean momentum equation (2.6a,b) was solved in an iterative procedure, starting with
an initialization scheme. First, (2.6a,b) was solved assuming f (X, Y) = 0, to obtain an
initial guess of the mean momentum balance. Then the mean momentum was used to
solve the fluctuating dynamics (2.7) for u′ and v′, from which f (X, Y) was calculated. The
forcing, in turn, was substituted back into the mean dynamics (2.6a,b), to calculate an
initial estimate of the mean momentum balance with all terms included. The mean flow
variables (ū, v̄) were then substituted into the right-hand side of the fluctuating dynamics
(2.7), to obtain an initial estimate of the fluctuating balance with all terms included, thus
completing the initialization.

Once initialized, the fluctuating dynamics (2.7) were iterated in a prediction–correction
procedure until a converged solution was found at each time step. The fluctuating dynamics
were then marched forward in time, and the prediction–correction iteration was repeated
at the new time step. The time-marching continued until a full period of the fundamental
frequency was complete. The full period calculation was then repeated until convergence.
The resulting converged period was then used to calculate f (X, Y) anew and update
the mean momentum balance (2.6a,b). The updated mean momentum was fed into the
fluctuating dynamics and iterated again, repeating the entire process until the mean balance
converged. The calculation scheme is illustrated schematically in figure 1.

2.4. Finite differences and iteration
The system of equations (2.6a,b)–(2.9) was solved using finite differences on a rectangular
domain that extended in the streamwise direction from X = 0 to X = 106. The domain was
sliced into eight streamwise segments due to memory constraints, and each segment was
solved sequentially, where the exit conditions of each upstream segment were used as the
inlet condition to the subsequent downstream segment. The domain in the wall-normal
direction extended from Y = 0 to twice the downstream boundary layer thickness of each
segment, Y ≈ 10

√
X.

The mean momentum balance (2.6a,b) was discretized using a second-order
space-centred implicit finite difference scheme in the wall-normal direction, and a
first-order backward scheme in the streamwise direction. This implicit finite difference
formulation was solved using a fast and efficient tridiagonal matrix algorithm by Thomas
(1949). Mean quantities thus obtained were used as an input to the fluctuating flow
equation (2.7), which was solved explicitly in a time-marching manner. As discussed
before, an iterative prediction–correction approach was employed. At each iteration step,
all input fluctuating derivatives were calculated using the previous step’s prediction.
Wall-normal derivatives of fluctuating quantities were calculated using a fourth-order
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(ū, v̄)

(u′, v′)

f (X, Y )

(2.7) +
∂u′
∂T

(2.6) ū +
∂ū
∂X

u′(T )

u′(T + �T )

(u′(T ), u′ (T + 2π Re1))

Figure 1. The iterative, predictor–corrector algorithm for the solution of the mean momentum balance
(2.6a,b), using the fluctuating dynamics (2.7). Within the fluctuating dynamics, iterations are used to obtain
convergence at each time step, ΔT , and then over each full period, 2π Re1, before substituting and iterating
within the mean momentum balance.

space-centred scheme, whereas streamwise derivatives of fluctuating quantities were
calculated using a second-order backward finite difference formulation to avoid dispersion
errors. After a converged solution was obtained at a time step, the solution was marched
forward to the next time step using a first-order scheme.

The mean and fluctuating momentum equations were iterated until a Euclidean norm
convergence threshold between iterations of 10−6 was satisfied, which is comparable to
the approximation order, O(X−1), of the neglected streamwise gradients in the momentum
equation for the given domain size.

The grid resolution and time steps were designed to satisfy the grid convergence index
(GCI) method of Roache (1994) to maintain small GCI values of approximately 0.01.
The GCI variation with spatial resolution is described in Appendix A. This GCI criterion
demanded a wall-normal discretization ΔY ∼ 0.067

√
Re1, a streamwise discretization

ΔX = 320, and a temporal discretization ΔT ∼ 2π Re1 × 10−4. The grid was defined
conservatively to be uniform in each direction. Moreover, the Courant–Friedrichs–Lewy
(CFL) number was verified to be below 0.5 for stability.

The advantage of the Reynolds-decomposed technique of Lin (1957) over direct
numerical solutions of the full momentum equations is apparent in the calculation times.
All calculations were performed using MATLAB on a four-core desktop computer for
a duration of approximately one day per X/106. The mean skin friction coefficient
was defined as C̄f ≡ (∂ ū/∂Y)|Y=0. The uncertainty in C̄f , as estimated by dividing the
convergence threshold (mentioned above) by the typical change in mean flow velocity
near the wall, was obtained to be 0.3 %.

2.5. Validity of boundary layer assumptions
The solutions are valid only where the appropriate boundary layer assumptions underlying
the governing equations are satisfied. Telionis (1981) noted that the steady Blasius regime
requires X � 1, while the oscillatory regime requires X � ε−2 and Re1 � ε−2 such that
the unsteady terms are not less significant than the neglected streamwise diffusion terms.
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Figure 2. Amplitude, |u′| (black, left axis), and phase, φ(u) (grey, right axis), of streamwise fluctuations
as functions of wall-normal distance for: (a) comparison with temporal experiments by Hill & Stenning
(1960) at (ε, Re1, c−1, X) = (0.1, 1.2 × 104, 0, 6 × 104), shown in circles, versus the present calculation, with
c−1 = 0.01, shown in solid lines; (b) comparison with travelling wave experiments by Patel (1975) (circles) for
(ε, Re1, c−1, X) = (0.056, 2.2 × 105, 2, 1.4 × 105), and simulations by Choi et al. (1996) (dashed lines) versus
the present calculation (solid lines).

The latter requirement is only marginally satisfied for the small ε considered here, but can
also be validated by direct comparison of the neglected streamwise diffusion of the mean
flow, ∂2ū/∂X2, to the wall-normal diffusion of the streaming itself, ∂2ūs/∂Y2, where the
streaming velocity ūs is defined as the difference between the mean velocity profile ū and
the unforced laminar profile ū0, as ūs = ū − ū0. The map of this comparison is shown in
Appendix B and confirms that wherever measurable streaming was observed, the boundary
layer approximation is satisfied in a self-consistent way.

