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MAKER–BREAKER GAMES ON K�1 AND K�,�1

NATHAN BOWLER, FLORIAN GUT , ATTILA JOÓ , AND MAX PITZ

Abstract. We investigate Maker–Breaker games on graphs of size ℵ1 in which Maker’s goal is to build
a copy of the host graph. We establish a firm dependence of the outcome of the game on the axiomatic
framework. Relating to this, we prove that there is a winning strategy for Maker in the K�,�1 -game under
ZFC+MA+¬CH and a winning strategy for Breaker under ZFC+CH. We prove a similar result for
the K�1 -game. Here, Maker has a winning strategy under ZF+DC+AD, while Breaker has one under
ZFC+CH again.

§1. Introduction. Games on graphs are a very natural concept and so it is no
wonder that this field has emerged jointly with graph theory as a whole. For finite
boards one often considers strong games, i.e., where two players interchangeably
colour edges of a finite graph G with the aim to be the first player to have some
previously agreed upon graph contained as a subgraph in the graph induced by
their respective coloured edges. Another important kind of games is the so-called
“Maker–Breaker games.” A typical setup for such games on (potentially infinite)
graphs is the following: at each turn, Maker claims an edge of G (not previously
claimed by either player) after which Breaker claims an unclaimed edge. There is
either a fixed number of turns or they play until the whole edge set is distributed. The
set of winning sets of Maker is public knowledge and usually has some combinatorial
description. Classical games of this type are for example the Shannon switching
game, in which Maker’s goal is to connect two vertices by a path (see [11]), and the
game where Maker’s goal is to build a spanning tree (see [4]) or more generally a
base of a matroid (see [2]).

For recent results about Maker–Breaker games on infinite graphs we refer to
[3, 12]. Some games (like the base-exchange game in [1]) can be phrased more natu-
rally in the language of infinite matroids. It is worth mentioning that Maker–Breaker
games have been investigated in an even more abstract settings as well (see [5]).

Let G and G, be graphs. Then we denote by MB(G,H ) the Maker–Breaker game
where G (more precisely the set of edges) is the board, there are turns (indexed
by ordinals) each of which begins with Maker claiming a previously unclaimed
edge, after which Breaker does likewise. The game terminates when all the edges
are claimed and Maker wins if and only if at the end of the game the subgraph
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GM of G induced by the edges claimed by Maker contains a subgraph isomorphic
to H . Let us recall that a graph G is an ordered pair (V,E) with E ⊆ [V ]2 where
V is called the vertex set and E is the edge set of G . The complete graph on κ
is Kκ := (κ, [κ]2). The complete bipartite graph with vertex classes of size � and
κ is denoted by K�,κ, its vertex set is (�× {0}) ∪ (κ × {1}), and its edge set is
{(α, 0), (�, 1) : α < �, � < κ}. Note that the vertex sets of these graphs are already
well-ordered, and so we generally do not need to invoke the axiom of choice. It was
shown that in the game MB(K�,K�) Maker has a winning strategy (see [3]). In
this note we analyse similar games on uncountable graphs.

Note that each outcome of the game defines a 2-colouring ofE(G). This suggests
a possible connection to Ramsey type problems, although in the current context the
colourings in question are not arbitrary but are produced by players with particular
goals in mind. There are colourings of the edges of a K�1 with two colours without
any monochromaticK�1 in ZFC (see [13]), but if instead of the axiom of choice one
assumes DC+AD, then there is always a monochromatic K�1 because �1 becomes
measurable (see [9, Theorem 28.2]) and hence weakly compact1.

The existence of a monochromaticK�,�1 when colouring the edges of aK�,�1 with
two colours is even more dependent on the set-theoretic framework. While there is a
colouring without a monochromatic copy in ZFC+CH, there is no such colouring
in ZFC+�1 < p. Since we could not find these particular statements formulated
anywhere in the literature on infinite Ramsey theory, for the sake of completeness
we include them here as Corollaries 2.2 and 3.3.

These Ramsey-type results compare well to the corresponding results about the
existence of a winning strategy for either player. Our main results are as follows:

Theorem 1.1. It is independent of ZFC if Breaker has a winning strategy in the
game MB(K�,�1 , K�,�1). He has one under ZFC+GCH,2 while Maker has one under
ZFC+�1 < p.

Theorem 1.2. It is independent of ZFC if every 2-colouring of the edges of K�,�1

admits a monochromatic copy of K�,�1 . It is true in ZFC+�1 < p but fails under
ZFC+CH.

