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SUMMARY

Population genetics of extranuclear genomes is further developed
under the neutral-mutation random-drift hypothesis, and the character-
istic evolutionary aspects are summarized. Several formulae derived here '
are concerned with the variances of genetic variability (gene identity) at
a single extranuclear locus and the evolutionary distance between two
isolated populations which is estimated from a comparison of homologous
linked nucleotide sites. Two types of variance are considered; one is the
variance in the entire population ( VQ) and the other is. the variance within
a single germ cell (VH). When compared with a Mendelian genetic system
in a panmictic population, an extranuclear genetic system has the
following equilibrium properties: (1) the mean genetic variability is low
if, despite the high multiplicity of the genome in a cell, the proportion
of the cytoplasmic contribution from the male's gamete is small, (2) the
effect of recombination is small and a large amount of variance of linkage
disequilibrium tends to be maintained, (3) the overall relationship
between the mean and variance of genetic variability does not much differ
but VQ (VH). is expected to be small if the paternal contribution is small,
and (4) the evolutionary distance estimated depends on the extent of
intrapopulational variation in a common ancestor population which in
turn depends on within-cell variation. I argue that there is an analogy
between the model of extranuclear genomes in a finite population and that
of nuclear genes in a subdivided population. The analogy helps our
understanding of some properties in an extranuclear genetic system.

1. INTRODUCTION

There have been growing observations to reveal transmission genetics of
extranuclear (non-Mendelian) genomes and their gene organization by means of
modern techniques of molecular biology. In particular, study of the mitochondria]
genomes in a variety of organisms has attracted much attention (Rabinowitz &
Swift, 1970; Bogenhagen & Clayton, 1974; Birky, 1978; Giles et al. 1980; Anderson
et al. 1981; Bibb et al. 1981; Wallace, 1982). Extranuclear genomes, differing from
Mendelian genomes, undergo several unique evolutionary pressures due to the
semi-autonomous replicating mechanism and lack of spindle apparatus in both
mitosis and meiosis. Different contribution of cytoplasms from male and female
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gametes in fertilization is also a characteristic in higher organisms (Lansman, Avise
& Huettel, 1983 and references therein). In addition, the evidence that more than
80 % enzymes and proteins in a mitochondrion are produced by nuclear genes
suggests the coherent evolution with the host nuclear genome (for review see Beale
& Knowles, 1978;Gillham, 1978). However, these characteristics alone do not seem
to be responsible for the development of the extreme economy of gene organization
found in mammalian mitochondrial genomes (Anderson et al. 1981; Bibb et al.
1981). There may be some unknown responding mechanisms; for instance, physical
constraints against the size of genome. Otherwise the economy might be merely
the vestige of the genome carried by an ancient organism which symbiosed to the
present host cell.

Although the evolutionary process of extracellular genomes is complicated and
uncertain, recent accumulation of data, particularly on mitochondrial DNA
molecules, has stimulated some theoretical study under simplifying assumptions
(Dujon, Slonimski & Weill, 1974; Upholt, 1977; Nei & Li, 1979; Ohta, 1980;
Takahata & Maruyama, 1981; Engels, 1981; Chapman et al. 1982; Birky,
Maruyama & Fuerst, 1983; Takahata, 1983a; Takahata & Slatkin, 1983). In this
note, assuming that mutations are selectively neutral and replicated copies of
extranuclear genome are transmitted randomly to the daughter cells in mitosis,
I derive several formulae concerning the variance of genetic variability at a single
locus and the evolutionary distance estimated from a comparison of homologous
nucleotide sequences between two isolated populations. The model and assumptions
presented here are plausible but have not yet been confirmed by observations.
Nevertheless, this study surely provides a reference point and could even be the
basis of future development in theory. Combining the results of variances of linkage
disequilibrium between two extranuclear loci (Takahata, 1983a), evolutionary
aspects of extranuclear genes are discussed in relation to those of Mendelian genes.

