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ABSTRACT: This paper proposes a redefinition of interfaces as dynamic, adaptive systems crucial for managing
the increasing complexity of modern systems. Drawing on diverse domains, the paper identifies key interface
properties such as adaptability, cost-efficiency, and error response. The paper introduces a novel Generic Interface
(GI) architecture, utilizing a model-based systems engineering approach. The GI architecture features modular
components, designed to handle integration, data management, and error resolution. A case study of smart grids
demonstrates the effectiveness of the GI architecture in addressing challenges like integrating diverse energy
sources, ensuring grid reliability, and enabling demand response. The proposed GI architecture provides a robust
framework for integrating complex systems, emphasizing adaptability, cost optimization, and error response.
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1. Introduction
As modern systems evolve, their increasing complexity and integration requirements necessitate a significant
focus on the interfaces between subsystems to support diverse interaction patterns. Integrating components from
various sources in system development often presents challenges like data incompatibility, communication
protocol mismatches, and difficulties in synchronization, dependency management, security, error handling, and
debugging. Integrating diverse components requiring real-time decision-making, adaptability, and scalability,
further complicates the challenges. This situation is further exacerbated in future scenarios where diverse ad-hoc
socio-technical systems will operate (Reich et al., 2023; Tozic & Reich, 2023).
Traditional interfaces, often seen as static connectors of importance secondary to the system’s components,
may struggle to handle these complexities effectively; they are inadequate for meeting the dynamic
requirements of systems like Smart Grids, where scalability, adaptability, and real-time interaction are
essential. Using Smart Grids as a case study, this work illustrates how defining the concept of an interface can
tackle future system engineering challenges and support the evolving needs of complex systems.
Rather than focusing on modular adaptable or self-organizing system architectures, this research focuses
on the interfaces between the system’s components; it redefines interfaces as dynamic, adaptive systems
that effectively manage diverse interactions, error responses, and system scalability; such interface is
termed ‘Generic Interface (GI).’ The paper presents GI design guidelines and architecture as new
concepts in system engineering. By combining model-based systems engineering (MBSE) to develop the
GI architecture and demonstrating it with real-world applications, this study lays the groundwork for a
new generation of system interfaces that prioritize flexibility, efficiency, and adaptability.
The remainder of this paper is organized as follows: Section 2 reviews the literature on traditional
interfaces and relevant domains. Section 3 redefines the concept of an interface and discusses the key
properties of interfaces in complex systems. Section 4 outlines the methodology for developing the
Generic Interface (GI) through a Smart Grids case study. Section 5 presents the GI architecture through
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its application in Smart Grid systems, demonstrating scalability and adaptability. Section 6 discusses
some issues and future work while Section 7 summarizes key contributions.

2. Literature review
This section examines the traditional definition of an interface and, subsequently, existing research on
interfaces across various disciplines leading to a comprehensive understanding of their current limitations
and the need for a new Generic Interface definition.

2.1. Traditional interfaces
An interface can be defined as “(1) the place at which independent and often unrelated systems meet and act on
or communicate with each other [and] (2) a surface forming a common boundary of two bodies, spaces, or
phases” (Merriam-Webster, 2024). The words inter and face combined mean the common boundary of two
components. A definition that diverges slightly from those considers an interface as an element that unrelated
components use to interact. This position allows a more elastic view of interfaces that depends on the granularity
of the perspective in which we view the interface (Engel & Reich, 2015). For example, considering Figure 1(a),
the interface could be defined as the bolts and the gaskets between the flanges. Another definition may consider
the interface as the six flanges and a third definition would consider the Tee Pipe with its three flanges as the