The upper limit on X, prior to transition, is taken as X ≈ 106, following Schlichting &
Gersten (2000), although this is likely an overestimate due to the perturbed free stream.
The applicability of the analysis to practical flows where transition may occur will be
discussed in more detail in § 3.6.

All calculations were performed over a domain that extended from the leading edge to
X = 106, corresponding to a maximum downstream Reynolds number Reθ = 660 based
on momentum thickness θ̄ .

The numerical solutions were validated against experimental results for temporal
disturbances reported by Hill & Stenning (1960) and for travelling wave disturbances
reported by Patel (1975), and were compared to the alternative numerical approaches of
Lam (1988) and Choi et al. (1996), as discussed below.

2.6. Validation
The flow calculations in the limit of very high phase speed, c−1 = 0.01, were compared
against temporal (c−1 = 0) perturbation experiments performed by Hill & Stenning
(1960). Figure 2(a) shows the amplitude and phase of the perturbations at matched
frequency, amplitude and streamwise position.

For the experimental reported phase speed c−1 = 1.3, comparisons were performed
against the experiments of Patel (1975) and the full Navier–Stokes numerical solutions of
Choi et al. (1996), as shown in figure 2(b). However, Choi et al. (1996) used c−1 = 2 for
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| u′ |
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Figure 3. Amplitude, |u′| (black, left axis), and phase, φ(u) (grey, right axis), of streamwise
fluctuations as functions of wall-normal distance for (a) a comparison with travelling wave
experiments by Patel (1975) (circles) and simulations by Lam (1988) (dashed lines) at
(ε, Re1, c−1, X) = (0.056, 8.8 × 104, 1.65, 1.4 × 105) versus the present calculation, shown in solid
lines. (b) A change in c−1 value to 1.7 for the present calculations provides an even better amplitude matching.

better matching with the experimental results. In fact, there is some doubt about the precise
wave speeds obtained in the experiments of Patel (1975), thus there is some arbitrariness
involved in the matching. Lam (1988) and Evans (1989) cite private communications
for believing that the correct c−1 value corresponding to the experiments should be
1.65. Figure 3 illustrates the effect of the choice of phase speed on the quality of the
experimental match. The current calculations compare well with experiments and previous
numerical solutions, within these experimental uncertainties.

It is important to note that the numerical approach of Lam (1988) assumed a fixed mean
velocity profile and thus allowed for only one-way coupling between the mean flow and the
perturbations, so his technique is not capable of predicting streaming. Also, by assuming
a self-similar boundary layer profile even near the leading edge, Lam’s approach does not
allow for the simultaneous development of the boundary layer, Stokes layer and critical
layers. It is difficult to assess the effects of these different assumptions on the resulting
flow field. But because we sought to predict the streaming and not merely the fluctuating
velocity mode profiles, we needed to adopt an approach that included explicitly two-way
coupling between the fluctuations and the mean flow.

3. Results and discussion

3.1. Velocity modes and streaming
The time-averaged effect of the free-stream perturbation results in velocity streaming via
the forcing term

f (X, Y) =
(

−u′ ∂u′

∂X
− v′ ∂u′

∂Y

)
, (3.1)

which appears in the mean momentum balance in (2.6a,b). The sign of the forcing
determines whether f serves as a source or sink of momentum across the boundary
layer, and thus determines the behaviour of the streaming. The sign of f depends on the
time-averaged interaction between the streamwise, u′, and wall-normal, v′, modes and
their gradients. Because the perturbation is a single-frequency harmonic, the sign of the
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time-averaged interaction will be controlled entirely by the phase difference between these
interacting modes.

We will first determine the phases of the different modes that appear in the forcing, and
describe them physically in terms of their spatial inclination. Then this information will
be used to explain the net forcing and the streaming behaviour. Modes that are orthogonal,
with phase lag ±π/2, will produce no net contribution when averaged over a single period.
Modes that are in phase, with phase lag 0, or out of phase, with phase lag ±π, will result
in positive or negative time-averaged contributions, respectively.

In order to describe the phase of the interacting modes, we write the real-valued modes
u′ and v′ in complex form, in terms of magnitudes, |u′| and |v′|, and temporal phases, φ(u)

and φ(v), as

u′(X, Y, T) = Im
[
|u′|(X, Y) exp

(
i
{
|Re1 c|−1

[
X − c

(
T + Re1 φ(u)(X, Y)

)]})]
, (3.2)

v′(X, Y, T) = Im
[
|v′|(X, Y) exp

(
i
{
|Re1 c|−1

[
X − c

(
T + Re1 φ(v)(X, Y)

)]})]
, (3.3)

where all phases are measured with respect to the phase of the free-stream perturbation,
which is taken as φ(u)(X, Y → ∞) = 0, consistent with the definition of the perturbation
in (2.3).

The two contributions to the forcing depend on the phase lags between u′ and u′
X , and

between v′ and u′
Y . From differentiation, the phase φ(uX) of u′

X is related to the phase φ(u)

of u′ by

φ(uX) = φ(u) − sgn(c) arg
[
|u′|−1|u′|X + i |c Re1|−1 − i sgn(c) φ

(u)
X

]
, (3.4)

where the sign of the phase speed c is denoted sgn(c) and represents the direction
of propagation of the perturbations. Because the wavelength of the perturbation is
assumed long compared to the length scale of streamwise variations, i.e. |c Re1|−1 �
|u′|−1|u′|X, φ

(u)
X , the wavenumber term |c Re1|−1 is the dominant contribution, and the

phase relation can be approximated as

φ(uX) ≈ φ(u) − sgn(c)
π

2
. (3.5)

Therefore, the u′ and u′
X modes are expected to be orthogonal to each other, resulting

in negligible contribution to the forcing and thus the streaming. This is ultimately a
consequence of the boundary layer assumptions regarding gradients in the X-direction.
However, the remaining forcing term, involving u′

Y and v′, is more complicated.
The phase φ(uY ) of u′

Y is found by differentiation as

φ(uY ) = φ(u) − sgn(c) arg[|u′|−1|u′|Y − i sgn(c) φ
(u)
Y ]. (3.6)

Continuity is then used to relate the phases of u′ and v′, employing the long wavelength
approximation from above, as