2. MODEL AND ANALYSIS

Our model of the transmission genetics of extranuclear genomes is essentially
the same as those described by Takahata & Maruyama (1981), Chapman et al.
(1982), Birky et al. (1983) and Takahata (1983 a). But they are not exactly the same,
so that we first explain our model. We consider a population with separate sexes.
We assume that in a germ cell in each sex there exist multiple copies of extranuclear
DNA molecules and that these molecules are transmitted randomly to the
daughter cells in mitosis and therefore are subject to within-generation drift
(Takahata & Slatkin, 1983). We call this model 'random transmission' instead of
' imperfect tranmission' in Chapman etal. (1982). In reality, the unit of transmission
is not a single DNA molecule but a cellular organelle within which several DNA
molecules are contained. We ignore this fact, and each DNA molecule within a cell
is transmitted independently. From the standpoint of population genetics, however,
the theory will be constructed so as to incorporate this fact without a large
modification (Ohta, 1980 for the possibility).

Although we assume that a germ cell in each sex contains the same number of
extranuclear DNA molecules, we assume neither complete maternal inheritance nor
that the two sexes necessarily make the same contribution to later generations.
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Maternal inheritance is ubiquitous in higher eukaryotes (Lansman et al. 1983 and
references therein) but may not be complete (Hauswirth & Laipis, 1982).

We further assume that an individual produces cytogenetically the same sperms
or eggs. In other words, we ignore the possibility that a heteroplasmic individual
produces different types of gametes. Obviously, this is a simplification, but it does
not oversimplify the real situation unless the germ cell lines in an individual are
highly heterogeneous. Under this assumption, we can use the terms 'germ cell line'
and ' individual' interchangeably and simplify the mathematical treatment. For
a model taking into account the above possibility, readers may refer to Birky
et al. (1983).

It is convenient to list the variables that will be used consistently.
ft = average proportion of extranuclear DNA molecules transmitted from the

male's gamete so that (1 — /?) is that from the female's gamete.
n = effective number of extranuclear DNA molecules in a germ cell line, assumed

to be the same in both sexes.
Nm(Nf) = number of breeding males (females) in a population. If we consider two

isolated populations, each population is assumed to consist of the same
number of males and females.

A = average number of somatic cell divisions per generation. If the number is
different in sexes, we regard A as (AmNm + AfNf)/(Nm + Nf), where Am and
Â  are the number in male and female, respectively.

K = number of possible states per site where the term ' site' may be referred to
as a nucleotide site, locus and a whole DNA molecule.

v = mutation rate per site per cell division. The total mutation rate per site per
generaton is denoted by /i = vA.

N'1 = (l-fi)P/Nf + fiP/Nm for p = 0,l,2,...,Np is related to the effective
number of individuals. In particular, Np = Nf for /? = 0 and
N2 — 4:NmNf/(Nm + Nf) for /? = 05. The former is the case of completely
maternal inheritance and indicates that the effective numbers are equal to
the number of breeding females. The latter is equivalent to the effective
number of individuals in Mendelian population with separate sexes.

In the following, we specify a possible state of extranuclear DNA molecule by
using a vector i. When we are concerned with a single site, i is a scalar, but in
general, when we want to treat r linked sites, i is a vector of i = (iltit,... ,ir).
We designate the DNA molecule with a vector i by Ai and the frequency of Ai

in the ith individual by xt(l). We assume that the frequencies of At are the same
in both sexes. We also assume that all mutations are selectively neutral or
equivalent and the mutation scheme at each site obeys the Kimura's K allele model
(Kimura, 1968). An extension of the K allele model to the case of multiple nuclear
loci is given in Griffiths (1981), Takahata (1982) and Golding & Strobeck (1982).

Now, let us consider the change of frequency of Af in an individual due to random
sampling of gametes followed by fertilization. Suppose that the parents of, say,
the Zth individual are the mth male (ra = 1,2,..., Nm) and the/th female (/ = 1,
2 , . . . , N^. Then taking into account a different contribution of DNA molecules
from each parent, we can obtain

x}(l) = {l-/J)zt(f)+fixt(m), (1)
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in which the superscript * stands for the frequency after fertilization, the first term
in the right-hand side is the proportion of Ai transmitted from the /th female and
the second is that from the rath male. Note here that there are Nm x Nf

