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Abstract

Let S be a locally compact semigroup and M(S) its measure algebra. It is shown that the
dual M(S)* is isometrically order isomorphic to the space GL(S) of all generalised functions on S
first introduced by Sreider (1950). Moreover, convolutions of elements in each of the spaces
M(5)* and GL(S) can be defined in such a way that the above isomorphism preserves
convolutions. These results on representation of functionals in M(S)* by generalised functions
practically open up a new chapter in abstract harmonic analysis. As an example, some
applications to invariant means on locally compact semigroups are given.

1. Introduction

Let S be a locally compact semigroup with jointly continuous multiplica-
tion and M(S) its measure algebra with convolution as multiplication. In this
paper, we show that the dual M(S)* is isometrically order isomorphic to the
space GL(S) of all generalised functions on S introduced by Sreider (1950).
Moreover, convolutions of elements in each of the spaces M(S)* and GL(S)
by measures in M(S) can be defined in such a way that the isomorphism
preserves convolutions (see §2 for definitions and details). As a consequence,
we prove that S is left amenable (i.e. M(S)* has a topological left invariant
mean) if and only if GL(S)* has a topological left invariant mean. Other
results in this direction are also obtained.

2. Generalised functions

For basic notations and terminologies on integration over locally com-
pact space, we shall follow Hewitt and Ross (1963) unless stated otherwise.
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Let S be a locally compact space (no semigroup structure as yet) and M(S)
the Banach space of all bounded regular Borel (signed) measures on S with
total variation norm. For each fi E M+(S) = {fi E M^S): ix ^ 0}, let L.(/LI) be
the Banach space of all bounded Borel measurable (real-valued) functions on
S with essential supremum norm ||/||M,» = inf(,(N)«osupJI2N|/(jc)| = inf{a g 0:
{xES:\f(x)\>a} is /x-null} [see Hewitt and Ross (1963), §12.11]. Note
that null sets and locally null sets for /x are the same since measures in M(S)
are finite. Hence two functions define the same class in L.(/*) if they are equal
fi-a.e. (that is, almost everywhere with respect to n). If ft £ M(S) and
/ £ M | / i |), we write | | / |U for | | / |U« for brevity.

Consider the product linear space n{L.(| pt |): /u. G M(S)}. An element
/ = ( / J I . E M ( S ) in this product is called a generalised function on S if the
following conditions are*satisfied:

and

(a) II / II = SUPII fn IL* < x where the supremum is

taken over all /x E M(S).

(b) If fi,vE M{S) and /x <s v, then /„ = /„ | /i. |-a

Here /x < v means fi is absolutely continuous with respect to v, that is,
| is. | is absolutely continuous with respect to | v \ in the sense of Hewitt and
Ross (1963, §14.20). Notice that if condition (b) holds for a pair of functions /„
and f^ then the same holds for any other pair fl, fl such that fa, fl belong to
the same equivalence class in L*(| fi |) and /„ fl belong to the same
equivalence class in L«(| v \). This is because | v \(N) = 0 implies | fi \(N) = 0
for any Borel set N. Therefore fl and /'„ determine the same class in L«(| ii |).

Let GL (S) denote the linear subspace of all generalised functions on S. It
is straightforward to show that GL(S) is a Banach space with norm
H/ll = sup,, || fa ||M,«. Moreover, because of condition (b), the same norm is also
given by ||/| | = sup,^, \\fa |U- Since if n E M(S), fi^O, then v = n/||/x ||«s M.
fi < v and v has norm 1.

We introduce an order in GL(S) by saying that a generalised function /
is non-negative (/gO) if for each /* E M(S), / , g 0 in Ml/* I) (That is
fa ^0\n \-a.e.). The generalised function / such that fa = l for each
H E M(S) is again denoted by 1, as is the functional F £ M(S)* such that

The next theorem is due to Sreider (1950) who first proved it for locally
compact abelian groups (with countable basis). The general case is proved in
exactly the same way with an elegant use of the Radon-Nikodym Theorem.
We include the proof here for completeness.
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THEOREM 2.1. (Srelder, 1950). For each bounded linear functional FG
M(S)*, there is a unique generalised function /G GL(S) such that

= I for any n G M(S).

Moreover | |F| | = ||/||.

