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The Number of Non-Zero Digits of n!

Florian Luca

Abstract. Let b be an integer with b > 1. In this note, we prove that the number of non-zero digits in
the base b representation of n! grows at least as fast as a constant, depending on b, times log n.

In his beautiful book [3], R. K. Guy writes (see page 262) that Erdős noticed that
n! = 2a + 2b for some non-negative integers a and b implies that n ≤ 4. An obvious
problem which arises in this context is investigating what happens with the number
of non-zero binary digits of n! for large values of n. More general, for any positive
integer b > 1 one can ask what happens with the number of non-zero digits of n! in
base b. A natural guess is that this number tends to infinity with n. In this note, we
give a lower bound for such number in terms of n and b. To fix notations, for any
positive integers m and b with b > 1 let lb(m) be the number of non-zero digits of m
in base b.

Our result is

Theorem The following inequality holds

(
lb(n!) + 1

)
log b + log

(
lb(n!)

)
≥ log(n + 1).(1)

Lower bounds of a similar type as the right hand side of (1) for lb(|un|) where
(un)n≥0 is a non-degenerate linear recurence sequence satisfying certain mild techni-
cal assumptions were obtained by C. L. Stewart in [5] (see also [4] for a slightly more
general result).

Proof Write l = lb(n!) and

n! = c1ba1 + · · · + clb
al ,(2)

where a1 > · · · > al ≥ 0 and ci ∈ {0, . . . , b − 1} for i = 1, . . . , l. Since certainly
l ≥ 1, it follows that it suffices to assume that n + 1 ≥ b (otherwise inequality (1) is
automatically satisfied).

Let m be the largest positive integer such that bm − 1 ≤ n. Notice that m ≥ 1
because n ≥ b − 1. For every i = 1, . . . , l let αi ∈ {0, . . . ,m − 1} be such that
ai ≡ αi(mod m). By reindexing the ai ’s, we may assume that α1 ≥ · · · ≥ αl ≥ 0.
Since bmk ≡ 1

(
mod(bm− 1)

)
for all k ≥ 0, and since bm− 1 divides n!, it follows, by

reducing equation (2) modulo bm − 1 that

c1bα1 + · · · + clb
αl ≡ 0

(
mod(bm − 1)

)
.(3)
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Write (3) as

c1bα1 + · · · + clb
αl = d0(bm − 1),(4)

where d0 is some positive integer. Notice that

c1bα1 + · · · + clb
αl ≤ l(b− 1)bm−1 < (l + 1)(bm − 1).(5)

Inequality (5) shows that d0 ≤ l. Now rewrite equation (4) as

c1bα1 + · · · + clb
αl + d0 = d0bm.(6)

We shall now show that

lbl ≥ bm.(7)

Assume that inequality (7) does not hold.
We look at the base b representation of the number appearing in the left side of

formula (6). If
bm ≤ d0,

then inequality (7) follows at once because d0 ≤ l < lbl. Hence, d0 < bm and now
equation (6) implies that

bαl ≤ d0.

Hence,

d1 := clb
αl + d0 ≤ d0(cl + 1) ≤ lb.(8)

Rewrite formula (6) as

c1bα1 + · · · + cl−1bαl−1 + d1 = d0bm.(9)

If bm ≤ d1, then inequality (7) follows again from inequality (8). Hence, bm > d1

and now equation (9) implies
bαl−1 ≤ d1.

Thus,

d2 := cl−1bαl−1 + d1 ≤ d1(cl−1 + 1) ≤ lb2.(10)

It should be now clear how the argument works. For any i = 1, . . . , l, let

di := cl−i+1bαl−i+1 + · · · + clb
αl + d0.(11)

If one assumes that inequality (7) does not hold, then one can use induction on i and
the equation

c1bα1 + · · · + cl−ib
αl−i + di = d0bm
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to show that

di ≤ lbi(12)

for all i = 1, . . . , l. When i = l, we get

dl = d0bm ≥ bm,

which together with inequality (12) for i = l implies inequality (7).
We now show that inequality (7) implies inequality (1). Indeed, since m was cho-

sen to be the largest positive integer such that bm − 1 ≤ n, it follows that bm ≥
(n + 1)/b. Hence,

lbl ≥
n + 1

b
,

or
(l + 1) log b + log l ≥ log(n + 1),

which is precisely inequality (1).
The Theorem is therefore proved.

Remark 1 By analyzing the proof of the Theorem, one sees easily that inequality (1)
remains true if one replaces n! by the least common multiple [1, 2, . . . , n] of all pos-
itive integers 1, 2, . . . , n.

Remark 2 Inequality (6) is probably very weak. Coming back to Erdős’s observation,
our inequality (1) shows that l2(n!) ≤ 2, implies n ≤ 15, when in fact the largest
solution of l2(n!) ≤ 2 is n = 4. Even worse, our inequality (1) shows that l2(n!) ≤ 6
implies n ≤ 767, when in fact the largest solution of l2(n!) ≤ 6 is n = 9.

Remark 3 Coming back again to Erdős’s remark, we notice that if

n! = pa + pb(13)

where p is prime and a ≥ b but (a, b) 
= (0, 0) or (1, 0), then n ≤ 4. We discard the
cases (a, b) = (0, 0) or (1, 0) basically because the first one gives the trivial solution
n = 2 while the second one is equivalent to finding all n’s for which n!− 1 is a prime,
which is another unsolved problem but of a different nature.

Assume that p is odd. Suppose first that b = 0. If a is even, then pa + 1 ≡
2 (mod 8), hence n ≤ 3. If a > 1 is odd, then the fact that the equation (13) has no
solution follows from a result of Erdős and Obláth (see [2]). Assume now that b > 0.
In this case, p ≤ n. Since

n! = pb(pa−b + 1),

it follows easily that

ord2(n!) = ord2(pa−b + 1) ≤ log2(p + 1) ≤ log2(n + 1).
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On the other hand, (see [1])

ord2(n!) ≥ n− log2(n + 1).

Hence,
n− log2(n + 1) ≤ log2(n + 1),

which forces n ≤ 5. One can now check that equation (13) has no solution for n = 5.

One may use our Theorem to give an immediate generalization of the result men-
tioned in Remark 3. Namely

Corollary Let C and L be positive constants. Then the equation

n! = c1 pa1 + · · · + cl p
al(14)

where p is prime, n ≥ p, l ≤ L and ci are non-negative integers such that ci ≤ C has
only finitely many solutions.

Proof Since n ≥ p, it follows that p − 1 divides n!. Reducing equation (14) modulo
p − 1, we get

l∑

i=1

ci ≡ 0
(

mod(p − 1)
)
.

Hence, p ≤ 1 + LC . Notice now that since ci ≤ C , it follows that n! has at most
L
(
�logp(C)�+1

)
≤ L log2(2C) non-zero digits when written in base p. The Theorem

now implies that
n ≤ L log2(2C)(1 + LC)L log2(2C)+1.
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of the Czech Academy of Sciences for their hospitality during the period when this
paper was written.

References
[1] Y. Bugeaud and M. Laurent, Minoration effective de la distance p-adique entre puissances de nombres
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