combinations in total for each new individual. Therefore when we consider the
expectation of a certain quantity, denoted by Es{}, it is taken over all these
combinations. Also, note that (1) is a consequence of random sampling of gametes
in each sex so that the probability that two molecules in different individuals come
from one male (female) is l/Nm (1/Nj). Furthermore, since we will be concerned
with identity probabilities of extranuclear DNA molecules randomly chosen from
the same or different individuals, it is necessary to show which molecule resides
in which individual. To indicate this situation and also the expectation of Es{ },
we introduce a notation of using angle brackets < >. A single bracket indicates
the expectation of identity probability that all molecules in question are chosen
from one individual and the product of two or more brackets shows the expectation
of identity probability that the molecules are chosen from two or more different
individuals. Thus <a;f > is the expectation of identity probability that two At are
chosen from an individual and <x4>

2 = ( ^ X ^ ) is the expectation of identity
probability that two At are chosen randomly from two different individuals. More
generally, ( x ^ X a ^ X x j ) is the expectation of Au A}, Ak and Ax when the first
two are chosen from an individual and the third and the fourth are chosen
randomly from a second and a third individual, respectively.

To be complete, we give the procedure of calculating (x*2y and (x*y2 as follows:

= (1 -/?)2 Es{x\{f)}+/P Es{x\{m)} + 2/?(l -
= (l-pKx!>+p<xty, (2)

where i i

p =
isf f

and

= (1 -p)iEg{xi(f)xi{f')}+P^Es{xi(m)xi(m')}
-A) Es{xt(f) xt(m') + xf(f) xf(m)}
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where the prime denotes a different indicator for individuals and 1 = 1' only if/ = / '
and m = m'. Formulae (2) and (3) are identical to (1) and (2) in Takahata &
Maruyama (1981).

An advantage of the present formulation for identity probability is to make
easier the calculation of higher moments. To derive the formulae of the variances
of identity probabilities, the twelve variables up to the fourth moments are
required. The third moments are related to the expectation of identity probabilities
when we choose three molecules of the same kind randomly from one, two and three
individuals. Likewise, the fourth moments are related to the expectation of
identity probabilities when we sample four molecules of two different kinds
randomly from one, two, three and four different individuals. Thus the expectations
of identity probabilities of the third order are denoted by <xf>, <xf><x4> and <Xj>3

and those of the fourth moments by <x£xj>, <xfx^><â >, (sfX^fX <#{X^>2,
( x ^ X ^ i X ^ ) ar*d <cci>

2<a;̂ >2. The calculation of those quantities can be made
straightforwardly though it is rather tedious so that we demonstrate only the
calculation of <xfX#<) here.

= (1 -p? E.{x\\f) *,(/')}+/PE,{xHm) xt(m')}

+ fi(l-/3)*E8{xt(f)xi(m')}

+ 2/0(1 -/?)2 E8{xt(f) x((f) x

(4)

where the relationship l/Np = (1 -fi)P/Nf+ftp/Nm for p = 1 and 3 is used. For
the other identity probabilities, readers may refer to the derivation in Takahata
(1983a).

We represent the above twelve variables in vector form X = (Xu X2,... ,X12Y
in which the superscript t denotes the transpose of a vector:

^io = <«!><«,>•, ^u = <xixjx^Xxj>; x I t = <xty\x}y.

Then, we have X* = RX, . (5)
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The above formulae are derived for particular types of DNA molecules i and j ,
but they are homogeneous equations so that the same formulae must hold true
for the variables summed over all the possible states of i and j . Then we interpret
the variables of the vector X as the expectation of identity probabilities irrespective
of the type of DNA molecules.

Next let us consider the change of x*(l) in a germ cell line in an individual which
is caused by mutation and within-generation drift. To derive the formulae for the
changes of expected identity probabilities, we make use of a diffusion approximation
method. We specify the ith DNA molecule by r multiple sites like i = (ilt i2,...,
ir) and assume the complete linkage between sites. For convenience, we introduce
a function of xt(l), and drop an indicator of individuals, noting that the process
of mutation and within-generation drift takes place independently from individual
to individual. Let xt(t) be the frequency of At in an individual after t somatic cell
divisions, and x{ p(t) be the frequency of DNA molecules that are specified by the
v e c t o r (i1; i2, ..., ip_1; ip+1,..., ir), i . e .