φ(v) ≈ φ(u) + sgn(c)
π

2
+ sgn(c) arg [|v′|−1|v′|Y − i sgn(c) φ

(v)
Y ]. (3.7)

In both of these relations, the phase trends depend on the mode shapes. In particular,
the spatial inclination of the u′ mode is given by −sgn(c) φ

(u)
Y . When −sgn(c) φ

(u)
Y < 0,

the mode is inclined in the downstream direction with respect to the wall, whereas when
−sgn(c) φ

(u)
Y > 0, the mode is inclined in the upstream direction. The inclination of the

937 A10-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.108


Localised drag modification by critical and Stokes layer interactions

|u′| |v′|

u′
X

u′

u′
Y

v′

u′
X

u′u′
Y

v′

4 2

0

−2

1

0

−1

0.05

0

−0.05

0.1

0 0

0

−0.1

3

2

1

0

4

3

2

1

0

4

3

2

1

0

4

3

2

1

0

0−π π 0−π

π/2

π/2

3π/2

3π/2

π

π

π

0−π π 0−π π

(a)

Y

Y

(b) (×103)

(×103)

Figure 4. Subcritical (|c−1| < 1) spatial modes of streamwise (u′) and wall-normal (v′) components of
fluctuating velocity, and polar phase profiles of the velocity components and gradients of streamwise velocity
(u′

Y , u′
X). The grey line indicates the Stokes layer scale; the radial range of polar plots is same as the

Y range of adjacent contour plots. (a) The upstream-travelling wave with (ε, Re1, c−1, X) = (0.01, 2 ×
104, −0.4, 106) and downstream spatial u′ inclination. Here, the v′ and u′

Y modes are in phase, resulting in
a negative contribution to the forcing. (b) The downstream-travelling wave with (ε, Re1, c−1, X) = (0.01, 2 ×
104, +0.4, 106) and upstream spatial u′ inclination. Here, the v′ and u′

Y modes are out of phase, resulting in a
positive contribution to the forcing.

mode therefore determines the imaginary contribution to the phase argument. In the case
where the mode experiences an extremum in amplitude, i.e. where |u′|Y changes sign, the
argument will exhibit a phase jump of ±π, and the sense of the jump will be determined
by the inclination of the mode.

Consider the case of the subcritical modes, in which the phase speed satisfies |c−1| < 1
so that no critical layer is generated. The u′ and v′ spatial mode shapes, over one
wavelength, are shown in figure 4(a) for upstream-travelling subcritical waves, and in
figure 4(b) for downstream-travelling subcritical waves. Starting at the wall, the amplitude
of the fluctuations is zero, thus |u′|, |v′| → 0, which means that we have the phase relations

φ(uY ) = φ(u), (3.8)

φ(v) = φ(u) + sgn(c)
π

2
, (3.9)

so u′
Y and v′ are orthogonal at the wall and contribute nothing to the forcing. The

corresponding temporal phase plots show that the v′ mode leads (lags) the u′ mode in
time by π/2 for downstream (upstream) travelling waves.

The continuity relation (3.9) allows us to describe, pictorially, a temporal cycle
of a particle tracing the path of the modal oscillations, shown in figure 5. For an
upstream-travelling wave, shown in figure 5(a), the v′ mode lags the u′ mode, resulting
in a clockwise path. For a downstream-travelling wave, shown in figure 5(b), the v′ mode
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(a) (b)

Figure 5. An illustration of the path of a fluid particle of the perturbed flow, over one time period, in the
notional absence of any mean flow. (a) The path, in solid black line, corresponding to the upstream-travelling
subcritical mode shown in figure 4(a), which results in downstream mode inclination −sgn(c) φ

(u)
Y < 0. (b)

The path corresponding to the downstream-travelling subcritical mode shown in figure 4(b), which results in
upstream mode inclination −sgn(c) φ

(u)
Y > 0. The viscous Stokes layer is illustrated by the grey line; the arrows

indicate the relative particle displacements, taking into account the effect of viscosity; the dashed black line
illustrates the resulting mode inclination.

leads the u′ mode, resulting in a counter-clockwise path. Hoepffner & Fukagata (2009)
used a similar heuristic to analyse the transport associated with travelling wave suction and
blowing at a channel wall. They noted that in the absence of viscosity, the particle would
make the circuit with perfect symmetry between upstream and downstream movements.
However, viscosity near the wall causes an asymmetry in the particle motion, suppressing
the particle motion near the wall compared to that far away from the wall. The viscous
region, i.e. the Stokes layer, is denoted by a grey line.

For the upstream-travelling wave in figure 5(a), the backward velocity in the viscous
Stokes layer near the wall will be suppressed more than the forward velocity far away
from the wall, and this asymmetry will tend to tilt the mode in the outer region
in the downstream direction with respect to the wall, thus −sgn(c) φ

(u)
Y < 0. For the

downstream-travelling wave in figure 5(b), the forward velocity in the viscous Stokes layer
near the wall will be suppressed more than the backward velocity far away from the wall,
and this asymmetry will tend to tilt the mode in the outer region in the upstream direction
with respect to the wall, thus −sgn(c) φ

(u)
Y > 0.

The inclination inside the viscous near-wall region itself can also be analysed. For the
downstream-travelling case in figure 5(b), very near the wall, there is a significant variation
in the wall-normal velocity component, with zero velocity at the wall and increasing
wall-normal flow farther away (assuming that the viscous effects are comparable). This
means that a particle at a given Y location very near the wall will have a longer residence
time at that height than a particle a bit farther away, which will be moving upwards faster.
Therefore, within the viscous layer, we also expect an upstream inclination of modes, due
to the effect of the gradient in |v′|. (The opposite is true for the case of wall suction and
blowing studied by Hoepffner & Fukagata (2009), where they observed a downstream
inclination inside the viscous region near the wall, because the blowing is strongest at the
wall and diffuses away from the wall, unlike the case of free-stream forcing considered
here.)

Thus in both the outer and inner regions of the boundary layer, we expect an upstream
inclination of the velocity modes for a downstream-travelling subcritical wave, and the
opposite for the upstream-travelling subcritical wave. The mode inclination is visible most
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prominently for the u′ modes in figure 4. The inclination information about the modes can
then be used to determine the subsequent phase behaviour farther away from the wall.