interface. Figure 1(b) defines the interface as the welding between the two pipes.
Interfaces may serve several purposes. They provide physical connection and support and may transfer
energy, information, and material (Eppinger & Browning, 2012; Engel & Reich, 2015). These interfaces
are often defined by fixed protocols, rigid specifications, and pre-determined roles within the system
architecture. Their design tends to focus on ensuring compatibility at the time of system development,
often at the expense of long-term scalability and adaptability. Traditional interfaces are typically
conceptualized as static, often standardized, connectors between system components. While effective in
structured, predictable environments, traditional interfaces are inflexible to adapt to dynamic conditions,
evolving requirements, or unexpected interactions.
The traditional way to deal with integrating diverse components and adapting systems to new
requirements is by using standardized interfaces. They allow replacing one module with another having
similar or improved functionality without changing the interface (Martin & Ishii, 2002). However,
systems including standard interfaces have cost associated that need to be considered (Engel & Reich,
2015), hence providing limited support over future needs.
As systems become increasingly complex and interconnected, the limitations of traditional interfaces—
such as difficulty in integrating new components or managing real-time interactions—highlight the need
for more advanced, adaptive interface models capable of meeting the demands of modern engineering
systems.

2.2. Innovative approaches to interface design
TRIZ, the Theory of Inventive Problem Solving (Petrov, 2019), provides insights into innovative
problem-solving through principles derived from patent analysis. TRIZ has been previously applied to
interface design, for example, TRIZ principles were used to resolve conflicts in interfaces between

Figure 1. Two types of interfaces (Engel & Reich, 2015)

2692 ICED25



components (Wits & Vaneker, 2011) or to improve different properties of user interfaces (UI) (Mishra,
2009). More importantly, applying TRIZ principles to interface design offers a fresh insight into
interfaces as a system. TRIZ principles such as “Intermediary” and “Another Dimension” suggest
viewing interfaces not only as points of connection but as systems in themselves. This conceptual shift
enables the application of TRIZ principles to enhance interface functionality and adaptability. TRIZ
principles like “Dynamics,” “Universality,” “Beforehand Cushioning,” and “Self-service” highlight the
need for interfaces to be adaptable, multi-functional, capable of error handling, and self-sustaining. These
properties form the foundation for a new interface definition capable of meeting the demands of complex
systems. By applying TRIZ principles, interfaces are seen as dynamic systems that actively contribute to
the overall performance and adaptability of their parent, larger system. By treating interfaces as systems
governed by TRIZ rules, interfaces are not just connectors; they are versatile, adaptable systems that
enhance the overall system’s resilience, scalability, and ability to evolve in response to new challenges.

2.3. Interfaces in SoS modeling and Multi-Agent Systems
Research on Multi-Agent Systems (MAS) emphasizes the importance of obligation relations between
agents (Gutierrez-Garcia et al., 2010). This concept can be applied to interface design, where interfaces
act as facilitators of these obligations by enabling communication and interaction between system
components, ensuring each component fulfills its responsibilities. By integrating the concept of
obligation relations into the design of interfaces, we can create systems that are not only adaptable and
scalable but also capable of maintaining a high level of coordination and efficiency. Interfaces, in this
sense, become the backbone of the system’s communication and interaction framework, ensuring that all
agents can fulfill their obligations effectively, thus contributing to the system’s overall stability and
performance. Similarly, the SPEEDS project (Engel et al., 2008) introduces the concept of contracts
composed of assumptions and promises to manage interactions between system components. This
approach can be used to define clear expectations for interface behavior, enhancing reliability and
predictability in system interactions.
While interfaces in complex systems have been studied from various perspectives, with emphasis on
structured frameworks, modularity, and real-time data exchange, these approaches provide valuable
insights into managing interactions across system components (Fosse & Delp, 2013; Shen & Su, 2012).
They often treat interfaces as fixed or narrowly defined connectors, limiting their adaptability in dynamic
environments. Current research has yet to fully address interfaces as adaptive, context-sensitive
components that can evolve alongside system demands, responding both to immediate operational needs
and future scalability. This work aims to bridge this gap by redefining interfaces to enhance both real-
time flexibility and long-term adaptability.