*!.*(«) = £ *«,.«, «r)(0- (10)
ip-l

If DNA molecules are specified by only one site, then (10) should be equal to 1.
Using the model of mutation mentioned earlier and a diffusion approximation for
the change of xt{t) due to random distribution of replicated molecules in somatic
cell division, we have

^Li (11)
i'p*ip

in which the first term of the right-hand side corresponds to the probability of no
change, the second to the contribution coming from all molecules that can produce
At by a single-step mutation and the third is a random variable with mean 0 and
covariance i

•£{&£,} =-z,(0{*«-*,(0}- (12)

In (12), E{ } stands for taking the expectation with respect to within-generation
drift and Sti = 1 if i = j and if otherwise 0. If we use (10), (11) becomes

^ (13)

for r > 1 and

( ^ ) ^ - j ; + £i (13')
for r = 1.

(i) Variance of genetic variability

Let us first formulate the variances of identity probabilities at a single site,
keeping the number of states K finite. We redefine the vector X in terms of the
expectations of identity probabilities:

X2 = 2 E{<xty}, X3 = S £{<*?>}, Xt =
i i

Xb = I ^{<x<>
3}, X6 = I E{(x\x)>}, X7 = X EKx^Y), X6 = 2

* a a n
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and X12 =12 , > < ,

Noting that h = Sj<xf> and q = Z^Xj)2 are the identity probabilities within an
individual and in a population, X6 and Xl2 are the expectations of <(Z( x\)2> and q2,
respectively (in our previous paper we denoted the expectations of h and q as H
and Q, which are Xx and X2 in the present notation). Thus the variance of genetic
variability within an individual is given by

VH = X6-X$ (15)
and that in a population is

VQ = X12-Xl (16)

As mentioned before, the transition matrix of X due to random sampling of
gametes and fertilization is the same as that in (5). Accordingly, we have

X* = RX. (17)

On the other hand, the transition matrix, M, for the change of x due to mutation
and within-generation drift in a somatic cell division is readily calculated by using
(13'), which is given in the Appendix. Defining v' = Kv/(K—l)a,nd a column vector
b with the elements 6X = l/n+2v'/K, 62 = 2v'/K and bv = 0 for p = 3 ,4 , . . . , 12,
we can describe the change of X in one cell division as

= MX(t) + b. (18)

Assuming A cell divisions in one generation, we have

X(A) = MAX* + (MA~l + Mx-2+ ... +I)b, (19)

where / is the identity matrix and X(A) denotes the value of X before random
sampling of gametes for the next generation. Formulae (17) and (19) give a
complete set of equations to get the variances. In particular, the equilibrium value
of X after A cell divisions is given by

1 = (I-MXR)-1 (M*-1 + M*~2 + . . . + / ) b. (20)

When we want to determine the value immediately after fertilization, X, we
multiply X by R and obtain jt = RX (21)

(ii) Evolutionary distance

In this section, we derive a formula for estimating the evolutionary distance
taking proper account of intrapopulational and within-cell heterogeneities. Let us
consider completely linked r sites of DNA molecules in two isolated populations
which were split T generations ago. The evolutionary distance is defined by

# n u c = 2^T = 2vXT (22)
as the average number of mutations per site that have occurred since the
divergence of the two populations. This definition includes not only the contribution
of nucleotide substitutions but also that of segragating mutations. The simple
quantities for estimating the distance are the expectation of identity probabilities
within and between populations. Denoting by yi(l) the frequency of At in the Zth
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individual in the second population we define the expected identity probabilities
for the r linked sites within an individual, within a population and between
populations as = £ = ^

i i

Qr = Z ^<x4>2 = 2 i ^ ) 2 , (23)
i i

Jr = z E<xtXyt>.