Moving away from the wall, both upstream- and downstream-travelling waves exhibit
a maximum amplitude in u′ around the Stokes layer height, as shown in figure 4. The
downstream-travelling wave in figure 4(b) also shows a relative minimum even farther
from the wall due to the lower effective forcing at that phase speed. The extrema in the
amplitude result in a phase jump in u′

Y via the argument in (3.6) given by

− sgn(c) arg[|u′|−1|u′|Y − i sgn(c) φ
(u)
Y ]. (3.10)

Moving away from the wall and crossing a relative amplitude maximum means that
|u′|Y shifts from positive to negative. For the upstream-travelling wave, −sgn(c) φ

(u)
Y < 0,

therefore (3.10) produces a phase jump −π. This clockwise phase addition is illustrated
by the black line in the polar phase plot in figure 4(a), representing the phase of u′

Y , which
starts in phase with u′ at the wall and jumps by −π as it crosses the Stokes layer, marked in
grey. The same is true for the downstream-travelling wave, where −sgn(c) φ

(u)
Y > 0, and

therefore (3.10) also produces a phase jump of −π. However, the downstream-travelling
wave exhibits a relative minimum in amplitude farther out, which results in a second jump
of −π, re-aligning the phase of u′

Y with u′ far from the wall, as seen in the polar plot in
figure 4(b).

Having described the phase variation of the u′
Y mode, we are left to describe the v′

modes in order to complete the picture of the forcing. However, the v′ modes are much
simpler: the argument in (3.7) does not contribute any phase jumps because there are no
extrema in the amplitude of v′ for the Stokes layer forced from the free stream. Therefore,
the phase of v′ hovers about its initial wall value across the boundary layer

φ(v) ≈ φ(u) + sgn(c)
π

2
. (3.11)

With both phases described, we can consider the effect of the two modes on the
time-averaged forcing. If the phase of v′ is roughly constant across the boundary layer,
leading or lagging u′ by π/2, while the phase of u′

Y jumps by −π with respect to the phase
of u′, then the v′ and u′

Y modes will necessarily be in or out of phase in some region of the
boundary layer, resulting in a net contribution to the local time-averaged forcing. For the
case of the upstream-travelling wave in figure 4(a), v′ and u′

Y will be in phase, resulting
in a negative forcing, from (3.1); whereas the modes in the downstream-travelling wave in
figure 4(b) are out of phase, resulting in a positive forcing.

The effect of the localized forcing on the streaming profiles is shown in figure 6, where
the streaming velocity ūs was defined above as the difference between the mean velocity
profile and the unforced laminar profile ūs = ū − ū0. As expected, when the modes are in
phase, the dominant forcing is negative and the streaming is negative. For out-of-phase
modes, the streaming is positive. Thus the sign of the streaming associated with the
presence of a Stokes layer can be described entirely in terms of the shape and inclination
of its velocity modes. The magnitude of the streaming of course depends on the relative
magnitude of the v′ and u′

Y modes, which are highest near the wall but are not easily
described by the type of heuristic analysis employed here to capture the correct sign.

3.2. Streaming with a critical layer
In the presence of a critical layer, the mode shapes change significantly thus the streaming
is also modified. Classically, two-dimensional critical layers exhibit a viscous region
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Figure 6. Streaming velocity profiles ūs(Y) for the subcritical perturbations in figure 4. For the
upstream-travelling wave in figure 4(a) with (ε, Re1, c−1, X) = (0.01, 2 × 104, −0.4, 106), the modes are in
phase with negative forcing and negative streaming, marked as a dotted line. For the downstream-travelling
wave in figure 4(b) with (ε, Re1, c−1, X) = (0.01, 2 × 104, +0.4, 106), the modes are out of phase with positive
forcing and positive streaming, marked as a dash-dotted line.

about the critical point itself, Yc (corresponding to ŷc, defined above in the unstretched
coordinates), and also a phase jump in the u′ mode at the location of the maximum in the
amplitude of the v′ modes, which is usually much farther from the wall than Yc. This phase
jump is associated with the pair of inviscid solutions to the critical layer problem described
in Schlichting (1950). Therefore, in the case of the critical layer, we need to re-analyse the
phase relationship between v′ and u′

Y , taking into account that u′ experiences a phase jump.
To simplify the analysis, the continuity formulation in (3.7) is substituted into (3.6) to

obtain

φ(uY ) =
φ(u)︷ ︸︸ ︷

φ(v) − π

2
− arg

[
|v′|−1|v′|Y − iφ(v)

Y

]
− arg[|u′|−1|u′|Y − iφ(u)

Y ], (3.12)

where c−1 > 1 is necessary for the existence of a critical layer, which exists only in
downstream-travelling waves. If we make the very strong simplifying assumption that
the phase jump is sharp, such that |u′| crosses zero, then we can neglect the argument
associated with the u′ mode in the vicinity of the maximum amplitude in v′, to obtain

φ(uY ) ≈ φ(v) − π

2
− arg[|v′|−1|v′|Y − iφ(v)

Y ]. (3.13)

For the subcritical case described earlier by (3.6), the phase jump in u′
Y depended on the

mode shape of u′; for the critical case described here in (3.13), the phase jump in u′
Y

depends on the mode shape of v′. Figure 7 shows the u′ and v′ spatial mode shapes for
perturbations with a critical layer (c−1 = 4) at two different streamwise locations. At the
upstream location in figure 7(a), we note that v′ modes are inclined slightly downstream,
whereas at the downstream location in figure 7(b), the v′ modes are inclined slightly
upstream.

Because all critical modes are downstream-travelling, very near the wall they appear
similar to the subcritical downstream mode shown in figure 4(b), where the v′ mode
leads the u′ mode, resulting in a counter-clockwise path. However, far from the wall, at
the location of the maximum amplitude of v′, the u′ mode experiences a phase jump.
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Figure 7. Critical (c−1 > 1) spatial modes of streamwise (u′) and wall-normal (v′) components of fluctuating
velocity, and polar phase profiles of the velocity components and gradients of streamwise velocity (u′

Y , u′
X).