2.4. Financial and contractual perspectives in interface engineering
The AMISA project (Engel & Reich, 2015) introduces the concept of treating interfaces as “real options”
in financial terms. This approach allows system designers to evaluate the cost and value implications of
interface and module choices, enabling strategic decision-making regarding upgrades and modifications
while maintaining overall system efficiency. The AMISA project, through its Architecture Options
framework, expands the definition of interfaces by integrating financial evaluation and strategic planning
into its design. Interfaces are highlighted as vital components contributing to the system’s long-term
adaptability, scalability, and cost-efficiency. This approach underscores the role of interfaces as dynamic
and strategic elements within complex system architectures.

2.5. User Interfaces (UI) and system interface definition
User Interfaces (UI) provide insights into how interfaces can be designed to facilitate intuitive and
efficient user interactions (Beaudouin-Lafon, 2004). Modern UIs are characterized by adaptability,
personalization, and context-awareness, highlighting the need for interfaces to be responsive to user
needs and system changes (Mishra, 2009). The example of a scrollbar on a web page, which acts as a user
interface element between the user and the content displayed serves as an interactive tool that
enhances user experience by translating actions like scrolling into system responses. This example
reinforces the argument that a UI is more than a passive conduit for user commands; it actively shapes the
interaction by offering intuitive controls and real-time feedback.
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The UI’s design reflects modularity, allowing for the dynamic connection and disconnection of
components, which enables the integration of new modules or isolation of faulty ones without disrupting
the entire system. Ultimately, the UI transforms the traditional concept of an interface from a basic
connector to a sophisticated component essential for system operation. It manages and optimizes
connections, ensuring adaptability, scalability, and security over time, marking a significant evolution in
the definition of interfaces needed for modern, complex systems.

2.6. Summary of literature review
In reviewing the various perspectives from the literature, we identified three key themes essential for
effective interface design: adaptability, cost, and error response. Table 1 summarizes these themes, with
each property defined based on insights from TRIZ, SoS, MAS, and other relevant studies. This
structured approach guarantees that the assumptions supporting our new interface definition are both
comprehensive and rooted in existing research.
Despite the contributions related to the properties summarized in Table 1, there remains a void for a
design methodology of adaptive and evolving interfaces for supporting the evolution of complex
systems. We further note that while we focus in this paper on three properties, introducing additional
properties could be handled as well with our approach.

3. Interfaces: redefinition and characteristics
This section proposes a new broad definition of an interface, considering the insights from the literature
review. An interface is a dynamic boundary that enables interaction and communication between
different systems, modules, or components. This definition encompasses both simple connectors, like
how LEGO units connect, and complex mechanisms, such as subway control systems, which manage
intricate interactions. Interfaces can be classified as simple or complex. A complex interface not only
mediates but also provides error handling, supports connections across various mediums, and engages in

Figure 2. Scrollbar as an example of an instrumental interaction (Beaudouin-Lafon, M., 2004)

Table 1. Interface properties that emerge from the literature

# Property Description Sources

1 Adaptability An adaptive interface can connect with new
modules using different communication protocols,
requiring hardware and software integration for
interpretation and adjustment.

TRIZ – Dynamics, Gutlérrez-Garcia
(2010), Engel et al. (2008), Nel et al.
(2009), Fosse and Delp (2013), Shen
and Su (2012), Zhang, Xue, and Gu
(2015)

2 Cost The interface’s adaptability may differ in price tag
due to the need for suitable hardware and
software integration.

Engel and Reich (2015), Zhang, Xue,
and Gu (2015), NASA (2016)

3 Error
response

Compliance must be maintained in the face of
various potential issues. These issues may include
module identifier changes, naming collisions,
telemetry loss, or unresponsive modules.