Theorem 1.3. Assuming the consistency of AD, it is independent of ZF+DC if
Breaker has winning strategies in the games MB(K�n ,K�n ) for n ∈ {1, 2}. He has
such winning strategies under ZFC+GCH, while Maker has winning strategies in these
games under ZF+DC+AD.

Let MB(Kκ,Kclub) be the game in which Maker’s goal is to build a “Kclub,” i.e.,
a complete graph whose vertex set is a closed unbounded subset of κ.

Theorem 1.4. Assuming the consistency of AD, it is independent of ZF+DC if
Breaker has a winning strategy in the game MB(K�1 , Kclub).

1We write CH, GCH, DC, AD, and p for the continuum hypothesis, generalised continuum hypothesis,
axiom of dependent choice, axiom of determinacy, and the pseudo-intersection number respectively.

2A closer analysis shows that only CH is needed here, but we have chosen a simpler exposition over
optimality of the results, since the independence is our main concern.
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Our results raise the following natural questions:

Question 1.5. Is it consistent with ZFC that neither Maker nor Breaker has a
winning strategy in the game MB(K�,�1 , K�,�1)?

Question 1.6. Does Breaker have a winning strategy in MB(K�1 , K�1) under
ZFC?

Question 1.7. Does Maker have a winning strategy in MB(K�1 , Kclub) under
ZF+DC+AD?

§2. The winning strategies of Breaker under GCH.

Proposition 2.1 (ZFC+GCH). For every infinite cardinal κ, Breaker has a
winning strategy in the game MB(Kκ+ , Kκ,κ+).

Proof. Let us assume thatKκ+ is represented as the complete graph on the vertex
set κ+. Working under GCH, we fix an enumeration {Aα : α < κ+} of [κ+]κ and
for each α < κ+, we pick a surjective function fα : κ → {A� : � ≤ α}). Whenever
Maker plays an edge {�, α} with � < α and there is a � < κ such that this is the
(� + 1)st downwards edge fromα she claims, Breaker chooses the smallest � ∈ fα(�)
for which {�, α} is available, and plays {�, α} if such a � exists—otherwise he plays
arbitrarily.

Suppose for a contradiction that Maker manages to build aKκ,κ+ (despite Breaker
playing as above) and let A be its smaller and B its bigger vertex class. Then
there is an α < κ+ with Aα = A. Fix a � ∈ B with � > max{α, supA} and let
� < κ with f�(�) = A. At the turn when Maker claims a downwards edge from
� for the (� + 1)st time, there are still κ many � ∈ A for which {�, �} is available,
and thus Breaker’s next play is {�, �} for the smallest such �. This contradicts
{�, �} ∈ E(GM ). �

The corresponding negative Ramsey-result can be proved in a similar manner:

Corollary 2.2 (ZFC+GCH). For every infinite cardinal κ, there exists a
2-colouring of the edge set of Kκ,κ+ without a monochromatic copy of Kκ,κ+ .

Proof. Let {vα : α < κ+} be an enumeration of the larger vertex class and let
{Aα : α < κ+} be an enumeration of [κ+]κ. For each α < κ+, we colour the edges
incident with vα in such a way that for every � ≤ α both colours appear among the
edges between vα andA� . This clearly ensures that no setA can be the smaller vertex
class of a monochromatic copy of Kκ,κ+ and therefore no such a monochromatic
copy exists. �

Observation 2.3. If Breaker has a winning strategy inMB(G,H ), then he also has
one in every game MB(G ′, H ′) where G ′ is a subgraph of G and H ′ is a supergraph
ofH .

SinceKκ,κ+ is a subgraph ofKκ+, Observation 2.3 guarantees that Proposition 2.1
has the following consequences:

Corollary 2.4 (ZFC+GCH). For every infinite cardinal κ, Breaker has a winning
strategy in the following games:
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(1) MB(Kκ,κ+ , Kκ,κ+),
(2) MB(Kκ+ , Kκ+),
(3) MB(Kκ+ , Kclub).

§3. Winning strategies for Maker. During the course of play in MB(G,H ) we
will refer to a vertex as fresh if no edge incident with that vertex has been claimed
yet by either player.

3.1. A winning strategy for Maker in MB(K�,�1 , K�,�1). A set F of sets has the
strong finite intersection property if the intersection of any finitely many elements
of F is infinite. Given two sets X and Y, write X ⊆∗ Y if X \ Y is finite. A pseudo-
intersection for a set F of sets is a set P with P ⊆∗ F for all F ∈ F . The cardinal
p is the minimum cardinality of a set F of subsets of � that has the strong finite
intersection property but does not admit an infinite pseudo-intersection. Clearly
ℵ0 < p ≤ 2ℵ0 and it is known that �1 < p is consistent relative to ZFC (see [10,
Lemma III.3.22 on p. 176]).