The grey line indicates the Stokes layer scale; the dashed black line indicates the critical point; and the radial
range of the polar plots is the same as the Y range of adjacent contour plots. (a) The downstream-travelling
wave with (ε, Re1, c−1, X) = (0.01, 2 × 104, +4, 105) and downstream spatial v′ inclination. Here, the v′ and
u′

Y modes are in phase, resulting in a negative contribution to the forcing. (b) The downstream-travelling wave
with (ε, Re1, c−1, X) = (0.01, 2 × 104, +4, 106) and (slightly) upstream spatial v′ inclination. Here, the v′ and
u′

Y modes are out of phase, resulting in a positive contribution to the forcing.

The direction of the phase jump indicates whether the path at the top of the mode is also
counter-clockwise or whether it switches direction to be clockwise.

Because the v′ mode always has, at most, one relative maximum within the boundary
layer, the phase jump in (3.13) depends ultimately only on the inclination of the v′ modes.
If the modes are inclined upstream, then the argument produces a phase jump −π; if the
modes are inclined downstream, then the argument produces a phase jump +π. And this
inclination does indeed indicate the direction of the phase jump in u′

Y , as shown in the
corresponding polar phase plots in figure 7, where the downstream-inclined v′ modes in
figure 7(a) exhibit a phase jump +π, and upstream-inclined v′ modes in figure 7(b) exhibit
a −π phase jump.

Therefore, the different mode inclinations between the two streamwise positions for the
critical perturbations are direct indications of the direction of the phase jump induced by
the presence of the critical layer. Moreover, as with the Stokes layer, the direction of the
phase jump determines whether the u′

Y and v′ modes are in phase or out of phase, and thus
controls the sign of the forcing and the streaming.

At the wall, the u′
Y and v′ modes are orthogonal, with phase lag −π/2, resulting in no

contribution to the forcing. Therefore, if the v′ modes are inclined slightly downstream, as
in figure 7(a), and the phase jump is +π, then the v′ and u′

Y modes will be in phase and
the forcing will be negative; whereas if the v′ modes are inclined slightly upstream, as in
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Figure 8. Streaming velocity profiles ūs(Y) for the subcritical perturbations in figure 7. For figure 7(a),
with (ε, Re1, c−1, X) = (0.01, 2 × 104, +4, 105), the modes are in phase with negative forcing and negative
streaming, marked as a dotted line. For figure 7(b), with (ε, Re1, c−1, X) = (0.01, 2 × 104, +4, 106), the modes
are out of phase with positive forcing and positive streaming, marked as a dash-dotted line.

figure 7(b), and the phase jump is −π, then the v′ and u′
Y modes will be out of phase and

the forcing will be positive.
Recall that the subcritical downstream-travelling wave shown in figure 4(b) generated

positive forcing, whereas the inclusion of the critical layer can produce either positive or
negative forcing, depending on the mode inclination. The ability of the critical layer to
reverse the forcing as compared to the subcritical case was also reported by Hoepffner &
Fukagata (2009) for the problem of travelling wave wall suction/blowing in a channel.

The effect of the localized forcing on the streaming profiles is shown in figure 8.
The streaming associated with the presence of a critical layer can therefore be described
entirely in terms of inclination of its wall-normal velocity velocity mode, which varies
with streamwise extent. It remains to describe why the critical layer produces different
wall-normal inclinations (or, equivalently, different phase jump directions) at different
streamwise locations.

3.3. Wall-normal mode inclination
The variation of the wall-normal mode inclination, measured at the location of the local
maximum amplitude of v′ within the boundary layer, with respect to streamwise location
X and inverse phase speed c−1, is shown in figure 9(a). Very far upstream and at low c−1,
the v′ mode does not exhibit a local maximum within the boundary layer, thus no mode
inclination is reported. There appears to be a distinct region, demarcated by the dashed
line, in which the v′ modes are inclined upstream, φ

(u)
Y < 0, surrounded by a larger region

where the v′ modes are inclined downstream, φ
(u)
Y > 0. The changing inclination appears

to be due to a combination of the spatial development and strength of the critical and
Stokes layers within the boundary layer.

Figure 9(b) shows the ratio of the wall-normal locations of the critical and Stokes layer
scales, Yc/Ys, as a function of X and c−1, where the intersection of the two points is
marked in a solid line. The region of downstream inclined v′ modes appears to correspond
to a region where the critical and Stokes layers are located close to one another.
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Figure 9. (a) The gradient of the v′ phase, φ
(v)
Y , evaluated at the location where |v′| is maximum. The black

dashed line highlights where the change in inclination occurs. Grey indicates regions where no local maximum
in |v′| existed. (b) The ratio of critical point and Stokes layer heights, Yc/Ys, where the solid black line shows
the intersection of the two layers as described in (3.17), for (ε, Re1) = (0.01, 2 × 104).

We can describe the inclination of the v′ modes by a heuristic analysis of particle
paths similar to that presented above, shown in figure 10. When the critical and Stokes
layers coincide, as in figure 10(b), the viscous region is not significantly larger than in
the subcritical downstream-travelling wave case, and the modes are inclined upstream
following the heuristic argument outline in figure 5(b) for the very-near-wall region.
However, when the critical and Stokes layers are distinct, as in figure 10(a), there are two
separate viscous regions with a region between them where viscosity is less important.
Within the first viscous region near the wall, the residence time argument due to the v′
amplitude yields an upstream inclination, as is true for all downstream-travelling waves.
But in the gap between the two viscous layers, the lack of friction produces a downward
inclination of the modes. This reversal in inclination from upstream to downstream
between the Stokes and critical layers is visible very near the wall in figure 7(a).

Because the inclination of the modes depends on both the viscous suppression of u′
and the magnitude of v′, the region of upstream inclination is demarcated by both the
intersection of the two viscous layers, discussed in § 3.4, and also the strength of the
free-stream forcing, represented by c−1 and discussed in § 3.6.

3.4. Intersection of the viscous layers
The intersection of the two viscous layers depends on the relative growth rates of the layers
as the boundary layer grows.