TRIZ – Self-Service and Skipping
model, Nel et al. (2009)
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systematic decision-making. It represents an architecture of connections and decisions across different
fields, allowing for a novel thinking framework. This view aligns with Systems of Systems (SoS)
characteristics noted in the literature (Zhou et al., 2023; Fosse and Delp, 2013), where an interface acts as a
dynamic agent facilitating communication and adaptability among components. Key characteristics of an
interface include adaptability, error management, scalability, and the capacity to evolve with future changes.
The key characteristics—adaptability, cost, and error response—are characteristics essential for
managing interactions within complex systems. Adaptability ensures that interfaces can
dynamically adjust to changing operational conditions, integrating new components or subsystems
seamlessly. It is important to differentiate between adaptability and resilience. Adaptability refers
to the interface’s ability to incorporate new components and adjust to changing conditions. In
contrast, resilience encompasses this adaptability along with the capacity to maintain operational
stability and recover from errors or external shocks. A resilient interface not only adapts but also
withstands adverse conditions, ensuring continuous performance in the face of disruptions. Cost
efficiency highlights the importance of designing interfaces that minimize resource usage, both
during integration and throughout the system lifecycle, ensuring scalability without excessive
expenditures. Error response reflects the ability of interfaces to detect, isolate, and correct faults in
real-time, maintaining system reliability and reducing downtime. A distinctive feature of these
properties is their extensibility, enabling the integration of additional characteristics as the system
needs evolve. For example, applying security as a future interface property would enhance the
system’s ability to safeguard data through mechanisms like encryption and access control. This
capacity to extend interface properties demonstrates their flexibility and relevance in addressing
the challenges of emerging technologies, ensuring that the interface remains a robust and scalable
solution for dynamic and evolving systems.

4. Methodology - Smart Grid systems as a case study
A case study methodology is employed to explore the implementation and impact of interfaces within
complex systems. The Smart Grid is chosen as the primary case study due to its highly integrated and
distributed nature presenting a valuable context for analyzing the effectiveness of interfaces in managing
diverse communication protocols, real-time data exchange, and system scalability. The study aims to
identify key characteristics of interfaces that contribute to adaptability, error management, and cost-
efficiency within the Smart Grid. Through developing interfaces for this case study we design, evolve,
and validate the architecture of a Generic Interface (GI).
Smart Grids are advanced electrical power grids that leverage modern technologies to enhance the
efficiency and reliability of electricity distribution. They integrate diverse energy sources, including
renewable energy, and utilize advanced communication systems, automation, and data analytics to create
a more sustainable and efficient energy ecosystem. Some of the challenges of Smart Grid implementation
include

1. Energy Sources Integration: Seamless integration of various energy sources, including solar, gas,
and wind power.

2. Grid Reliability: Enhanced reliability through real-time monitoring and automated fault
detection.

3. Demand Response and Load Management: Empowerment of consumers to manage energy
consumption based on pricing signals or demand response programs.

4. Grid Optimization and Efficiency: Optimization of electricity distribution using data analytics
and predictive modeling.

5. Electric Vehicle Integration: Support for electric vehicle charging infrastructure and intelligent
charging management.

6. Energy Management and Billing: Detailed energy consumption monitoring for consumers and
accurate billing based on actual consumption.

If we consider the aforementioned properties of interfaces concerning Smart Grid we obtain:

7. Adaptability: Smart Grids require adaptable interfaces to integrate new technologies, manage
fluctuating energy demands, and adapt to regulatory changes.
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8. Cost: The cost of implementing and maintaining Smart Grid systems, including
infrastructure upgrades, technology integration, and system maintenance, is a significant
consideration.

9. Error Response: Smart grids rely on robust error response mechanisms to maintain grid reliability
and minimize the impact of faults or disruptions.

Our goal now is to design an interface for Smart Grid that addresses the challenges and provides the
required functionality of Smart Grid.

5. Generic Interface architecture
Integrating various systems into a cohesive whole is a key challenge in system engineering. The
architecture presented in this chapter through Object Process Methodology (OPM) diagrams (Dori,
2016), a model-based systems engineering (MBSE) approach, provides a solid framework for
Generic Interfaces. OPM provides modularity in developing the GI architecture through studying the
Smart Grid case study. OPM also provides a simulating tool that ensures the model’s correctness and
evolution for new scenarios. The architecture presented next was developed by iterative refinement
with use cases and simulations available in OPM. This architecture enhances adaptability, optimizes
costs, and ensures effective error response by using a Generic Interface that connects components
like sensors, adapters, and action modules, enabling seamless communication and data flow.

