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Abstract

We show that the deformation functor of a maximal Cohen–Macaulay module M =
coker(φ) over the hypersurface singularity det(φ) is given by deformations of the pre-
senting matrix which keep the determinant constant. A simplified expression for an
edge map in the canonical five-term exact sequence to a change of rings spectral
sequence is obtained, including the tangent and obstruction spaces (H1 and H2).
We relate the edge map to the Scandinavian complex S of φ which yields relations between
the homology of S and H i for i = 1, 2. This gives (infinitesimal) rigidity and non-rigidity
results and a dimension estimate for the formally (mini-)versal formal hull H of the
deformation functor.

1. Introduction

The local moduli problem in algebraic geometry is finding the local rings of the moduli space. The
idea is that the algebraic geometric object, e.g. an A-module M , corresponding to a closed point
contains all information about the infinitesimal neighbourhoods of any sort of moduli space it may
occur in. No a priori knowledge about these spaces is necessary. To make this claim precise, one
introduces the deformation functor. Fix a field k and suppose A is a k-algebra and let Artk be the
category of local Artinian k-algebras R with residue field k such that the composition k → R → k
is the identity and morphisms are maps of local k-algebras. Then the deformation functor of M is

DefM : Artk −→ Sets

where DefM (R) is the set of equivalence classes of liftings (or deformations) of M to R. A lifting of
M to R is an A⊗kR-module MR, which is flat as R-module, and an A⊗kR-linear map π : MR →M
with π ⊗R k : MR ⊗R k �−→ M . Two liftings are equivalent if they are isomorphic above M . Maps
are induced by tensorization. More generally, let F : Artk −→ Sets be a covariant functor with F (k)
a one element set. Schlessinger [Sch68] formulated a sufficient and necessary set of criteria for the
existence of a complete local ring H called a (pro-representable) hull, and a formal versal family
{Mn}∞n=1, which is a projective system with Mn ∈ F (H/mn+1

H ), such that the induced map

Homk−alg./k(H,−) −→ F

is an isomorphism or weaker, is a tangential isomorphism and is formally smooth, a strong inductive
surjectivity condition. Most deformation functors satisfy these latter conditions, except possibly
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for finite dimensionality of the Zariski tangent space of F . However, Schlessinger did not give any
effective way of constructing the hull. The only known general tool to findH from M is the existence
and computability of a natural obstruction class.

Definition 1. A small lifting situation is a surjective map π : R → S in Artk where ker(π) is
contained in the socle of R, i.e. mR· ker(π) = 0, and a lifting MS of M to S.

The obstruction class is then an element o = o(π,MS) ∈ H2 ⊗ ker(π) where H2 is the second
cohomology group of the object M . If F = DefM then o = oA(π,MS) and H2 = Ext2A(M,M). The
obstruction class is natural with respect to morphisms of the lifting situation. There exists a lifting of
MS to R (or a prolongation of the deformation MS to the ‘thicker’ Artinian neighbourhood SpecR)
if and only if this obstruction class is zero. The obstruction class has been constructed for many
deformation functors, e.g. [Ill71, Ill72, Lau79]; for axiomatic approaches, see [Art74, FM98, Ile01].

The starting point of the construction of the hull H, in the case of DefM , is the ‘universal
extension’ M1 of M

M1 : 0 −→M ⊗k Ext1A(M,M)∗ −→M1
π1−→M −→ 0

where the extension is given by the image of the identity map under the canonical isomorphism:

id ∈ Endk(Ext1A(M,M)) ∼= Ext1A(M,M ⊗k Ext1A(M,M)∗) �M1.

If H1 = k[Ext1A(M,M)∗] = k ⊕ Ext1A(M,M)∗, we naturally get the equivalence class [M1] ∈
DefM (H1). The construction of H then proceeds through successive ‘prolongations’ of M1 to thicker
Artinian k-algebras through small lifting situations, calculating the obstruction at each step. If this
is done correctly, we obtain power series in T 1 of minimal degree greater than or equal to two, one
(possibly ‘0’) for each cotangential ‘generator’ in T 2, where T i is the completion of the free k-algebra
which has ExtiA(M,M) as the Zariski tangent space for i = 1, 2. This defines an obstruction map
oA : T 2 → T 1 such that H = T 1 ⊗T 2 k, see [Ile01, Lau79, Lau86]. An estimate for the Krull
dimension of H follows:

dimk Ext1A(M,M) � dimKrull(H) � dimk Ext1A(M,M)− dimk Ext2A(M,M).

Here the first inequality is an equality if and only if H is smooth and the second inequality is an
equality if and only if the obstruction power series defines a regular sequence and all the second
cohomology is hit by obstructions. (See also [Kaw95].)