The location of the Stokes layer, Ys, was found to follow the same trend for a travelling
wave perturbation sufficiently far downstream from the leading edge as for the temporal
perturbation described in § 1.1:

Ys ≈ 4
√

2Re1. (3.14)
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(a) (b)

Figure 10. An illustration of the path, in solid black line, of a fluid particle of the perturbed flow, over one time
period, in the notional absence of any mean flow. (a) The path corresponding to the critical mode shown in
figure 7(a), which results in downstream mode inclination, φ

(u)
Y > 0. (b) The path corresponding to the critical

mode shown in figure 7(b), which results in upstream mode inclination, φ
(u)
Y < 0. The viscous Stokes layer

is illustrated by the solid grey line, the critical layer by the dashed grey line. The arrows indicate the relative
particle displacements, taking into account the effect of viscosity; the dashed black line illustrates the resulting
mode inclination. Note that when the two viscous layers are separate, there is a reversal of the mode inclination
between them.

104

103
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104

103

102101

103 104 105 106 103 104 105 106

Ys Yc /c

X X

(a) (b)

Figure 11. (a) Empirical scaling of Stokes layer locations Ys, obtained by plotting the locations of streamwise
phase minima (black dots) for subcritical downstream waves over the range (ε, Re1, c−1, X) = (0.01, 2 ×
104, 0.01–0.7, 103–106); the theoretical scaling for temporal waves given by (3.14) is shown by the dashed
line, and the boundary layer thickness δ̂99 is shown by the dash-dotted line. (b) The empirical location
of the critical points Yc, normalized by c, for a range of phase speeds (1.3 < c−1 < 4) (black dots), and
(ε, Re1) = (0.01, 2 × 104), as a function of streamwise location X; the red line shows the scaling obtained
by Smith & Bodonyi (1980) with an empirical prefactor, given in (3.16).

Figure 11(a) shows that the location of the Stokes layer following this definition coincides
with the minimum phase, φ(u), of the u′ velocity mode, near the wall.

The location of the critical point Yc is a bit more complicated because the critical
layer scaling for developing flows does not follow the classical critical layer scaling for
quasi-parallel flows. However, Smith & Bodonyi (1980) studied the stability of developing
channel flow and determined the scaling of the critical point location Yc (what they refer
to as zone II, just below their 3.17) by asymptotic analysis to obey

Yc ∼ X9/20. (3.15)
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The same result can also be obtained by taking the classical Blasius asymptotic analysis
of Lin (1946), Yc ∼ (k Re)8/9, and employing the standard approximation k ∼ ū′(0)2yc
to eliminate the wavenumber dependence. Figure 11(b) shows the location of the critical
point Yc plotted against X for a wide range of phase speeds, and the empirical relationship
was found to be consistent with the asymptotic result above:

Yc ≈ 4
√

2cX9/20. (3.16)

The linear dependence on phase speed c in the prefactor is arguably consistent with an
approximately linear velocity profile very near the wall.

The intersection between the two viscous layers marks the region where the v′ modes
are expected to incline upstream, thereby producing positive forcing and streaming. By
equating the two quasi-empirical scaling relations above, we can measure the dependence
of the streamwise location of this intersection on the choice of phase speed:

X ≈ (Re1)
10/9(c−1)20/9. (3.17)

This relation is shown as the black line in figure 9(b) and illustrates how a small change
in c−1 produces a quadratically larger shift in the location of the positive forcing and
streaming.

3.5. Skin friction modification
The critical and Stokes layers development determines where they overlap spatially, which
in turn determines whether the v′ modes are inclined upstream or downstream, which
then determines the sign of the forcing and streaming. The skin friction coefficient C̄f
can be calculated directly by evaluating the mean velocity gradient at the wall. Figure 12
shows the relative variation of the skin friction coefficient ΔC̄f normalized by the skin
friction coefficient for the unforced flow, C̄f 0, as a function of the phase speed and
streamwise position, including both upstream (c−1 < 0) and downstream (c−1 > 0), as
well as subcritical (c−1 < 1) and critical (c−1 > 1), travelling waves. The region of
upstream inclined modes is outlined with the dashed line, from figure 9(a), and the
intersection line between the critical point and Stokes layer position, described by (3.16), is
marked with the solid black line, as in figure 9(b). Note the perfect agreement between the
mode inclination and the skin friction modification, where the inclination is determined
in large part by the proximity of the two viscous layers. The four mode examples explored
previously in figures 4 and 7 are also marked on the map for reference. Figure 12 also
includes a simplified, three-colour inset to indicate the sign of the very-small-amplitude
skin friction modification associated the subcritical modes, which appears white in the
main figure.

For subcritical phase speeds, upstream-travelling waves result in very modest skin
friction reduction across all streamwise locations, increasing in amplitude with X, whereas
downstream-travelling waves result in modestly increased skin friction.

For critical phase speeds, the downstream-travelling waves can result in either increased
or decreased skin friction. Moving along the streamwise direction for a given critical phase
speed, the v′ modes change inclination from downstream to upstream to downstream again,
as the critical layer starts closer to the wall than the Stokes layer, then overlaps with
the Stokes layer, and eventually moves farther from the wall than the Stokes layer. As
the inclination changes, the sign of the forcing and streaming changes, from negative to
positive to negative, resulting in the localized modification to the skin friction observed
in figure 12. Because the phase speed can be used to adjust the location at which the two

937 A10-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.108


T. Agarwal, B. Cukurel and I. Jacobi

103 104 105 106

c−1

X

−4

−3

−2

−1

4(a)

4(b)

7(a) 7(b)

0

1

2

3

4

−4

−3

−2

−1

0

1

2

3

4
(×10−2)

�C̄f  /C̄f 0

Figure 12. Relative change in skin friction (ΔC̄f /C̄f 0) as a function of X and c−1 for (ε, Re1) = (0.01, 2 ×
104). The solid black line shows the intersection of the critical and Stokes layers as given by (3.16); the region
bound by the dashed black line corresponds to upstream inclined wall-normal velocity modes as shown in
figure 9(a). The marked points refer to the modes shown in their respective figures, above. The inset shows
the overall figure with just three colours in order to indicate that the downstream subcritical perturbations,
exemplified by figure 4(b), exhibit a very slightly positive increase in skin friction, consistent with their
downstream mode inclination.

viscous layers overlap, small changes in the phase speed can alter the spatial localization
of the modified skin friction as well, providing a potentially useful technique for altering
locally the skin friction in developing flows.