5.1. Guidelines for designing a Generic Interface (GI)
The guidelines for designing a Generic Interface (GI) focus on several issues to ensure seamless
integration and long-term evolution of the system. Modularity allows components to be added,
replaced, or upgraded without disrupting system operations, while scalability ensures that the
interface can accommodate future growth and technological advancements. Standardization is
essential for ensuring compatibility between system components and simplifying integration
processes through shared communication protocols and data formats. Additionally, flexibility
enables interfaces to dynamically adjust to changing operational requirements, addressing current
and emerging system demands. Effective error management is necessary, with interfaces capable of
autonomously detecting anomalies and implementing corrective actions. Finally, cost efficiency is a
foundational principle that minimizes operational and maintenance expenses throughout the
system’s lifecycle. Together, these guidelines support the development of robust and flexible
interfaces for complex systems.

5.2. GI suggested architecture and framework
The proposed architecture for Generic Interfaces is illustrated through schematics, where each detailing
the interaction and workflow among the various system components. The central figure, Figure 3, the
Generic Interface, is the hub connecting multiple Sensor, Adapter and Action Modules. It consists of
three main components responsible for three different objectives – the Integrating Unit (responsible for
the integration and security checking of edge devices), the Memory Management Unit (responsible for
data storage and management), and the Analysis Unit (responsible for resolving and analyzing stored
data). Each unit is designed to perform specific functions, contributing to a cohesive system that
maintains high reliability and efficiency in complex environments. In this distributed framework, each
module operates independently yet cohesively. This decentralized data collection is foundational to the
architecture’s flexibility.
The Integrating Unit is the main point of contact for all incoming data, performing critical integration
and security checks to maintain data integrity and authenticity of existing and newly integrated
devices. It oversees validation and ensures a seamless flow of data from various modules. As shown
in Figure 4, data from sensors first enters the Integrating Unit, undergoing a two-step process:
Integration and Security Checking, followed by Component ID Validation. The first step verifies
data authenticity using encryption and secure protocols to prevent tampering. The second step cross-
references component IDs with a database to confirm legitimacy and compatibility. The Integrating
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Unit can also connect or detach modules dynamically. If a component is faulty or unauthorized, it
isolates it and alerts the Error Handling sub-unit. New components are integrated after passing the
necessary checks.
The Memory Management Unit (MMU), Figure 5, is responsible for efficiently managing and storing
real-time and historical data. Its primary functions include validating incoming data and facilitating

Figure 3. Main architecture flow for a Generic Interface

Figure 4. Integrating unit architecture
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comparisons between current system performance and previously stored telemetry data. This enables the
system to detect patterns, trends, and anomalies by utilizing the Previous Telemetry Comparing process.
The MMU also manages the storage capacity of both Local Memory and the Database, ensuring that data
storage is organized and accessible. In cases where past data is needed for decision-making or analysis,
the MMU retrieves data via the Previous Data Collecting function. Furthermore, the MMU connects to
other memory units, ensuring scalability and broad system integration, particularly crucial in complex
environments like Smart Grids. The MMU’s role is integral to the system’s ability to maintain a
comprehensive data history, enabling real-time adjustments and informed decision-making across the
architecture.
The Analysis Unit serves to monitor and optimize system performance by analyzing output data and
executing corrective actions when needed. Its main purpose is to compare the Desired Output with the
Previous Output Sample, identifying any System Output Errors that exceed or fall below a defined
threshold. If errors are detected, the Error Handling component processes them, and the Action
Computing module determines the appropriate Action Commands to restore system stability. In cases of
critical failure, a Detach Command can be issued to isolate problematic components. Overall, the
Analysis Unit ensures continuous performance monitoring, error detection, and real-time adjustments,
safeguarding system efficiency and reliability as outlined previously.

All the GI processes described above were simulated by the OPM facility to ensure their correctness. The
modularity of the models and the simulation capability support continuous evolution and validation of
the models for new scenarios and complex systems.