By using (13) and the corresponding equation for ^(i), we obtain

and /Ur = ^j(Jr_1-KJr)

for mutation and within-generation drift. In the above equations, A denotes the
difference in the time interval between two consecutive cell divisions and a symbol
of indicating time is suppressed. As time is measured in units of cell division and
A cell divisions are assumed to occur in one generation, we need the time-dependent
solutions of (24). They can be solved as:

= ^-r 2 r c re-W/»+««»/<*-»>2 pCq(-\.)<K*-*H*_qA L

9-0

?* = i 2 rCpe-2K^/(K-i)£ ,C g ( - l )«Z«CJ- j (25)
A p-0 9-0

and •/r** = 4"r 2 ^
A p-0 9-0

In the above equations, rCp is the binomial coefficient, i?r is the solution ofAHr = 0
in (24), and the single and double asterisks denote the values immediately after
fertilization and meiosis, respectively.

Recalling that H* and Q* are the outcome of random sampling of gametes and
fertilization, we get

H* = (i-p)Hr-pQr, Q* = ±- £
from (7).

On the other hand, Jr does not change in this process, i.e.

Jr = Jr,

since random sampling of gametes is assumed to take place independently between
two populations. Thus we can obtain the time-continuous solution of Jr(T) by
integrating (24) directly over XT cell divisions

Jr(T)=^-r 2 rCJ,e-«*«'a'><*-1>2 pCq(-\)"Kr>-iJp_q{0). (26)
•*• p-0 9-0
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Differential equations for Hr(T) and Qr(T) are given by

~dT=-Hr + &LrC'

q-0

—^• = —Q+—Y. C \e-m/ip/(K-i)Y C(_twCT-«{—W + fl——

(27)
from substitution of H* and Q* for the right-hand side in (25).

If we assume that Jr(0) = Qr, and that Jr(T) and $ r are estimated from
observation, then we can estimate Knuc from (26) and the equilibrium solution of
Qr in (27). Fortunately, Sr and Qr can be determined from the lower order
successively under the condition of So = 1 and Qo = 1. It should be noted in (26)
that the functional relationship between Jr(T) and KDUC does not include ffr, so
that when Jr{T) and Qr are directly calculated from data, we can estimate ifnuc

without any knowledge about flr.
The formulae for a single site are rather simple, as given below:

or substituting (22) and solving the above equation for Knuc,

#nuc = — ^ log Irj1)^ t\> (28)

(29)

and
) _ A

( 3 0 )

, o K-l+2nv
where / / , = — —— « 1.1 K-l+2Knv

The formulae (29) and (30) are the time-continuous if-allele model version of (9)
and (10) in Takahata & Maruyama (1981). From the comparison we can check the
validity of the diffusion approximation, and we found that it is quite satisfactory
unless n is very small, say smaller than 10.

3. DISCUSSION

To understand the evolution and variation of extranuclear genomes, there are
several quantities to be confirmed experimentally. The studies on DNA content
per cell reviewed by Nass (1969) indicate a yield of 250 mitochondria per mouse
fibroblast cell grown in culture (L cell) each of which contains about 6 DNA
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molecules (see also Bogenhagen & Clayton, 1974). Thus, a single L cell contains
roughly 1500 mitochondrial DNA molecules. More importantly, however, as she
pointed out, the DNA content differs in different cell types and the highest content
occurs in tumour cells. The number in a germ cell, n, that is relevant to the present
problem is not well known and may be much smaller than 103 or 104.

The number of nuclear DNA replications in a germ cell line per generation is
estimated as 10-20, depending upon the species examined (Kondo, 1977). But it
is still unclear if extranuclear DNA replication in the germ line occurs at the same
rate. There is evidence that turnover of mitochondrial DNA is very rapid in some
tissues, and hence A may be much larger than 10 or 20 (Gross, Getz & Rabinowitz,
1969; Rabinowitz & Swift, 1970).