In practice, it is difficult to calculate H in this way; in fact, very few classes of examples of defor-
mation functors have been given for which anything beyond the general Krull dimension estimate is
known. The degree of success in calculation will depend on how explicitly and simply one can rep-
resent the cohomology that is involved. In the present paper, we consider a class of modules where
the cohomology has a particularly nice and explicit representation. Let us call an affine scheme
X = Spec(B) over a field k a hypersurface singularity if B ∼= A/(f), where A is a regular local
Noetherian k-algebra and f is non-zero and contained in the maximal ideal of A. The main result,
Theorem 2, improves the above Krull dimension estimate for maximal Cohen–Macaulay (MCM)
modules of rank one on hypersurface singularities in two ways. In the upper bound Ext1B(M,M)
is isomorphic to H1(S), the first homology of the Scandinavian complex S = S(φ), where φ is a
presenting matrix for M over A with detφ = f (all MCMs of rank one on X are given in this way).
The Scandinavian complex gives an A-free resolution of the quotient A/Ig−1(φ), where Ig−1(φ) is the
ideal of sub-maximal minors of the g×g-matrix φ, if grade Ig−1(φ) = 4, the maximal possible value.
Hence DefBM , the deformation functor of M as a B-module, is non-trivial only if grade Ig−1(φ) � 3.
For the lower bound, we show that there is a natural map Ext2B(M,M) → H2(S) which takes the
obstruction class to zero, hence the obstruction class resides in the kernel which is determined to be
A/Ig−1(φ). Since grade Ig−1(φ) = 2 implies H2(S) �= 0, we obtain a strictly better lower estimate
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for the Krull dimension of the hull than the general inequality. The rkM = g− 1 case is covered as
well, and by the Knörrer functor the results extend to MCMs of other ranks. Our results fit into a
general change of rings framework which we now briefly describe.

Let B be a k-algebra quotient of A and J = ker(A → B) and assume M is a B-module as
an A-module, i.e. that J ⊆ AnnA(M). In [Ile01], the author constructed a new obstruction class
oJ(π,MS) for a lifting situation where oA(π,MS) = 0. We have

oB(π,MS) = 0⇐⇒ oA(π,MS) = 0 = oJ (π,MS).

It turns out that with these two classes we can construct two obstruction maps which define the
hull of DefBM . The J-obstruction class resides in the cokernel of a natural map

∂J : Ext1A(M,M) −→ HomA(J,EndA(M)) (1)

where ∂J is induced by the pullback along any homotopy killing the action of J on an A-free
resolution of M , hence oJ (π,MS) ∈ coker(∂J) ⊗k ker(π). Moreover, the tangent space of DefBM is
ker ∂J , see [Ile01, ch. 1]. Then ∂J is also the second non-trivial map in the five-term exact sequence

0 −→ Ext1B(M,N) −→ Ext1A(M,N) −→ HomA(J,HomA(M,N))

−→ Ext2B(M,N) −→ Ext2A(M,N)

of a change of rings spectral sequence

Epq2 = ExtpB(M,ExtqA(B,N))⇒ Ext∗A(M,N),

see [Ile01, ch. 4] and Lemma 1. Let T 2
A, T

2
J and T 1 be the completion of free k-algebras with Zariski

tangent spaces consisting of the image of the natural map Ext2B(M,M) → Ext2A(M,M), coker ∂J
and ker ∂J , respectively. In the case where these cohomology groups are not finite but of countable
dimension as k-vector spaces, one has to introduce a suitable topology in order to allow proper
dualization, and a compatible topology in which the T ’s are complete; see [Lau79, Ile01]. We have
the following.

Theorem 1 [Ile01]. DefBM is a functor with two obstructions in

im(Ext2B(M,M) −→ Ext2A(M,M)) and coker ∂J

and with tangent space ker ∂J , such that if these spaces have countable k-dimension, there are
(continuous) obstruction maps

oA : T 2
A −→ T 1 and oJ : T 2

J −→ T 1

for the obstructions oA and oJ . In particular, the hull is given as

H ∼= (T 1 ⊗T 2
A
k)⊗T 2

J
k.

This theorem implies that one can find the hull for DefBM by calculating the obstructions as cup
and generalized Massey products entirely within an A-free complex; see [Ile01, Theorem 3.1].

For explicit non-trivial calculations of obstructions (given by cup products) for the Hilbert
functor of space curves, see [Wal92, Flo93]. Siqveland gave the local equations for the compactified
Jacobian of the E6 curve singularity and found the degeneracy diagram of the rank one torsion free
modules in [Siq01a] by calculating the obstruction maps; the Massey product algorithms are given
in [Siq01b]. Similar ideas have recently been used by Borge [Bor02] to define a new class of p-groups
for which the modular isomorphism problem can be solved.

437

https://doi.org/10.1112/S0010437X03000198 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X03000198


R. Ile

2. The Scandinavian complex of a matrix factorization

MCM modules over hypersurface singularities are given by matrix factorizations (φ,ψ) of the
hypersurface f and there is a natural complex S associated to (φ,ψ). If ψ is the adjoint of φ, the
MCM B = A/(f)-module M = coker(φ) has rank one. These are the main ingredients in Theorem 2.

Definition 2 [Eis80]. A matrix factorization of an element f in a ring A is a pair (φ,ψ) of A-linear
maps of free modules φ : F → G, ψ : G→ F , with φψ = f · idG and ψφ = f · idF .