Proposition 3.1. Maker has a winning strategy in MB(K�,�1 , K�,�1) if �1 < p.

Proof. LetU andV be the two sides of the bipartite graphK�,�1 , where |U | = �
and |V | = �1. We denote the subgraph of G induced by the edges Maker claimed
before turn α by GαM and we write NGαM (v) for the set of the neighbours of v in this
graph.

During the game Maker will choose a sequence 〈vα : α < κ〉〈vα : α < �1〉 of
distinct vertices from V and a sequence 〈Nα : α < κ〉 of subsets of U in such a way
as to ensure that for any α < κ and a sequence 〈Nα : α < �1〉 of subsets of U in
such a way as to ensure that for any α < �1

(1) Nα ⊆ N�·(α+1)
GM

(vα),
(2) the set {N� : � ≤ α} has the strong finite intersection property.
Assume that turn α · � has just begun for some α < �1 and that Maker has

constructed suitable v� and N� for all � < α. She picks vα to be any fresh vertex
in V. Using (2) for all � < α, we know that the set {N� : � < α} has the strong
finite intersection property. Let Pα be an infinite pseudo-intersection of this family.
In each of the next � turns, Maker claims an edge {u, vα} with u ∈ Pα . Let Nα
be the set of all the endpoints u ∈ U of these edges. It is easy to check that this
construction satisfies (1) and (2) for α.

At the end of the game {Nα : α < �1} has the strong finite intersection property
and hence (by the assumption �1 < p) admits an infinite pseudo-intersection P.
By the definition of P, for each α < �1, the set P \Nα is finite. Then there exists
an uncountable O ⊆ �1 and a finite F ⊆ P such that P \Nα = F for every α ∈ O.
Finally,(P \ F ) ∪ {vα : α ∈ O} induces a copy of K�,�1 , all of whose edges have
been claimed by Maker. �

Remark 3.2. The same proof shows that Maker has a winning strategy in
MB(K�,κ,K�,κ) for every κ < p with cf(κ) > ℵ0.

The proof of Proposition 3.1 leads to the following positive Ramsey result:

Corollary 3.3. If �1 < p, then any 2-colouring of the edges of K�,�1 admits a
monochromatic copy of K�,�1 .
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Proof. Call the colours red and blue, and call the countable and uncountable
sides of the original graph U and V respectively. We pick a free ultrafilter U on
U . Then for each v ∈ V either the set Nr(v) of the red neighbours of v is in U or
the set Nb(v) of the blue neighbours. We may assume that there is an uncountable
V ′ ⊆ V such that Nr(v) ∈ U for each v ∈ V ′. Since U is a free ultrafilter, the
family {Nr(v) : v ∈ V ′} has the strong finite intersection property and therefore
(by �1 < p) admits an infinite pseudo-intersection P. This means that for every
v ∈ V ′ the set P \Nr(v) is finite. Then there exists an uncountable V ′′ ⊆ V ′ and
finite F ⊆ P such that P \Nr(v) = F for each v ∈ V ′′ and hence (P \ F ) ∪ V ′′

induces a red copy of K�,�1 . �
Question 3.4. Is it consistent with ZFC+ℵ� < 2ℵ0 that Maker has a winning

strategy in the game MB(K�,�� ,K�,�� )?

Theorem 1.1 is implied by the case κ = � of Corollary 2.4/(1) together with
Proposition 3.1. Similarly, Theorem 1.2 follows from Corollaries 2.2 and 3.3.

3.2. A winning strategy for Maker in MB(K�1 , K�1 ) and MB(K�2 , K�2 ).

Proposition 3.5 (ZF). If either κ is measurable or κ = �, then Maker has a
winning strategy in the game MB(Kκ,Kκ).

Proof. A sub-binary Hausdorff tree is a set theoretic tree T in which each vertex
has at most two children and no two vertices at any limit level have the same set of
predecessors.

During the game Maker builds a sequence 〈Tα : α ≤ κ〉 of sub-binary Hausdorff
trees with root 0 and Tα ⊆ κ of height at most 1 + α such that:

(a) (i) T0 = {0},
(ii) Tα+1 is obtained from Tα by inserting a new maximal element,

(iii) Tα =
⋃
�<α T� if α is a limit ordinal,

(b) for every distinct <Tα -comparable u, v ∈ Tα , the edge {u, v} is claimed by
Maker in the game.