PROOF. For each /x G M(S), F induces a bounded linear functional F^ on
{v G M(S): v<\n\}= L,(| /x |) by Radon-Nikodym Theorem. Hence there is
a function f^ G L«(| ii |) = Li(| ju. |)* such that FM(v) = F(v) = f f»dv for any
vELi(\fi\). In particular F(fi) = f f^d/u.. We claim that /=(/M)^eM<s) is a
generalised function. Let /x, y G M(S) and IL < v. For any o- G Li(| /n |), we
have a < /x and cr <̂  .̂
Hence

J Udo- = F»{<T) = F(cr) = F,(a) = | fjor.

Therefore /„ = /„ | /x |-a.e.
Also, for any /x G M(S), ||/^ |U» = ||F^ || = supO/vC*')!: v < fi,\\ v | | s 1}^

sup{|F(i»)|: | |v| |si}S||F|| . Thus f E GL(S) and | | / | |S | |F | | . On the other
hand | |F| | = supnM||Si|F(/x)| = sup|ĵ .||S1 |//Md/x| S supn̂ naiH/̂  ||^,»-||ii || S ||/||.
Consequently, | |F| | = ||/||.

Finally, to show uniqueness, let fgEGL(S) be such that F(/x) =
f fad/A = /g^d/x for any /x G M(S). If a < /x, then

J f»d<r = j fado- = j

which implies that /^ = gM in L,(| yu, |).
Hence / = g.

As a consequence, we have the following

THEOREM 2.2. Let T: GL(S)^ M(S)* be defined by
/x G M(S), / G GL(S). Then T is an isometric order preserving isomorphism of
GL(S) onto M(S)* such that T(l) = 1. Moreover Tf(v) = J frdv if v < p.

PROOF. Let / G GL(S). We first show that Tf is linear. Observe that if
li, v E. M+(S), then p < n + v, v < fi + v and fi <§ a/x if a > 0. Therefore

= J /M+,d(M + i;) = | /^.d/i + J

= J f.dfL + j fjv =
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and

= affadp = a(Tf)(p.)

(which is obvious if a = 0). Hence Tf is additive and non-negative homogene-
ous on M*(S) and has a unique linear extension to M(S) given by

- j fa2dfi2

where /x, = (\ fi | + fi)/2 and /x2 = (\ fi | - /i)/2 (so that jtiSO, /n2^0,
M = /X! - jtt2, |M I = Mi + ^2 a n ^ Mi ^ M> M2*̂  M)- Thus Tf is linear. It is also
bounded. In fact | Tf(ix)\ g ||/^ ||̂ .» • || fi || for any /A £ M(S). Hence || Tf\\ ^
supiiM|ai||/n IU« = H/ll- Clearly, the map T is bounded linear. Theorem 2.1
shows that T is onto and hence an isometry. Obviously, T preserves order
and T(l)= 1. This completes the proof.

Let BM(S) be the Banach space of all bounded Borel measurable
(real-valued) functions on S with supremum norm. Each / £ BM(S) can be
regarded as a generalised function on S if we define fa = f for any /u. G M(S).
Thus BM(S) can be embedded in GL(S) = M(S)*. The restriction of the
map T to BM(S) is precisely the same embedding of BM(S) into M(S)*
considered in Wong (1973, §5).

3. Convolutions

From now on, S will be a locally compact semigroup with jointly continu-
ous multiplication. For'/ £ BM(S), s £ S, we define as usual the left and right
translations /s and r, by 4/(0 = f(st), rsf(t) = f(ts), t £ S. Let CB(S)CBM(S)
be the space of all bounded continuous functions on 5. It is known that both
BM(S) and CB(S) are translation invariant. Let LUC(S) be the space of left
uniformly continuous functions in CB(S). That is f E LUC(S) if / £ CB(S)
and the map s —* l,f is norm continuous from S into CB(S) with supremum
norm. RUC(S) is defined similarly. Again both LUC(S) and RUC(S) are
translation invariant.

Let / £ BM(S) and fi £ M(S). We define left and right convolutions /„
and r^ by l^f = fiQf and rM/ = / O fi where

= j f(st)dfi(t)=j I4dp..
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Note that /f(ts)dfi(t) may not be defined for every s G S. However, by
Fubini's Theorem, for each v £ M(S), it is defined everywhere outside some
| v |-null set. Putting it equal to zero where it is not defined, we obtain a
bounded Borel measurable function ^ O/\with \\n O / | | ^ || ft || -||/||. This
function depends on the | v |-null set but it is easy to see that fi.Qf
determines uniquely an equivalence class in LJ\ v |).