Let B = A/(f). Then M = coker φ is a B-module as an A-module since f annihilates M . If
(f)/(f2) is free as a B-module, then the following 2-periodic complex of free B-modules

G
φ←− F ψ←− G φ←− F ψ←− . . . (2)

is a free resolution of M where G
φ←− F . . . = [G

φ←− F . . . ]⊗A B, [Eis80, Proposition 5.1]. Note that
any A-linear map α : M → M defines a map L2 := G → L0 := G, which gives a cocycle in the
complex computing Ext and, therefore, defines an element α ∈ Ext2B(M,M). If A is Noetherian and
G is of finite rank, then rkF = rkG [Eis80, Proposition 5.3]. We assume the rank(s) of G and F to
be finite. Define a regular element in A to be f ∈ A with ker(f ·) = 0 and coker(f ·) �= 0, where f ·
is the multiplication with f -map on A.

Example 1. Let M be a finitely generated MCM module over a local Noetherian ring B. If there
is a regular local ring A and a regular element f ∈ A with A/(f) ∼= B, then there is a matrix
factorization (φ,ψ) of f with coker φ ∼= M and (2) is a B-free resolution of M . Let φ : F → G be
a finite A-free presentation of M , we may assume that φ is injective by the Auslander–Buchsbaum
theorem. Multiplication with f on the presentation, considering the presentation as a complex, is
homotopic to zero since f annihilates M . Hence there is a ψ : G → F with φψ = f · idG. However,
then (φ,ψ) is a matrix factorization of f by

φψφ = f · idG φ = φ f · idF =⇒ ψφ = f · idF
since φ is injective.

On the other hand, if (φ,ψ) is a matrix factorization with rkG < ∞ of the regular element
f in the local Cohen–Macaulay ring A, then M = coker φ is a MCM module over A/(f). Since f
is regular, both φ and ψ are injective, hence pdA(M) = 1 = depthA − depthM and depthM =
depthA/(f) = dimA/(f).

There is a functorial complex to φ due to Gulliksen and Neg̊ard, the ‘Scandinavian complex’
S(φ), which approximates an A-free resolution of A/Ig−1(φ); see [GN72]. We define a complex for
a matrix factorization in general.

Definition 3. Let G
ψ

�� F
φ�� be a matrix factorization of f ∈ A where A is a ring. Then there is

a complex S(φ,ψ) of free A-modules

A
d1←− Hom(F,G) d2←− E d3←− Hom(G,F ) d4←− A,

which is functorial in A. E is the middle cohomology of the split monad

A
j←− End(G)⊕ End(F ) i←− A

where i(a) = (aI, aI), j(ρ0, ρ1) = tr(ρ0) − tr(ρ1). The differentials are: d1(ξ) = tr(ξψ); d2 and d3

are induced by the differentials in the Yoneda complex,

0←− Hom(F,G) d2←− End(G)⊕ End(F ) d3←− Hom(G,F )←− 0,

i.e. d2(ρ0, ρ1) = φρ1 − ρ0φ and d3(τ) = (φτ, τφ); and d4(r) = rψ.
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Remark 1. In the proof of Theorem 2, we only use the complex S(φ,ψ) in the case ψ = φa, the adjoint
of φ, and then it is the same as the complex S(φ) of [GN72], i.e. S(φ) = S(φ, φa). Apart from (10),
we give no further statements concerning the generalization S(φ,ψ), but our definition highlights
the connection with the Yoneda complex which is convenient for our purposes. Gulliksen and Neg̊ard
proved that S(φ) is a free resolution of A/Ig−1(φ) if grade Ig−1(φ) has the maximal value, which is 4.

Our main result is a sharpened form of Theorem 1 for modules given by certain matrix factor-
izations. Let T i(X) be the completion of the free k-algebra with the Zariski tangent space X (of
countable dimension) in the proper topology; see [Ile01, ch. 2] and [Lau79, ch. 4]. Let grade I = n
if a maximal A-regular sequence in I has length n.

Theorem 2. Suppose that A is a Noetherian k-algebra, φ : F → G is a homomorphism of free
A-modules of equal rank g with det(φ) = f and f ∈ A is a regular element. Set M = coker φ and
B = A/(f). Assume AnnAM = (f) and Ig−1(φ) �= A. Then the deformation functor DefBM has the
tangent space DefBM (k[ε]) ∼= Ext1B(M,M) ∼= H1(S) where S = S(φ) is the Scandinavian complex
of φ. The first of the two obstruction maps oA is trivial while the other oJ for J = (f) factors
through the quotient

T 2(Ext2B(M,M))

����

oJ

����������������

T 2(A/Ig−1(φ))
of

�� T 1(H1(S)) = T 1

which is induced by a natural inclusion A/Ig−1(φ) ↪→ Ext2B(M,M); hence the hull is given as

H ∼= T 1 ⊗T 2 k.