On the other hand, there are many conclusive indications of maternal inheritance
of mitochondrial DNA. They come from the study of Drosophila (Reilly & Thomas,
1980), Xenopus (Dawid & Blackler, 1972), mouse (Avise et al. 1979) and human
(Giles et al. 1980). It seems important, however, to note that the resolution of those
experiments is at most 4 %, i.e. the methods can only detect heterogeneous DNA
molecules, if present, at a level of more than 4%. Therefore, although /? is small
in most higher organisms, observations do not prove the completely maternal
inheritance. From the theoretical standpoint, it is critical to distinguish the case
of /? = 0 from that of /? close to 0. The significance of the distinction depends on
A as well as n. Recently, Lansman et al. (1983) improved the method for detecting
the ' paternal leakage' of mitochondrial DNA and demonstrated that fi is less than
0-004% in the tobacco budworm. If this is the case in other organisms, the
evolutionary implication of paternal leakage is extremely small. On the other hand,
an unusual pattern of mitochondrial DNA polymorphism observed in a maternal
lineage of Holstein cows (Hauswirth & Laipis, 1982) may suggest the small but
non-negligible contribution of paternal leakage.

We have as yet little precise knowledge about such key quantities. The
parameter values used in the following should be regarded as tentative.

(i) Mean genetic variability

Assuming that K = oo, A = 20, n = 103 and v = 10~8, and using (29) and (30),
we plotted ff1 and Qx in Fig. 1 as functions of N(Nf = Nm) and /?. When /? = 0,
within-cell variation, 1— fflt is very small and independent of N whereas the
intrapopulational variation, 1 — Qlt increases as N increases. Both values are,
however, smaller than the expected heterozygosity at a nuclear locus with the same
mutation rate /i (the homozygosity is indicated by a thick line in the figure). This
is because the effective population size Ne and the ploidy are different in the two
genetic systems (Takahata & Maruyama, 1981; Engels, 1981). When /? = 0,
-̂ e = ^2 — N/ m the extranuclear system but, in contrast, Ne = 4iVm Nf/(Nm + Nf)
in the nuclear system. In addition, if the organism is diploid, each individual
contributes exactly two nuclear genomes to the population. Thus there could be
a difference of four times in the 'effective number of genomes' between both genetic
systems.

However, as the cytoplasmic contribution from the male gamete becomes large,
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a different feature appears. The critical value of/? is the order of magnitude of
even though /? itself is very small. In the present example, if we assume fi = 0-02,
then Qx takes roughly the same value as that expected at a nuclear locus (note
that A/n is set as 0-02). As /? further increases, not only Qx but also R1 rapidly
decrease, and a large amount of genetic variability can be maintained at an
extranuclear locus. Thus whether 4% paternal contribution can be neglected
entirely depends on the values of A and n.

io2 103

Population size

Fig. 1. Equilibrium mean genetic variability at an extranuclear locus as functions of
ft and N (Nj = Nm). The broken and solid lines represent within-cell and intrapopula-
tional variations (/?, and <5j), respectively. The thick line indicates the average
homozygosity at a nuclear locus with population size 2N and mutation rate /i. Here
n = 103, A = 20, v = 10~6 (ji = vX = 2 x 10~6) and the infinite allele model are assumed.

(ii) Linkage disequilibrium

The amount of variance of linkage disequilibrium for the entire population, D\
(Takahata, 1983a) is depicted in Fig. 2 as a function of recombination fraction c,
where we assumed that K = oo, n = 10, A = 20 and 2 ^ ^ = 1. When /? is small,
two genes linked on an extranuclear genome tend to be non-randomly associated,
since Bl is close to 1 and therefore recombination has no apparent effect. The
reduction of variance of linkage disequilibrium for the case of nuclear loci is similar
to the line of D\ for /? = 05 . Under this circumstance, within-cell variation is high,
so that the effect of recombination between two loci within a cell becomes efficient.

To see the ^-dependence of Z5g, the case of n = 104 was also computed for a small
value of ft (= 10"3). Under these conditions, D% = 0061 for c = 0 and 00067 for
c = 0-001. Comparison with the line indicated by ft = 10~3 in Fig. 2 shows that
the effect of recombination is very strong in this case due to the high level of
polymorphism within a cell maintained by relatively large n and /?. Thus, roughly
speaking, we can conclude that so long as 3X is larger than the mean homozygosity
at a nuclear locus, the effect of recombination between extranuclear genes is less
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Fig. 2. Equilibrium variance of linkage disequilibrium in a population is plotted as a
function of recombination fraction between two extranuclear loci with K infinite. Here
mutation rate v at both loci, n and A are assumed to be 10~6, 10 and 20, respectively.
For the mathematical formula, see Takahata (1983 a).

efficient than that between nuclear genes with the same fraction c, and that a large
amount of D% is expected in an extranuclear genetic system even when
recombination is frequent.