If / belongs to CB(S) or LUC(S) or RUC(S), then ^ 0 / ( s ) =
J f(ts)dfj. (t) is defined everywhere on S and is a function of the same type (see
for example Williamson (1967) and Glicksberg (1961)). Similar remarks hold
for fOfi(s) = ff(st)dp(t).

Convolutions of functionals in M(S)* and measures in M(S) are defined
as in Wong (1969). If FGM(S)*, fi £ M(S), we define iF = fiQF and
r,LF=FQfi by (i O F(i>)= F(/JL * v) and F0|i(v)=F(v*(i), v £ M(S).
Again | | M O F | | g | | M | | - | | F | | and | | F O M | | ^ | | F | | - | | M ||.

To define convolutions of generalised functions and measures, we need
the following result also due to Sreider (for commutative groups).

LEMMA 3.1. (Sreider) Let fi, v and a be measures in M*{S). If ft < v, then
cr * ft < <r * v.

PROOF. Let £ be a Borel set with cr*i'(£) = 0. If £E denotes the
characteristic function of E, then by Hewitt and Ross (1963, Theorem 19.10),

a* v(E)= I gEd(T * v

= j a(Er')dv(t) =

Hence <r(Et ') = 0, v-a.e. But n < v. Therefore a(Et ') = 0 fi-a.e. and
a*fi (E) = f a(Et~l)dfi (t) = 0. This completes the proof.

REMARKS. Theorem 19.10 as proved by Hewitt and Ross (1963) for
locally compact groups is also valid for locally compact semigroups with
jointly continuous multiplication. The proof carries over without change. This
extension of Theorem 19.10 will be used again very often without mention. Of
course, here Et1 is the set of all elements s in S such that st belongs to E.

Now let fGGL(S) and fi £ M+(S). Define (i O / £ II{L.(| v |): v £
M(S)} as follows:

If v E M+(S), we let (fi (•)/)„ = /i O/^.v £ L*,(v). This is independent of
the representative f ̂ .vin L«(M- * ")• F° r K f*«» = f !>»» P * v-a.e., then for any
a £ M+(S), a <§ i>, we have, by Lemma 3.1, /i * cr < fi * v. Hence /„.,. = /^.^
u *<r-a.e. Therefore

https://doi.org/10.1017/S1446788700017377 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700017377


[6] James C. S. Wong 89

I fiOfi-M(r= I fl.vdfi*(T

= I f^.^dji * cr = I /

for any a £ M+(S), cr < v. This means that ju. ©/,!.„ = /x ©/„.„ i/-a.e.
In general, if v £ M(S), we define (/J. Of), = (n Of)M. We claim that

/x © / is a generalised function.
Suppose cr, v E M*(S) and cr < v. Then /x*cr<gju.*>; by Lemma 3.1.

Hence /„.<, = /„.„ /x * o--a.e. Now for each T £ M+(S), T ^ cr, then /x * T <̂
jLt * cr and so f^.a = /M.,, /x * r-a.e. Consequently

u.CTdu * T

This implies that /u. ©/„.<, = /x O/M... | o- \-a.e. or (/z ©/)„ = (fi Of)* \ a- \-a.e.
The same is true if cr, v are in M(S).

On other hand, for each v £ M(S), we have \\(n Of), | | ^g ||/i || • ||/^.J|^.,...
So ( t 0 / is a generalised function and

By similar arguments, it is easy to show that the map /x—>/x©/ is
additive and non-negative homogeneous on M*(5) into GL(S) and hence has
a unique linear extension also denoted by /x O / = /„/. Clearly /x O / is bilinear

Similarly, we can define /O/x = rM/ and obtain similar results.

THEOREM 3.2. TTie isomorphism T: GL(S)^> M(S)* commutes with
convolutions. More precisely T(/x ©/) = /u © Tf and T(f O/x)= TfO/x for
any / £ GL(S) and /x £ M(S).

PROOF. If / £ GL(S) and /u. £ M(S), we have

= T/(M * i/) = (/x O
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for any vEM(S). Hence T(/x O/) = y, O Tf. Similarly for T(/Oii) =
TfOfi.