Moreover, the tangent and obstruction spaces of DefBM have finite dimension if and only if
dimk A/Ig−1(φ) <∞ and then

dimkH1(S) � dimKrullH � dimkH1(S)− dimk A/Ig−1(φ)

= dimk Ext1B(M,M) − dimk Ext2B(M,M) + dimkH2(S). (3)

In particular, H2(S) �= 0 if grade Ig−1(φ) = 2 and DefBM is infinitesimally rigid if grade Ig−1(φ) = 4.

The main steps in the proof of Theorem 2 (which takes up the remainder of this paper)
are as follows. The deformation functor DefBM is isomorphic to the deformation functor of the
matrix factorization (φ, φa) over A. Since Ext2A(M,M) = 0, all obstructions are given by the
J = (f)-obstruction map; this is a special case of Theorem 1. In Proposition 1, we show that DefBM ,
furthermore, is isomorphic to the functor of deformations φ̃ of φ with det φ̃ constant (equal to f),
and the argument implies that the (f)-obstruction class resides in the image of the composition of
natural maps B → EndB(M) → Ext2B(M,M). The technical heart of the proof is a factorization
of the edge map ∂f : Ext1A(M,M) → EndB(M) in the change of rings spectral sequence via a
trace map, Proposition 2. This gives a factorization of B → Ext2B(M,M) via A/Ig−1(φ), hence the
factorization of oJ in Theorem 2. The trace map factorization also enables the identification of
the Zariski tangent space of DefBM with the first homology H1(S) of the Scandinavian complex of φ,
and implies the existence of a short exact sequence (11) where H2(S) is the quotient of Ext2B(M,M)
by A/Ig−1(φ). Then the rest follows directly from [GN72].

One obstruction map ox : T 2 → T 1, as of in Theorem 2 for a functor F with a natural obstruction
class ox in some H2, should, in addition to being continuous, satisfy the following. Fix a formal
versal family {Mi}, Mi ∈ F (Hi) where H = lim←−Hi is a hull for F . For any lifting situation as in
Definition 1 and map σ : Hi → S in Artk with σ∗Mi = MS (which we know exists by versality),

439

https://doi.org/10.1112/S0010437X03000198 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X03000198


R. Ile

we should have that ox(π,MS) ∈ H2⊗k I is the adjoint to (ox)∗θ : H2∗ → I in the commutative
diagram

I��

��
H 2∗ �� ��

(ox)∗θ
��������������������������

T 2 ox
�� T 1 θ ��

����

R

π
����

Hi σ
�� S

(4)

where θ is continuous and lifts σ. In [Ile01, ch. 2] we gave an axiomatic treatment of a functor with
n obstructions and proved the existence of n obstruction maps.

Example 2. In the 2 × 2-case, the Koszul complex K(xij) and S(φ) for φ = (xij) are isomorphic
and Ig−1(φ) = I(φ) = (xij) so we have the following:

• grade I(φ) = 4⇐⇒ K(xij) ∼= S(φ) are acyclic.

• grade I(φ) = 3⇐⇒ H1(K) ∼= H1(S) �= 0 and Hi(K) ∼= Hi(S) = 0 for i � 2. If (x) = (xij)ij �=i0j0
and grade(x) = 3, we have H1(S) = ker(A/(x)

·xi0j0−−−→ A/(x)) by the mapping cone sequence of
the Koszul complex. In particular, H1(S) = A/I(φ) if xi0j0 ∈ (x).

• grade I(φ) = 2 ⇐⇒ H2(K) ∼= H2(S) �= 0 and Hi(K) ∼= Hi(S) = 0 for i � 3. If (xij) =
(x1, . . . , x4) such that (x1, x2) is a regular sequence then H2(S) ∼= ((x1, x2) : (x1, . . . , x4))/
(x1, x2). In particular if (x3, x4) ⊆ (x1, x2) then H2(S) = A/I(φ).

3. Deforming matrix factorizations

The deformation functor of the matrix factorization (φ,ψ) is isomorphic to DefBM . If ψ is the adjoint
of φ, then DefBM is also isomorphic to the functor of deformations φ̃ of φ with det φ̃ = f . This narrows
the obstruction space to the image of B in Ext2B(M,M).

To a matrix factorization (φ,ψ) of f ∈ A, where A is a k-algebra, there is a deformation functor
DefA(φ,ψ) of equivalence classes of liftings (φ̃, ψ̃) of (φ,ψ) as matrix factorization, i.e. DefA(φ,ψ)(R) is
the set of equivalence classes of commutative diagrams

G⊗k R φ̃←−−−− F ⊗k R ψ̃←−−−− G⊗k R� � �
G

φ←−−−− F
ψ←−−−− G

such that φ̃ψ̃ = f · idG⊗R. If B = A/(f), there is a map

DefA(φ,ψ) −→ DefBM (5)

by taking the cokernel of φ̃ which gives an R-flat module since φ and hence φ̃ are injective. Moreover,
MR = coker(φ̃) is a B ⊗ R-module as an A ⊗ R-module since it is annihilated by f which follows
from the relation φ̃ψ̃ = f · idG⊗R. The map is a tangential isomorphism and smooth since we can
more generally construct the hull of DefBM from lifting an A-free resolution (F∗, d∗) of M and a map
ψ : E⊗A F0 → F1 satisfying d0ψ = (f1, . . . , fr)⊗A F0 where E ∼= Ar � J = (f1, . . . , fr); see [Ile01].
Hence, the map (5) is an isomorphism since it is clear that it is injective.