(iii) Variances

Variance of genetic variability measured by VH and VQ at equilibrium is plotted
in Fig. 3 (a) by using (20), while coefficient of variation is given in Fig. 3 (ft). The
solid curves represent the expected relationships for the case of neutral mutations
at a nuclear locus (Stewart, 1976). I t is seen from Figs. 3 (a, b) that the overall
relationship between the mean and variance of genetic variability at an extranuclear
locus is rather similar to that at a nuclear locus (Birky et al. 1983). The close
relationship is, however, very complicated and the variances VH and VQ deviate
either upward or downward from the variance, Vn, at a nuclear locus with the same
mean genetic variability.

To understand the reason, it may be helpful to note that the model of
extranuclear genes treated here is analogous to that of nuclear genes in a
subdivided population. An extranuclear genome in a cell corresponds to an
individual in a subpopulation, an individual or cell to a single colony consisting
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of many individuals, and the cytoplasmic contribution from a male gamete to gene
flow between subpopulations. Furthermore, random partition of replicated
extranuclear genomes following cell division corresponds to random sampling of
gametes within a subpopulation, and random sampling of gametes to a sort of group
selection among subpopulations resulting in extinction and recolonization of
subpopulations. The mathematical formulae for determining the variance of
homozygosity in an incompletely isolated subdivided population have recently
been developed by Golding & Strobeck (1983) and Takahata (19836), independently.
Their formulae allow us to study the deviation of variances of homozygosity within
and between subpopulations as well as that for the entire population. Using these
formulae, we can show that the deviation results entirely from that of between-
subpopulation variance. In a nearly completely isolated population, the deviation
occurs downward, since any pair of subpopulations are genetically dissimilar and
therefore the distribution of homozygosity between subpopulations tends to be
L-shaped. This indicates the small variance of homozygosity between subpopula-
tions. The same situation occurs in the case of extranuclear genes, where the
maternal effect is strong. The dissimilarity between individuals causes the reduction
in ¥H and FQ. However, for the genetic variability to be intermediate, the
population size should be small. A small population size counterbalances the effect
of maternal inheritance and makes the distribution of identity probability between
individuals U-shaped. Thus we can expect only a slight reduction in the variances
of extranuclear identity probability in a small population.

On the other hand, when the extent of gene flow is intermediate there is an
increase in variance of homozygosity in a subdivided population. This increase is
due to intermediate between-subpopulation similarity. Moderate gene flow makes
subpopulations either similar or dissimilar to each other in time and space and
therefore the distribution of homozygosity tends to be U-shaped. A U-shaped
distribution has a large variance, and it is expected in the case of extranuclear genes
when /? is large. In order for individuals to be genetically similar, the genetic
contribution from a male gamete must be substantial or the population size must
be small, or both.

The above tendencies are shown in Fig. 3, where VH and VQ are obtained by
changing N and keeping the other parameters constant. As in the case of a
subdivided population, a larger number of individuals in a population make the
above deviations less significant. The larger the number, the smaller the relative
probability of genetically identical individuals in a population. Thus the deviations
in variance become invisible.

(iv) Evolutionary distance

The formulae (26) and (27) enable us to estimate the evolutionary distance of
(22), taking into account not only intrapopulational variation but also within-cell
variation. These formulae are depicted in Fig. 4 according to the type of data
available. When data on nucleotide sequences of extranuclear gene or genome can
be used, the formulae (28)-(30) allow us to estimate the distance (Fig. 4a). When
observation is made by means of restriction enzymes, estimation of Knuc is based
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1 1 1 1 11 1—1—1 1 1 11—11

i<r3 10- 10" 1

= 0~001 (b)

10" 10" 10"