Suppose that α = � + 1 and T� is already defined. Maker picks the smallest
ordinal v such that no edge incident with v is claimed and claims edge {0, v}. Then,
for as long as she can, on each following turn she connects v to vertices in T� in
such a way that:

(1) she maintains that the current neighbourhood of v in her graph is a downward
closed chain in T� ,

(2) whenever she claims some {u, v}, then Breaker has no edge between v and
the subtree T�,u of T� rooted at u.

Note that, at any step at which v has a largest Maker-neighbour in T� and this
neighbour has two children in T� , she can proceed. Moreover, she can also proceed
even if there is no such largest Maker-neighbour as long as there is some element
of T� whose predecessors are precisely the Maker-neighbours of v in T� . Thus, if
Maker is unable to continue this process with v, then either v has a largest Maker-
neighbour in T� which has at most one child or else there is no vertex in T� with
precisely the Maker-neighbours of u as its predecessors. In either case we can define
T�+1 by adding v to T� with its current set of Maker-neighbours as its predecessors,
and Maker starts a new phase with a new fresh vertex.
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It is enough to show that there is a κ-branch B in Tκ, because then GM [B] is a
copy of Kκ by (b). Since |Tκ| = κ by (a), we can fix a κ-complete free ultrafilter U
on Tκ.

By transfinite recursion we build a κ-branch. Let v0 := 0. Suppose that there is
an α < κ such that the <Tκ -increasing sequence

〈
v� : � < α

〉
is already defined and

for each � < α, Tκ,v� ∈ U . If α is a limit ordinal, then since
⋂
�<α Tv� ∈ U by the

κ-completeness of U , there is at least one vertex of T with all v� as predecessors. We
define vα to be the unique minimal such vertex, so that Tvα =

⋂
�<α Tv� ∈ U . If α =

� + 1, then Tκ,v� ∈ U by assumption. Since Tκ is sub-binary, v� has a unique child
v satisfying Tκ,v ∈ U and we let v�+1 := v. The recursion is done and {vα : α < κ}
is clearly a κ-branch. �

We remark that this strategy is quite flexible and deals also with a number of
variants of the Maker–Breaker game. For example, if Breaker is allowed k < �
moves for every move that Maker picks, simply take a sub-(k + 1)-regular Hausdorff
tree, in which every node has at most k + 1 children. Furthermore, if in addition
Breaker is allowed to go first in every turn, simply weaken the Hausdorff assumption
to the requirement that at most k + 1 vertices at a limit level have the same set of
predecessors.

Since�1 and�2 are measurable cardinals under ZF+DC+AD [9, Theorems 28.2
and 28.6], the cases κ ∈ {�,�1} of Corollary 2.4/(2) and the cases κ ∈ {�1, �2} of
Proposition 3.5 together imply Theorem 1.3.

3.3. Breaker may lose the MB(K�1 , Kclub)-game.

Proposition 3.6. Under ZF+DC+AD, Breaker does not have a winning strategy
in the game MB(K�1 , Kclub).

Proof. First of all, the club filter on �1 is a countably complete free ultrafilter
under ZF+DC+AD (this is explicit in the proof of [9, Theorem 28.2]). Furthermore,
it is normal [6, Proposition 4.1]. Thus for any 2-colouring of [�1]2 there exists
a colour with a monochromatic Kclub (the standard proof of this for arbitrary
normal ultrafilters uses only ZF, see [8, Theorem 10.22]). It follows that if Breaker
successfully prevents Maker from building aKclub, then he necessarily builds aKclub

himself.
Suppose for a contradiction that Breaker has a winning strategy. We shall show

that Maker can “steal” this winning strategy. Indeed, Maker picks an arbitrary
edge in turn 0 as well as in each limit turn while in successor turns she pretends to
be Breaker and claims edges according to his winning strategy. This is a winning
strategy for Maker, a contradiction. �

Theorem 1.4 follows from the case κ = � of Corollary 2.4/(3) and Proposi-
tion 3.6.

Remark 3.7. The same strategy stealing argument shows that if κ is a weakly
compact cardinal, then Breaker does not have a winning strategy in the game
MB(Kκ,Kκ).

Remark 3.8. We did not really use the full power of AD, just some consequences
that are weaker in the sense of consistency strength than AD itself. The axiom-
system ZF+DC+“�1 is measurable” is equiconsistent with ZFC+“there exists a
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measurable cardinal” (see [7]). The club filter being an ultrafilter is a strictly stronger
assumption; for more details see page 3 of [6].
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