If f is a regular element, we have that ψ, if it exists, is uniquely determined by φ; see [Eis80,
Proposition 5.5]. In fact det(φ)·ψ = f ·φa which uniquely determines ψ since det(φ) is regular
[op. cit.]. Let us therefore define another deformation functor DefA(φ|det φ) of deformations of φ with
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fixed determinant. If f is regular, we have

DefA(φ| det φ) ↪→ DefA(φ,ψ). (6)

The following result is essential for the proof of Theorem 2.

Proposition 1. Let (φ,ψ) be a matrix factorization of detφ = f ∈ A where A is a k-algebra.
Set M = coker(φ), B = A/(f) and assume f is regular in A and AnnAM = (f). Then the natural
maps

DefA(φ| det φ) −→ DefA(φ,ψ) −→ DefBM

are isomorphisms. In particular, there exists a versal lifting φ̃ = lim←−φn of φ to the hull H = lim←−Hn

of DefBM such that det φ̃ = f .

Proof. We already have that the last map is an isomorphism and the first map is injective, hence we
only have to show the surjectivity of the first map. We proceed by induction on the length of R, the
beginning is trivial. Assume π : R→ S is surjective in Artk and mR·I = 0 where I = ker π. Assume
we have a lifting (φS , ψS) of (φ,ψ) to S with φSψS = f · idG⊗S and detφS = detφ = f . Given a
further lifting (φ̃, ψ̃) of (φS , ψS) to R with φ̃ψ̃ = f · idG⊗R. Set M̃ = coker φ̃. Then det φ̃ = detφS +
u = f + u with u =

∑
ai ⊗ ui ∈ A⊗ I. We get ai ∈ AnnAM since det φ̃ ∈ Ann M̃ and f ∈ Ann M̃

implies u ∈ Ann M̃ . However, AnnAM = (f) by assumption, hence u = bf and we can modify
(φ̃, ψ̃) to (φ̃′, ψ̃′) where φ̃′ = φ̃− b·e11φ and ψ̃′ = ψ̃+ b·ψe11 where the endomorphism e11 is given by
a matrix with 1 in the upper-left corner and 0 elsewhere. Then (φ̃′, ψ̃′) is a matrix factorization of
f equivalent to (φ̃, ψ̃) with det φ̃′ = det φ̃− b· tr(e11φφa) = f +u− bf = f where tr is the trace.

Proposition 1 states that we only have to lift φ and solve the equation det φ̃ = f to find the
obstructions. If det φ̃ = f then ψ̃ = (φ̃)a, the adjoint of φ̃.

If B = A/(f) is a domain, i.e. f is prime, the rank of M = coker φ is the dimension of the
K-vector space K ⊗B M where K = K(B) is the field of fractions of B. If (φ,ψ) is a matrix
factorization of f which is regular and prime, then detφ = xf r with x /∈ (f) and r = rkBM [Eis80,
Proposition 5.6]. Hence, in this case the B-moduleM of Proposition 1 has rank one. In particular, all
MCM modules of rank one on irreducible hypersurface singularities are subsumed by the proposition.

4. An edge map as a trace

The pullback of 1-cocycles by ψ is identified as an edge map in the change of rings spectral sequence
and it factors through a trace map. This enables us to establish connections between the cohomology
of the module and the homology of the Scandinavian complex.

Lemma 1. Let A→ B be a ring homomorphism and N and M be an A- and a B-module, respec-
tively. Then there is a first quadrant cohomological spectral sequence

Epq
2 = ExtpB(M,ExtqA(B,N))⇒ Ext∗A(M,N).

In particular, there is a canonical five-term exact sequence which, in the case B = A/(f) and
N = M = coker φ for a matrix factorization (φ,ψ) of f ∈ A where f is regular, reduces to the
four-term exact sequence

0→ Ext1B(M,M)→ Ext1A(M,M)
∂f−→ EndA(M) d2−→ Ext2B(M,M)→ 0 (7)

where ∂f = ψ∗ is the pullback of cocycles along ψ and d2 is the differential of the spectral sequence.
Moreover, d2 is the map sending the endomorphism α ∈ EndA(M) to α, defined after (2).

Proof. Let F = F· � M be a B-projective resolution ofM andN ↪→ I · = I an A-injective resolution
of N . Then the II-filtration of HomB(F,HomA(B, I)) gives IIEpq1 = HomA(M,HomA(B, Iq)) for

441

https://doi.org/10.1112/S0010437X03000198 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X03000198


R. Ile

p = 0 and zero for p > 0, since HomA(B, Iq) is B-injective. We get HomA(M,HomA(B, I)) ∼=
HomA(M, I) by adjointness so the spectral sequence collapses at stage 2 to a single row with

ExtqA(M,N) ∼= IIE0q
2
∼= Hq(HomA(F,HomA(B, I))),

the total cohomology. The I-filtration gives IEpq1 = HomB(Fp,ExtqA(B,N)), thus IEpq2 =
ExtpB(M,ExtqA(B,N)). The five-term exact sequence is the standard one 0 → E10

2 → H1 →
E01

2 → E20
2 → H2 where the last term vanishes in the matrix factorization case. If B = A/J ,

then E01
2
∼= HomA(J,HomA(M,N)).