Fig.4. (a) Relationship between JX(T) and Knac = 2/iTbetween two isolated populations
with the divergence time of T generations. The values of parameters are taken as A = 20,
n = 103, K = 4 and v = 10~9, and </j(0) are assumed to be equal to Qv The solid line
represents the case of Nf = Nm = 2500, though the value of fi varies from 0 to 0-5. Under
the conditions the fi dependence of JX(T) is not conspicuous. The broken lines represent
the case of Nf = Nm = 106 and show the remarkable effect of fi on Jt(T). (b)
Relationship between Je{T) and Knuc. The implication of lines and values of parameters
are the same as in Fig. 4a. Note that the declination of the lines begins at a relatively
small value of Knuc as compared with J^T).

on the cleavage pattern of completely linked r (4-6) nucleotide sequences in the
genome, so that the relationship among Knuc, Jr(t) and Qr is required (Fig. 46).
In both figures, the uppermost line approximately represents the relationship
between Knuc and Jr(t) when intrapopulational variation is absent. Neglect of
intrapopulational variation is usually made in estimating the distance from
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nucleotide sequence data (Jukes & Cantor, 1969; Kimura & Ohta, 1972). This
validity is guaranteed by the small mutation rate and population size, which are
assumed here to be 2 x 10~8 per generation and 2500, respectively.

As N increases, intrapopulational variation becomes higher, and this trend is
much enhanced when completely maternal inheritance is not warranted. The
broken lines in Fig. 4 represent the /? dependence. The left-most value of each line
corresponds to Qr. If n is not small, the effect of fi on Qr is remarkable and the
population with /? = 05 is much more polymorphic even than that with the
doubled population size 2N but with /? = 0. When the product of /?, n, N2 and v
is not very small, not only intrapopulational variation but also within-cell
variation is significantly high. Under the circumstances, disregard of the variation
in estimating the distance provides a considerable overestimate of Knuc, particularly
when the two populations compared are closely related (Fig. 4; see also Nei & Li,
1979). It should be also noted that when there is high polymorphism the estimation
of Knue becomes difficult because the Xnuc-dependence of Jr(T) becomes weak. The
steep declination of Jr(T) occurs after Knuc exceeds about (\0rQr)~

l, and thus an
enormous amount of polymorphism entirely prevents an estimate of the distance.
There may exist few organisms, however, that have such extensive polymorphism
at the nucleotide level (Engels, 1981 and references therein). If the amount of
polymorphism measured by l—Qi is a few per cent at most, the problem of
polymorphism is not important in estimating the distance over 0*1.

The usual method for estimating Knuc from comparison of homologous DNA
sequences treats each nucleotide in each sequence independently and does not take
into account the linkage relationship between nucleotides. Although the method
is appropriate when estimating intermediate values of Knuc, say 01-1 or a little
greater, it does not give a reliable estimate of Knuc less than 0 1 . To estimate a
small value of Knuc accurately, it is desirable to use an alternative method, as
suggested by a comparison of Figs. 4 (a and b). This method takes into account
the information about linkage among nucleotides instead of treating each inde-
pendently. The more linked sites are analysed as a unit, the earlier the steep
declination of Jr(T) should be observed. This is simply because r-linked nucleotide
sites can accumulate more mutations than a single site can. In this regard, the use
of hexanucleotide restriction enzymes gives a more accurate estimate of small Knuc

than the use of tetranucleotide restriction enzymes, all else being equal. When
nucleotide sequences are available, this method for arbitrary number r is applicable
and can estimate a relatively small distance. Thus, the formulae (26) and (27) can
be used for such an analysis and are potentially useful even though any degree
of polymorphism is present.

The population genetics theory of extranuclear genomes was developed based
on the neutral mutation hypothesis. Several evolutionary characteristics were
summarized concerning the mean and variance of genetic variability, the variance
of linkage disequilibrium and the evolutionary distance that would help us further
study the evolution of extranuclear genomes.
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APPENDIX

We give the transition matrix, M, of identity probabilities at a single site due
to mutation and within-generation drift. We note that this process takes place in
each individual independently, i.e.

in which Sfj and 8lt are the delta functions and Su indicates that the above
expectation is 0 for two different individuals (I =# I'). The formula (13') is equivalent
to that for the gene frequency change in the finite island model with no migration.
As the derivation of M is the same as that in the island model (Takahata, 19836),
we give only the result opposite.
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