3.6. Forcing strength
The significant variation in the mode inclination and thus the streaming appears to occur
in the range X ∼ 105–106, which is close to or exceeds the limit at which we anticipate
laminar flow. If the flow were indeed transitional or turbulent, then the associated turbulent
fluctuations might influence the forced modes, requiring a fully turbulent calculation
instead of the laminar calculation presented here. Nevertheless, because the Stokes and
critical layers are also observed in turbulent wall-bounded flows (see, e.g. Hussain &
Reynolds (1970) and more recently Min et al. (2006)), the basic phase principle elaborated
here is likely relevant to the wider range of Reynolds numbers seen in practical engineering
problems. Moreover, the strength of the forcing is also important to determining where the
local variation in forcing occurs, and can result in local skin friction modification even at
smaller X.

The magnitude of the forcing for both subcritical and critical travelling waves is fixed
by the pressure gradient term, (2.9). Rewriting the pressure gradient explicitly in terms of
c−1, and dropping the higher-order terms for simplicity, yields

ε sgn(c) Re−1
1 (c−1 − 1)

{
sin

[π

2
− |c Re1|−1 (X − cT)

]}
≈ − ∂p

∂X
, (3.18)
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Figure 13. Amplitude of streamwise fluctuations, |u′|, as functions of wall-normal distance for (a) c−1 = 0.01,
0.1, 0.4, 0.7, (b) c−1 = 1.3, 1.9, 2.5, 3.1, 3.7, and (ε, Re1, X) = (0.01, 2 × 104, 106). The thickness of the curves
is proportional to c−1 − 1, and circular markers depict near-wall amplitude maxima. (c) Near-wall amplitude
maxima (horizontal axis) as a function of |c−1 − 1|, depicting a linear relationship between amplitude and
forcing for small values of c−1.

where we see an explicit dependence on the three basic parameters of the problem: c−1, ε

and Re1.
The forcing increases monotonically with |c−1 − 1|. Figures 13(a,b) show the u′

amplitude profiles of the forcing for subcritical and critical modes, respectively, and
figure 13 (c) shows the relationship between the local maximum in the amplitude and the
phase speed expressed as |c−1 − 1|, where a linear trend line was added for comparison
with (3.18). The subcritical modes are described well by the linear scaling. For the critical
modes, as |c−1 − 1| increases, the nonlinear interactions within the layer become more
important than the imposed pressure forcing, and the trend peels away from the linear
approximation. Nevertheless, we can say that the increased forcing with |c−1 − 1| modifies
the relative inclination of the modes in much the same way that the Reynolds number
was shown to affect modal inclination for the blowing and suction study of Hoepffner &
Fukagata (2009). And therefore, both the spatial location X and phase speed c are expected
to influence the inclination as observed in figure 9(a).

The effect of perturbation amplitude ε and frequency Re1 on the forcing is found through
simple scaling. From (3.18), the magnitude of the pressure forcing is O(ε), and thus each
fluctuating velocity component is of that same magnitude. Therefore, the mean forcing
f (X, Y) was re-scaled with factor ε2 to make the forcing itself O(1), as shown in (2.6a,b).
We verify this predicted scaling in figure 14, where streamwise skin friction profiles for
different perturbation amplitudes ε collapse approximately when scaled with ε2. We have
considered ε = 0.1 as the maximum realistic amplitude, consistent with the experimental
validation shown above in figure 2 and substantially larger than the amplitudes used in
experiments, e.g. Hussain & Reynolds (1970), where ε ≈ 5.8 × 10−3. For perturbations
larger than ε ≈ 0.1, the critical layer scaling reported in (3.15) may need to be revised to
incorporate the nonlinear critical layer behaviour described in Haberman (1976).

Similarly, the pressure forcing in (3.18) can be rewritten in a different, stretched
streamwise coordinate, X′ ≡ X Re−1

1 , in which case the frequency is entirely incorporated
in the spatial coordinates (as was done by previous investigators, e.g. Telionis (1981),
in fully developed flows). Using this scaling, no direct Re−1

1 dependence is expected
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Figure 14. (a) Relative change in skin friction for different perturbation amplitudes ε; (b) relative change
in skin friction normalized by ε2. Amplitudes ε = 0.005 (dotted line), ε = 0.01 (dashed line), ε = 0.02
(dash-dotted line), and ε = 0.04 (solid line). All profiles calculated for (c−1, Re1) = (2.8, 2 × 104).
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Figure 15. (a) Relative change in skin friction for different frequencies Re1; (b) relative change in skin
friction for stretched coordinate X Re−1

1 . Frequencies Re1 = 104 (dotted line), Re1 = 2 × 104 (dashed line),
and Re1 = 4 × 104 (dash-dotted line). All profiles calculated for (ε, c−1) = (0.01, 2.8).

for the skin friction, aside from the coordinate stretching. Figure 15 shows the collapse
of streamwise skin friction profiles for different non-dimensional frequencies under this
scaling.

4. Conclusions

Travelling wave perturbations of a laminar boundary layer were studied numerically for
a wide range of phase speeds and perturbation amplitudes. Unlike previous investigations
that focused on the shape of the fluctuating velocity modes, the current study centred
on the steady streaming induced within the boundary layer and revealed a complex and
highly localized effect of the travelling waves on the streaming and thus the skin friction.
The streaming behaviour was explained in terms of the mode shapes of the perturbations,
via the time-averaged forcing. The mode shapes of the perturbations were shown to affect
the phase between the v′ and u′

Y modes that determine predominantly the sign of the
mean forcing and the sign of the resulting streaming. The mode shapes were explained
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heuristically in terms of the direction of wave propagation and the viscous effects on
transport within the boundary layer. The heuristic analysis of the mode shapes can be
seen as an extension of the analysis considered previously for travelling wave suction and
blowing presented by Hoepffner & Fukagata (2009), in which the mode inclination is the
crucial element for understanding the nature of the mean induced forcing.

The heuristic explanation of the mode shapes and forcing was applied to both subcritical
forcing, in which only a classical Stokes layer forms, as well as critical forcing, in which a
critical layer also develops. For the subcritical forcing, upstream-travelling waves resulted
in negative streaming associated with the downstream inclination of the induced velocity
modes, whereas downstream-travelling waves resulted in positive streaming associated
with the upstream inclination of the velocity modes.