In the matrix factorization case, let ξ ∈ HomA(F,G) represent a class [ξ] ∈ Ext1A(M,M). Then
there is a ρ ∈ HomA(G, I0) extending ιεξ where ε : G � M and ι : M ↪→ I0 are the augmentation
and coaugmentation maps, respectively. There is also a τ ∈ HomA(M, I1) extending d0ρ; clearly
[τ ] = [ξ]. From ρφ = ιεξ we get f ·ρ = ιεξψ and the latter represents ∂f ([ξ]). If ε = ε ⊗A B,
we are left to show that the connecting HomB(M,Ext1A(B,M)) �−→ EndB(M) is represented by
taking τε to f ·ρ. Applying HomA(G,HomA(−, I∗)) to the short exact sequence 0→ A

f ·−→ A→ B
→ 0 gives a short exact sequence of complexes; observe that HomA(G,HomA(B, I∗)) ∼= HomA(G, I∗),
hence we obtain the following pointed commutative diagram:

0←− HomA(G, I1) HomA(G, I1) � τεf ·�� HomA(G, I1) � τε← 0��

0← HomA(G, I0) � f ·ρ

��

HomA(G, I0) � ρf ·��

��

HomA(G, I0)←− 0��

��

HomA(G,M) � εξψ��

ι∗

��

A description of the map d2 which implies the last part of the lemma is given in much greater
generality in [Ile01].

The following description of the edge map ∂f is crucial.

Proposition 2. Let A be a ring andM = coker φ an A-module where φ : F → G is an A-linear map
of free A-modules of equal, finite rank g. If f = detφ is A-regular, B = A/(f) and AnnAM = (f),
then there is an exact sequence mapping to the four-term exact sequence (7):

0→ Ext1B(M,M) ��

=

��

Ext1A(M,M)
tr(−◦φa) ��

=

��

B ��

· idM

��

A/Ig−1(φ)→ 0

��
0→ Ext1B(M,M) �� Ext1A(M,M)

∂f �� EndB(M) �� Ext2B(M,M)→ 0

In particular, ∂f = (φa)∗ is induced by tr(−◦φa) idM where φa is the adjoint of φ and tr is the trace.

Proof. The image of tr(−◦φa) : HomA(F,G) → A, ξ �→ tr(ξφa), is I1(φa) = Ig−1(φ). To get the
commutativity of the central square in the diagram, we have to show that (φa)∗ = tr(−◦φa) idM .
Let eij be the g×g-matrix with 1 in ij-position and 0 elsewhere. It is sufficient to find a g×g-matrix
φij with

eijφ
a + φφij = cij · idG (8)

where cij is the ij-cofactor; cij = (−1)i+jmij(φ) where mij(φ) is the ij-minor of φ. We have
tr(eijφa) = cij and since any ξ ∈ HomA(F,G) is an A-linear combination of eij , we get
∂f (ξ) = tr(ξφa) idM . If mik(φlj) is the ik-minor of the matrix φlj obtained from φ by deleting
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the lth row and jth column, we define φij by

φij=(−1)i+j




mi1(φ1j) −mi1(φ2j) . . . ±mi1(φi−1j) 0 ∓mi1(φi+1j) . . . ±mi1(φgj)
−mi2(φ1j) mi2(φ2j) . . . ∓mi2(φi−1j) 0 ±mi2(φi+1j) . . . ∓mi2(φgj)

...
...

...
...

±mij−1(φ1j) ∓mij−1(φ2j) . . . 0
0 0 . . . 0 0 0 . . . 0

∓mij+1(φ1j) ±mij+1(φ2j) . . . 0
...

...
...

...
±mig(φ1j) ∓mig(φ2j) . . . 0 . . . ±mig(φgj)




Then the kl-entry of φφij is

(φφij)kl =




0 k �= i �= l �= k (Laplace relation)
−clj k = i �= l (Laplace expansion of detφlj)
cij k = l �= i (mit(φkj) = mkt(φij) )
0 l = i

hence (8) follows and the rest follows from Lemma 1.

Corollary 1. With the assumptions as in Proposition 2,

ker(∂f ) ∼= Ext1B(M,M) ∼= H1(S)

where ∂f = (φa)∗ is the pullback map in (7) and S = S(φ) is the Scandinavian complex of φ.

