
A Catalogue of Periodic Orbits in the Elliptic Restricted 3 -Body 

Abstract. Results of families of periodic orbits in the elliptic restricted problem are shown for 

some specific resonances. They are calculated for all mass ratios 0 < μ < 1.0 of the primary bodies 

and for all values of the eccentricity of the orbit of the primaries e < 1.0. The grid size is of 0.01 for 

both parameters. The classification of the stability is undertaken according to the usual one and 

the results are compared with the extensive studies by Contopoulos (1986) in different galactical 

models. 

Since the fundamental work by Poincaré (1891) the study of periodic orbits (PO) 

is one of the most important topics of dynamical systems. The determination of 

their stability is fundamental to understand the structure of the phase space. We 

now know that this space is separated into 2 more or less well defined regions: 

the zone of regular (quasiperiodic) motion and the zone of stochasticity, where 

two orbits which have almost the same initial conditions for an instant to depart 

from each other hyperbolically. It is evident that the determination of POs (and 

their stability) plays a dominant role especially for the knowledge of the long term 

behaviour of any dynamical system, because stable POs (in contrary to unstable 

ones) are always imbedded in regular zones (which may be in fact very small). 

For problems in Celestial Mechanics the restricted 3-body problem is commonly 

used: a massless body (m 3 = 0) moves in the gravitational field of two primaries 

having circular orbits. The motion of asteroids, comets, satellites and even plan-

etesimals in the early Solar system can be treated within this framework (since a 

circular orbit is a good approximation for Jupiter's motion). But the elliptic re-

stricted 3-body problem is more realistic, and sometimes the only simple physical 

model to understand the dynamics of celestial bodies (e.g. the origin of the Kirk-

wood gaps, Dvorak, 1991 this volume). Therefore we have taken this model and have 

calculated stability diagramms of POs for some resonances. 
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1. Introduction 

2. The M o d e l and the Stability of Periodic Orbits 
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are the equations of motion in rotating/pulstating coordinates. Here τηχ and ra2 

are the primaries' masses, ρ the orbital parameter, v\ and r 2 the distances between 
the third massless body 7713 from m\ and m 2 . 

Due to the ellipticity of the primaries' orbit 5 initial conditions determine a 
specific orbit (x, se, y, y and υ, the true anomaly of the primaries). Consequently 
the dynamical system can be completely described in a 5 dimensional phase space. 
It is important to keep in mind, that in general the condition for an orbit to be a 
periodic one is simple, that it has to pass through a point in phase space 2 times 
(and consequently an infinite number of times). A more restrictive definition is 
given by Broucke (1969): An orbit is periodic if it has two perpendicular crossings 

with the syzygy-axis, and if the crossing are at moments when the primaries are at 

an apse. 

The stability of such a PO is calculated according to Déprit and Price (1965) 
and Hénon and Guyot (1970). The linear stability is described by the eigenvalues 
of the fundamental matrix which is the solution of the variational equations. The 
eigenvalues are the roots of the characteristic equation of this matrix 

λ 4 + αιλ 3 + α 2 λ
2 + αιλ + 1 = 0 (2) 

and when one uses the stability parameter b from Contopoulos (1986) 

*i/2 = \{"ι ± ^ / α 2 - 4 ( α 2 - 2 ) ) (3) 

As a consequence there exist 4 different stability characteristics of POs: 
stable (S) if |6χ| < 2 and |6 2 | < 2 
simple unstable (U) if > 2 or \b2\ > 2 
double unstable (DU) if > 2 and |6 2 | > 2 
complex unstable (CU) if 61 and 62 are complex 

3 . The Results 

We used a Bulirsch-Stoer intergration method to solve the equations of motions 
and started always perpendicular to the syzygy axe when the primaries are at an 
periapse or an apoapse. We present only 2 (out of 20) stability diagramms: the 
2/1 Periapse and the 3/1 Apoapse. (Fig. 1), the others will be published elsewhere. 
The upper graph (Fig.l) shows the symmetry of the 2/1 resonant POs, which can 
be explained by the fact of mirror symmetry of the initial conditions around the 
vertical line μ = 0.5. We recognize that stable orbits are very rare, they exist 
only for very small (or big) mass ratios with relatively high eccentricities. Most 
of the orbits are single unstable up to the eccentricity 0.5; whereas most of them 
are complex unstable for e > 0.5. White points mean that it was impossible to 
find any PO, although a sophisticated technique of finding them starting from the 
neighbouring POs was developed. 

Characteristic is the big hole of DU in the region in then middle, which separates 
the CU and SU area. Vice versa for moderate eccentricities the big SU sea is more 
or less separated by two big smoothly shaped islands of DU. This phenomena is 
visible in different diagramms which we calculated. In the lower graph (Fig.l) we 
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Stability Diagram for the 2: 1 Resonance (Periapsis) 
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Stability Diagram for the 3: 1 Resonance (Apoapsis) 

Fig. 1. Stability diagramm for the 2:1 resonant Periodic Orbits (upper graph). . Starting 

point is always when the primaries are in the periapse position. Stability diagramm for the 

3:1 resonant Periodic Orbits (lower graph). Starting point is always when the primaries 

are in the apoapse position. 
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see the diagram of the stability of the 3/1 resonant POs starting in the Apoapse. 

According to this resonance the picture is asymmetric. We see only few stable POs, 

but that time most of them for rather high eccentricities of the primaries. Again a 

large sea of SU is divided by the island of DU, which form the characteristic hole. 

Many of the diagramme have a very similiar appearance (like the 5/3 and the 5/2, 

but some of them are completely different. 

Table 1. shows the relation between the different stability modes for the 2 stabil-

ity diagramme of fig. 1. Note that stable orbits are very seldom and that the U area 

is by far the largest one! Checking the change of the stability mode on the border 

lines one can see, that there occur no direct change from DU to S and U to CU and 

vice versa. This picture corresponds to work of Contopoulos (1986) where he stud-

ied also a dynamical system of 2~ degrees of freedom for the better understanding 

of galactic dynamics. 

Table 1: Stability of Orbits for some special Resonances 

Resonance initial χ No. of POs S U DU CU 

2/1 1.617 8248 1.6% 50.2% 17.2% 30.9% 
3/1 2.090 8591 0.1% 69.7% 27.2% 3.0% 

4. Conclusions 

This catalogue of POs in the elliptic restricted problem is only a first step in under-

standing the whole complexity of POs in this model. Some features seem to arise 

in many of the stability diagrams (like the strange hole in the sea of SU orbits) 

but unfortunately we are not able to give any theoretical explanation or physical 

meaning of them up to now. Maybe some general rules can be derived when we 

look up the diagrams order by order concerning their resonant character, but this 

has to be left for future investigations. 
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