6. Discussion
The GI architecture in Smart Grids effectively addresses adaptability, cost optimization, and error response
challenges. Its modular design allows for easy integration of new GI functionalities and technologies for
Smart Grid subsystems; it enables efficient energy management and proactive fault detection, enhancing
system resilience, cost-effectiveness, and long-term adaptability. Integration of components like the
Integrating Unit, Memory Management Unit, and Data Analysis Unit optimizes resource allocation and
maintains system stability. An important factor is the approach to connecting the GI modules - Depending
on the scenario, the interface can range from simple to complex. In simpler cases, modules can connect
directly to the GI; in more complex situations, additional GI modules can be interconnected to the existing
GI, adhering to the same guidelines. In that case, the GI architecture remains generic when addressing the
GI architecture as it can recursively be integrated into the model itself. In complex scenarios, interconnected
GIs can operate concurrently, forming a collaborative system with decentralized control. In contrast to
common system design practice where the focus is on the system components and their integration into a
whole while the interfaces merely connect the components, we offer a complementary approach where the
focus is on intelligent generic interfaces that can connect diverse components.

Figure 5. Memory management unit architecture
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The GI architecture can be implemented in Smart Grid systems by leveraging the GI three main
components. This architecture employs an Integrating Unit for real-time validation and security checks, a
Memory Management Unit for storing and comparing historical and current telemetry, and a Data
Analysis & Resolving Unit to detect anomalies and trigger corrective actions. By doing so, it directly
addresses Smart Grid challenges such as inconsistent data flows, delayed error detection, and scalability
issues. The architecture’s ability to dynamically connect or detach components without major
reconfiguration enhances grid stability, optimizes resource allocation, and improves overall adaptability
to fluctuating energy inputs and operational demands. Rather than serving as a power manager, the GI is
designed to function as an intelligent mediator that orchestrates real-time data exchange, error detection,
and communication between diverse subsystems. This shift in focus ensures that even within power-
centric environments, such as Smart Grids, the interface’s primary role is to facilitate robust data
connectivity and adaptability, ultimately optimizing system performance without directly governing
energy distribution.
Future research could extend the real-world testing of the GI architecture into the healthcare domain. For
example, a pilot project could deploy the GI framework in a hospital setting to integrate data from
medical devices, patient monitoring systems, and electronic health records. This would enable real-time
error detection and adaptive decision-making while utilizing machine learning algorithms to analyze
patterns and predict potential system faults or patient deterioration. By incorporating advanced data
analytics and ML, the architecture can not only streamline data flows and enhance system resilience but
also tailor interventions based on predictive insights, ultimately improving patient care and operational
efficiency.

7. Conclusion
In this research, we developed and tested a new definition of system interfaces and presented the design
of Generic Interface (GI) architecture, driven by a case study of an evolving and scalable system. The
new GI architecture underscores the importance of rethinking interfaces as adaptable and strategic
components capable of evolving with system demands. The architecture supports complex system
integration characterized by its modularity and scalability, ensuring long-term system flexibility and
efficiency. It supports the redefined concept of interfaces as dynamic systems that play a crucial role in
managing interactions, data flow, and error handling. Key components like the Integrating Unit, MMUs,
and Data Analysis & Resolving Unit contribute to the system’s ability to adapt to evolving demands,
optimize resource allocation, and maintain stability. The Generic Interface architecture, while primarily
designed for complex systems such as smart grids, is fundamentally focused on the management of
information flow rather than on physical interconnectivity. Its modular design allows it to be scaled down
for simpler systems where only basic data management is required, demonstrating its versatility across
dynamic and static environments. Additionally, the smart grid serves as a compelling case study due to its
dynamic and distributed nature, but the proposed Generic Interface architecture is inherently applicable
to a wide range of complex systems.
This research contributes to the field of system design by refining the Interface Definition and expanding
the traditional concept of interfaces to encompass dynamic and adaptable systems. Additionally,
proposing a GI Architecture offers a modular and scalable framework for integrating various components
and enhancing system resilience. By demonstrating the effectiveness of the GI architecture in tackling
real-world challenges in smart grid systems, its impact on current system engineering issues is validated.
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