Proof. By (8), for each ξ there is a φξ with ξφa + φφξ = (
∑
rijcij)· idG if ξ =

∑
rijeij . However,

clearly tr(ξφa) =
∑
rijcij hence every class [ξ′] ∈ Ext1B(M,M), i.e. with ∂f ([ξ′]) = 0, may be

represented by a cocycle with tr(ξ′φa) = xf for some x ∈ A. Set ξ = ξ′−x·e11φ, then ξ ∈ Ztr := ker d1

and [ξ] = [ξ′] ∈ Ext1B(M,M). Let Btr = B ∩ Ztr, where B is the set of Yoneda coboundaries. Since
(φρ1−ρ0φ)φa = φρ1φ

a−fρ0 we get tr((φρ1−ρ0φ)φa) = f ·(tr ρ1−tr ρ0) which equals zero if and only if
tr ρ1 = tr ρ0, i.e. Btr = im(d2) and Ext1B(M,M) ∼= H1(S). By Lemma 1, Ext1B(M,M) ∼= ker(∂f ).

We say that an A-module M is infinitesimally rigid if Ext1A(M,M) = 0. Whenever the deforma-
tion functor of M is defined, e.g. if A is a k-algebra, every lifting MR of M to R in Artk is equivalent
to the trivial lifting M ⊗R of M if and only if M is infinitesimally rigid.

Corollary 2. In addition to the assumptions in Proposition 2, assume that A is Noetherian and
Ig−1(φ) �= A. Then M is infinitesimally rigid as a B-module if grade Ig−1(φ) = 4, the maximal
value. Moreover, M is not infinitesimally rigid as a B-module if grade Ig−1(φ) = 3.

Proof. By [GN72, Théorèm 1], c + q = 4 where c = grade Ig−1(φ) and q is maximal with
Hq(S(φ)) �= 0. The result then follows from Corollary 1.

There is also a relation between the obstruction group and the second homology group of the
Scandinavian complex, which we may obtain from the commutative diagram in Proposition 2.

Corollary 3. With the assumptions as in Proposition 2, there is an exact sequence

0→ Ext1B(M,M)→ Ext1A(M,M)
tr(−◦φa)−−−−−→ B → Ext2B(M,M)→ H2(S)→ 0 (9)

where φa is the adjoint to φ and S = S(φ) is the Scandinavian complex of φ. In the case A is
Noetherian, Ig−1(φ) �= A and grade Ig−1(φ) � 3 we have

coker(∂f ) ∼= Ext2B(M,M) ∼= A/Ig−1(φ).
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Proof. The map B → Ext2B(M,M) is the composition

B −→ A/Ig−1(φ) −→ Ext2B(M,M),

see Proposition 2. The map B → EndB(M) is injective since AnnAM = (f), and hence A/Ig−1(φ)→
Ext2B(M,M) is also injective, and thus (9) is exact at B. The map Ext2B(M,M)→ H2(S) is defined
via the natural d2 : EndB(M)→ Ext2B(M,M) in Lemma 1 and the second non-trivial map h in the
sequence

0 −→ A/AnnAM −→ EndB(M) h−→ H2(S) −→ 0 (10)
which is defined and short exact for any matrix factorization (φ,ψ) of a regular f ∈ A and with
S = S(φ,ψ). If ρ0 : G→ G and ρ1 : F → F represent an endomorphism [ρ], i.e. ρ0φ = φρ1, we have
ψρ0φ = ψφρ1 = f ·ρ1 which implies f · tr(ρ1) = f · tr(ρ0) and hence tr(ρ1) = tr(ρ0). Let h([ρ]) be
defined as the class represented by (ρ0, ρ1) in S2, which is clearly independent of representatives by
the definition of d3 as essentially the Yoneda differential. The surjectivity of h is immediate since d2

is induced by the Yoneda differential. To show exactness in the middle, assume that h([ρ]) = 0, then
(ρ0, ρ1) = (φτ, τφ) + (a· idG, a· idF ) for some τ ∈ HomA(G,F ) and a ∈ A, but then [ρ] = a· idM .
The exactness at Ext2B(M,M) follows because the cokernels of B → EndB(M) and A/Ig−1(φ) →
Ext2B(M,M) are isomorphic to H2(S). The remaining follows from Proposition 2 and the argument
in Corollary 2.

Corollary 4. With the assumptions as in Corollary 2, we have the following assertions:

l(A/Ig−1(φ)) <∞ =⇒ l(ExtiB(M,M)) <∞ for i � 1

and

l(Ext2B(M,M)) <∞ =⇒ l(A/Ig−1(φ)) <∞.
In particular, if the deformation functor of a rank one MCM module over an irreducible hypersurface
singularity X has finite-dimensional obstruction space then dimX � 3. If in addition dimX = 3,
then the module is infinitesimally rigid.

Proof. If A is Noetherian and the rank of G and F is finite, the homology modules H∗(S) are
finitely generated. By Lemme 2 and Lemme 4 in [GN72] Ig−1(φ)i·Hi(S) = 0 for i = 1, 2, the result
then follows from Corollary 1 and from the short exact sequence

0 −→ A/Ig−1(φ) −→ Ext2B(M,M) −→ H2(S) −→ 0 (11)

derived from the exact sequence (9) in Corollary 3. For the last part see Corollary 2 and remarks
after Proposition 1.