4. Applications to invariant means

A linear functional M on M(S)* is called a mean if M(F) i? 0 whenever
F S 0 and M(l) = 1. It is called topological left invariant if M(ii O F) = M(F)
for any F G M(S)* and it E M,,(S) = {fi E M(S): it g 0 and || it || = 1}. To-
pological left invariant means on CB(S) or LUQ(S) or RUC(S) can be
defined in a similar way.

A linear functional m in GL(S)* is called a mean if m(/)gO whenever
/ g 0 (in GL(S)) and m(l) = 1. It is topological left invariant if m(/x O/) =
m(/) for any /G GL(S) and /x G M(,(S). Since T is an isometric order
isomorphism of GL(S) onto M(S)* which commutes with left convolution
and T(l) = 1, it follows that M(S)* has a topological left invariant mean
(TLIM) if and only if GL(S) has one. This gives yet another characterisation
of a locally compact left amenable semigroup (i.e. one for which M(S)* has a
TLIM, see Wong (1969) for more details). We summarise this discussion in
the following:

THEOREM 4.1. GL(S) has a TLIM if and only ifM(S)* has a TLIM. In
this case, the adjoint T* of T maps the set of all TLIM on M(S)* onto that of
GL(S).

For each it E M(S), let L*(| fi\)= L,(| it |)* be endowed with the weak*
topology. The product weak* topology of n{L»(| it |): it E M(S)} is called the
weak* operator topology.

THEOREM 4.2. The map T: GL(S)—> M(S)* is a homeomorphism when
GL(S) has the weak * operator topology and M(S)* has the weak * topology.

PROOF. Suppose /" is a net in GL(S) such that f —> / in weak* operator
topology of GL(S). Let xi G M(S), then /"->/„ weak* in M|/A |). In
particular, / f'dfj. -> / f^dfi. Hence Tf{p)-+ Tf(fi) for each ti G M(S) or
Tfa —» T/ weak* in M(S)*. Conversely, assume this is true. Let n G M + (5)
and v E L ,(ti). Then v <§ ti and

fldv = j f~.dv = Tf°(v)^ Tf(v) = I fjp = j Udv.

That is /;; —>/M weak* in L,C(AO. For general p. E M(S), we have /" =
/^I~*/IM' = /M weak* in L«(| it |). This completes the proof.

In Wong (1969), a locally compact semigroup 5 is called topological right
stationary if for each F E M(S)*, there is a net it» G M,,(S) such that FOit,,
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converges weak* to a constant function in M(S)*. It is shown that S is
topological right stationary if and only if M(S)* has a TLIM Wong (1969,
Theorem 3.1). Therefore we have

THEOREM 4.3. The following statements are equivalent:
(a) M(S)* has a TLIM
(b) S is topological right stationary
(c) GL(S) has a TLIM
(d) For each / £ GL(S), there is a net /*„ G M0(S) such that /O/x-

converges to a constant function in weak* operator topology of GL(S).

PROOF. The equivalence of (a) and (b) follows from Wong (1969,
Theorem 3.1) and that of (a) and (c) follows from Theorem 4.1. Also (b) and
(d) are equivalent by Theorems 4.2 and 3.2 and the fact that T(l) = 1.

Next, we want to generalise a well-known result for locally compact
groups which states that if G is a locally compact group, then L^(G) has a
topological left invariant mean if LUC(G) has a topological left invariant
mean (see Greenleaf (1969) where LUC(G) is denoted by UCBr(G) and
functions in UCB,(G) are called right uniformly continuous).

For locally compact semigroups of course, we consider the space M(S)*
instead of L,(S) since the latter is not available in the absence of a Haar
measure. (However for the group case, existence of TLIM on Lr(G) or
M(G)* are equivalent, see Wong (1969, Theorem 3.1). Also our result is valid
for only a special class of locally compact semigroups which admit absolutely
continuous probability measures.

A measure /x £ M(S) is called left absolutely continuous if the map
s —> e, * fi of S into M(S) is norm continuous, where e, is the Dirac measure
at s. Let M'a(S) denote the space of all left absolutely continuous measures in
M(S). In case G is a locally compact group, M'a(G)= Ma{G)= L,(G). [See
Hewitt and Ross (1963, §19.27) and Wong (1975).]

First we establish the following, a special case of which can be found in
Hart (1970). The proof of the general case is the same.