For the critical forcing, the presence of a critical layer was shown to modify the
inclination of the velocity modes by introducing a phase jump in the u′ mode, the sense
of which was dependent on the inclination of the v′ mode. The inclination of the v′
modes for the critical layer case was shown to depend on the proximity of the two viscous
layers, which meant that the inclination of the v′ modes and thus the streaming varied
with streamwise extent for a fixed phase speed. When the two layers coincided, the v′
modes were inclined upstream, similar to the subcritical downstream-travelling modes,
resulting in positive streaming. For distinct layers, the v′ modes were inclined downstream,
producing negative streaming.

Adjustments to the phase speed of the disturbances resulted in quadratically larger
modifications to the spatial location of variations in the streaming and local skin friction.
The quadratic sensitivity of the localized skin friction variation to phase speed was
described by a quasi-empirical relation relating the Stokes and critical layer variations
for developing flows.

The ability to target regions of even modestly increased skin friction on aerofoils may
be important for preventing or delaying separation in flows with strong pressure gradients,
including the critical layer flows over stators described by Evans (1977), and the boundary
layer flows in the presence of free-stream vortex shedding described by Savill & Mumfordt
(1988). The spatially localized interaction between critical and Stokes layers can have
significant influence on the mean velocity profiles in a wide range of travelling wave
systems.
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Appendix A. Grid convergence

A grid convergence study was performed to optimize the size of the grid in all three
dimensions (streamwise, wall-normal and time). Grid resolutions were refined serially by
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Figure 16. Variation of the GCI with spatial and temporal resolution: (a) ΔX, (b) ΔY , and (c) ΔT , for
(c−1, Re1, ε) = (2.8, 2 × 104, 0.01), at two X locations, 5 × 104 (dash-dotted lines) and 5 × 105 (dashed

lines).
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Figure 17. The GCI calculated on the basis of the skin friction modification (ΔCf /Cf 0) for variations in
streamwise grid size (ΔX) for (c−1, Re1, ε) = (2.8, 2 × 104, 0.01), at two X locations, 1 × 105 (dash-dotted
line) and 6.3 × 105 (dashed line).

factors of 2. Values of the grid convergence index (GCI) were calculated following the
approach of Roache (1994).

Two convergence parameters for the GCI were defined: the first based on the average
value of the amplitude of streamwise fluctuations in the near-wall region, to check the
convergence of the fluctuating modes, and the second in terms of the skin friction
modification, in order to confirm that the streaming behaviour was also adequately
converged.

Convergence of streamwise amplitude was confirmed at two X locations for typical
values of c−1 and Re1. Figure 16 shows the GCI variation with resolution in all three
dimensions at both X locations. Ultimately, grid resolutions (ΔX, ΔY/

√
Re1, ΔT ×

2π Re1) = (320, 0.067, 10−4) were found to provide GCI values approximately equal to
0.01. It should also be noted that GCI requirements control the spatial grid resolution,
whereas the temporal resolution is determined ultimately by stability requirements for the
time stepping.
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Figure 18. The streamwise diffusion neglected under the boundary layer approximation, ∂2ū/∂X2, is plotted
relative to the diffusion associated with the streaming velocity, ∂2ūs/∂Y2, as a function of X and c−1 for
(ε, Re1) = (0.01, 2 × 104); the isocontour lines represent levels of 10−1 (dotted line) and 10−2 (dash-dotted
lines). The region to the right of the isocontours represents where the neglected streamwise diffusion is one or
two orders of magnitude smaller than the measured streaming diffusion.

The GCI for relative change in skin friction is shown in figure 17 at two different X
(Reynolds number) values, both of which are smaller than the accepted threshold of 0.01,
as noted above.

Appendix B. Boundary layer assumption consistency

In order to established the self-consistency of the boundary layer approximation with
streaming, one must compare the retained wall-normal diffusion term for the streaming,
∂2ūs/∂Y2, to the neglected streamwise diffusion term for the velocity without forcing,
∂2ū0/∂X2, in order to make sure that the measured streaming effect is larger than the
neglected streamwise diffusion. This comparison is based on the construction of the
momentum balance for the streaming itself.

Staring with the full streamwise momentum equation (including streamwise diffusion),

ū
∂ ū
∂X

+ v̄
∂ ū
∂Y

= f (X, Y) + ∂2ū
∂Y2 + ∂2ū

∂X2 , v̄(X, Y) = −
∫ Y

0

∂

∂X
ū(X, s) ds, (B1a,b)

with the mean velocity ū decomposed into the streaming component ūs and the unforced
solution ū0, an equation for the streaming itself can be constructed by subtracting the
unforced solution to obtain

ūs
∂ ū
∂X

+ v̄s
∂ ū
∂Y

+ ū0
∂ ūs

∂X
+ v̄0

∂ ūs

∂Y
= f (X, Y) + ∂2ūs

∂Y2 + ∂2ū
∂X2 . (B2)

The advective terms on the left-hand side involve advection of the mean flow by the
streaming, as well as advection of the streaming by the base (unforced) flow, both of
which are not significant influences on the development of the streaming itself, as reported
by Telionis & Romaniuk (1978). Therefore, the appropriateness of the boundary layer
assumption can be assessed by comparing the neglected term, ∂2ū/∂X2, to the remaining
streaming term on the right-hand side, ∂2ūs/∂Y2.
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There are two ways to accomplish this comparison. By dimensional scaling, Telionis
(1981) showed that this requirement is equivalent to

Re1 � ε−2. (B3)

And in our calculations, Re1 = 2 × 104 with ε−2 = 104. The requirement is thus satisfied
only marginally (to the same degree of satisfaction exemplified in Telionis (1981), p. 212).
However, this single check does not capture variations with phase speed (because the
dimensional analysis assumes a single time and length scale).

A more robust way of checking this requirement is the direct comparison of two terms
from the momentum equation noted above. We compared the mean magnitude of these
two terms as a function of Reynolds number and phase speed, as shown in figure 18. The
region to the right of the dotted and dash-dotted black lines corresponds to cases where the
neglected term is one or two orders of magnitude smaller than the streaming term, thus in
this region we can have high confidence that any error associated with the boundary layer
assumption is negligible compared to the measured streaming effect. The region where the
streaming is comparable to the boundary layer assumption error is the region where the
streaming effect is itself negligible.
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