Remark 2. If we are mainly interested in modules with non-trivial deformation functors where the
tangent and obstruction spaces are finite dimensional, Corollary 4 states that there are not too
many places to look for such MCM-modules of rank one on hypersurface singularities. However,
this is certainly not the case for higher rank MCMs. To a matrix factorization (φ,ψ) of f , Knörrer
defined a matrix factorization ((

v· id φ
ψ −u· id

)
,

(
u· id φ
ψ −v· id

))

of f + uv which induces a functor of MCMs modulo stable equivalence; see [Kno87]. In [Ile90] we
proved that this functor gives a natural transformation of the corresponding deformation functors
inducing isomorphisms of the tangent and obstruction spaces (see also [Ile01, Theorem 7.4.18]).
Hence, starting with a rank one MCM in the ‘interesting’ range, applying the Knörrer functor one or
more times produces MCMs in higher dimensions with the same deformation theory. However, these
new MCMs naturally cannot be of rank one. In fact rkK(M) = rkG, whereK is the Knörrer functor.
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The deformation theory of rank one MCM modules also subsumes the deformation theory of
their syzygies which have rank g − 1 by the following lemma.

Lemma 2. If M is a MCM B = A/(f)-module, A is a local, regular k-algebra and f is regular and
prime such that the minimal presentation ψ : G→ F of M has rkF = g while rkBM = g− 1, then
there is a rk 1 MCM B-module M ′ such that

DefBM ∼= DefBM ′ .

Proof. To ψ there is a φ : F → G such that (ψ, φ) is a matrix factorization of f . Since detψ· detφ =
f g and rkM = g− 1, we may assume detφ = f . Hence M ′ := coker φ is an MCM B-module of rk 1.
Now the following isomorphisms, which hold for any matrix factorization of a regular f , concludes
the argument:

DefBM ∼= DefA(ψ,φ)
∼= DefA(φ,ψ)

∼= DefBM ′ . (12)

Proof of Theorem 2. By Proposition 1, DefBM ∼= DefA(φ|det φ) and DefA(φ| det φ) has, by the proof of
Proposition 1, the obstruction induced by det φ̃− f , where φ̃ is a lifting of φS (with detφS = f) to
R in a small lifting situation (Definition 1). This implies that the obstruction is always in the image
of B in (9), hence maps to zero in H2(S) and is therefore naturally found in A/Ig−1 by (11). The
tangent space is given by Corollary 1, which gives the upper estimate of the dimension of the hull
since the obstruction power series has minimal degree greater than or equal to two by construction.
At ‘worst’ they give a regular sequence with a maximal number of elements; this gives the lower
estimate. The construction of the obstruction map is done as in [Ile01, Lau86]. The rest follows from
Corollaries 2 and 4 and [GN72, Théorèm 1].

Example 3. If φ = (xij) is the generic g × g-matrix, then M = coker φ is a rigid rk 1 MCM
B = k[xij ]/(detφ)-module for all g � 1. By (12), M ′ = coker(φa) is also a rigid MCM module, but
of B-rank g − 1. Let g = 2. Then the equation tr((aij)φa) = a11x22 − a12x21 − a21x12 + a22x11 = 0
has solutions generated by Koszul relations; they are all coboundaries. However, if we set x12 = x21,
then a12 + a21 = 0 is a non-trivial solution and we obtain Ext1B(M,M) ∼= k, generated by

ξ =
(

0 1
−1 0

)
.

We try to lift the universal extension M1 ∈ DefBM (k[u]/(u2)) given by φ + ξu to k[u]/(u3) and
calculate the obstruction given by det(φ + ξu) = detφ + det(ξ)u2 = f + u2 where f = detφ. The
cup product ξ ∪ ξ = d2(idM ) is non-zero, hence the hull is H = k[u]/(u2) as there can be no further
liftings.

Example 4. Let φ = (xij) be the 3 × 3 generic matrix, with the restriction that xii = 0 for i =
1, 2, 3. Then detφ = x12x23x31 + x13x21x32 and tr((aij)φa) = −a11x23x32 + a12x23x31 + a13x21x32 +
a21x23x32 − a22x13x31 + a23x12x31 + a31x12x23 + a32x13x21 − a33x12x21, but we do not get finite-
dimensional tangent and obstruction spaces. Set x13 = x21 = x32 = y. Then f = detφ = x12x23x31+
y3 and we get a two-dimensional tangent space for the graded deformation functor given by the
relation a13 + a21 + a32 = 0. Deform φ to

φ̃ =


 0 x12 y + u+ v
y − u 0 x23

x31 y − v 0


 .

Then det φ̃ = f − y(u2 − uv + v2) + (u + v)uv which gives the second-order obstruction poly-
nomial g = u2 − uv + v2 ‘carried’ by the class of −y in the obstruction space A/m2, hence
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H2 = k[u, v]/((g) + (u , v)3). The obstruction to lift M2 along π : k[u, v]/((g)(u, v) + (u, v)4) � H2

is −y·g + 1·h where h = (u + v)uv. The cohomology classes −y and 1 are independent over k and
there are no further obstructions. Hence H ∼= k[[u, v]]/(u2 − uv + v2, (u+ v)uv).
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