L E M M A 4 . 4 . Let /LA £ Ml(S)r\ M»{S) and vEM + {S). If x £ s u p p v

(support of v), then ex * /x < v * /x.

PROOF. Again we include the proof for completeness. Let E be any
Borel set, x £ supp v and assume FX * /x (E) > 0. For any s £ S, e, * /x (E) =
/tj,.:(st)dn(t) and

v*fi(E)= I J £l(st)dv(s)dfi(t)= ( e,*n{E)dv(s).
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Now the function s —» es * /x (E) is also continuous. Therefore there is some
compact neighbourhood K of s such that es */u,(£)g S > 0 for any s G K.
Hence

JK

since K contains an open set which intersects supp v.

LEMMA 4.5. 7/ FEM(S)*, /u. G M i ( S ) D M,,(S), rfien F(u*fi) =
/ F(es * /LI )d»/(s) /or any »/ G M(S).

PROOF. First observe that the function s -» F(es * /x) is in CB(S) and the
integral is therefore finite. Let / G GL(S) be such that F(a) = Jf^da;
a G M(S). Then for v G M+(s),

F(v*fi) =

= f f /r,. ( .dEl*MdI;(s)= f
Jsuppv J J

where we have used the preceding Lemma in the fourth equality. It follows
that the same is true for all v G M(S).

REMARKS. 1. Lemma 4.5 is also proved in Baker and Baker (1972,
Lemma 2.2) under slightly different assumption on |/u.|, namely, the con-
tinuity of the maps s —» ss * | n | (K) and s —» | /u. | * es (K) for each compact set
K (continuity of s-*\p.\*es(K) is really not needed). Whereas here we
require the continuity of the map s —» es * /LX. in the norm topology of M(S)
(note the presence of /x instead of | /i |). From the proof of Lemma 4.4 (on
which Lemma 4.5 depends), it is easy to see that all we need here is the
continuity of the map s —> es *ix(K) for each compact set K since absolute
continuity of measures can be defined in terms of compact sets [see Hewitt
and Ross (1963, Theorem 14.19 and Definition 14.20)]. Of course, the
function F(es*/u.) of Lemma 4.5 is no longer continuous, but is bounded
measurable j v \-a.e. Also, the continuity of the map s —* es * | /JL \(K) implies
that of s —»• es * ix (K) since (i <£ \ n \ [see Baker and Baker (1970, Theorem
3.2)]. However, the converse is not known [cf. Hart (1970, Lemma 3.5 and
Theorem 3.8)].

https://doi.org/10.1017/S1446788700017377 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700017377


[10] James C. S. Wong 93

2. For the special case of a locally compact abelian group, Saka (1974,
Lemma 3) obtains the same result under yet another different but more
general assumption on | /u. |. Namely, continuity of the map 5 —* es * | fj. |(C) for
each C in a pre-Raikov system for M(S) [see Saka (1974) and SreTder (1950)
for definition] which in particular includes the system of compact sets. Both
Baker and Baker (1972) and Saka (1974) make use of this result to study
properties of certain subalgebras of M(S) analogous to those of group
algebras (e.g. approximate identities, semi-characters and semi-simplicity).

We now present yet another application of Lemma 4.5:

THEOREM 4.6. Let S be a locally compact semigroup with jointly continu-
ous multiplication such that M'a (s) D Mn(S) ^ 0. Then M(S)* has a topological
left invariant mean if and only if RUC(S) has a topological left invariant
mean.

PROOF. Assume that RUC(S) has a TLIM. Let fi G M'a(S)nM0(S) be
fixed. For FGM(S)*, define f(s) = F(e5 */i). Then feRUC(S) since

Let m be a TLIM on RUC(S). Define M{F) = m(f). Clearly M is a
mean on M(S)*. Now for each v G M0(S), we have

vQf(s) = j f(ts)dv{t) = j F(EU *fi )dv{t)

= J F(e,*VL)d{v*e,)(t)=F(v*e,*tL)

by the preceding Lemma. Therefore M(vOF)= m(vQ/) = m(f)= M(F)
for any v G M0(S) and FG M(S)* on M is a TLIM on M(S)*.

The converse is obvious (by restriction) and is true even if the assumption
that Mi(5)nM, , (S)^0 is dropped. [See Wong (1975) for examples of
locally compact semigroups which admit absolutely continuous probability
measures].
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