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Abstract

The problem of reflection of water waves by a nearly vertical porous wall has been
investigated. A perturbational analysis has been applied for the first order correction to be
employed to the corresponding vertical wall problem. The Green's function technique has
been used to obtain the solution of the boundary value problem at hand, after utilising a
mixed Fourier transform together with an idea involving the regularity of the transformed
function along the real axis. The cases of fluid of finite as well as infinite depth have been
taken into consideration. Particular shapes of the wall have been considered and numerical
results are also discussed.

1. Introduction

Boundary value problems associated with the two-dimensional Laplace's equation
involving a quarter plane occur in a natural way in the study of propagation of surface
water waves concerning fluid of infinite depth having a vertical wall at one end. A
similar situation arises even in the case of fluid occupying a solid bottom at a finite
depth. Several methods of attack have been demonstrated (see Mandal and Kar [6],
Chakrabarti [1], Chwang [2], Shaw [7], Mandal and Chakrabarti [5]) to handle such
boundary problems in the literature. Recently Mandal and Kar [6] have devised a
perturbational approach, similar to the one utilised in the problems treated in Shaw [7]
and Mandal and Chakrabarti [5] to handle a boundary value problem where the study of
reflection of surface water waves by a nearly vertical barrier (see Mandal and Kar [6],
Shaw [7], Mandal and Chakrabarti [5]) is of prime concern. In the present paper, we
have further generalised the approach of Mandal and Kar [6] to analyse the effect of
porosity on the nearly vertical wall. We have also considered both the problems of
infinite as well as finite depths of fluid. By using the perturbational approach of the
previous workers, we have broken both the problems under consideration into two
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FIGURE 1. Water of infinite depth (Problem />,).

boundary value problems for Laplace's equation, and have solved these problems by
utilising a mixed Fourier-type integral transform (see Sneddon [8]) along with the
use of certain regularity conditions to be satisfied by the transformed functions. The
final results for the reflection coefficient have been presented in closed analytic forms,
and it is observed that the corresponding results of Mandal and Kar [6] follow as a
particular limiting case of the general problems considered here when the porosity is
absent. Similar surface wave problems have been considered earlier by Kachoyan
and McKee [4].

Certain numerical results involving the first order correction R^ to the reflection
coefficient have been calculated, and such results have been presented graphically in
the case of water of finite as well as infinite depths.

2. Formulation of the problem

The problems under study are two-dimensional in nature. We employ a rectangular
Cartesian co-ordinate system (x, y). The boundary x = ec(y) with c(0) = 0, y > 0
for water of infinite depth (0 < y < /i, for water of finite depth), represents the porous
nearly vertical wall, c(y) being a continuous bounded function of y with the y-axis
being taken in the vertically downward direction and e being a small parameter. See
Figures 1 and 2 for the geometrical description of the two problems under consid-
eration. It is assumed that the fluid is incompressible, the motion is irrotational and
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FIGURE 2. Water of finite depth (Problem P2).

y=h

the total potential simple harmonic in time. This ensures the existence of a velocity
potential 4>(x, y, t) = Re(<p(x, y)e~io"), "Re" denoting the "real part". We con-
sider here the problem of the reflection of water waves having the incident potential
<D,(JC, v, t) = Re(&(jc, y)e~ia") = Re^- 1 ' - '**- ' "" ) in the case of water of infinite
depth (and O,(A:, y, t) = Re(0;(jc, y)e~iat) = Re((coshk0(h-y)/coshk0h)e-ilc<>x-ia")
in the case of water of finite depth, where k0 is the positive real root of the equation
k = m tanh(m/i)) with k = co2/g, a> being the angular frequency and g the accelera-
tion due to gravity. We will drop the factor e~ia" throughout the rest of this paper. The
effect of the nearly vertical barrier will be studied completely up to the order of e in
both the cases of finite and infinite depth of water by way of determining the velocity
potential <f>(x, y), where <p satisfies the PDE

with

V2</» = 0 in the fluid region,

d<j>
-—\-ktp = 0 on y = 0, x — ec(y) > 0,
dy

d<b
on x — ec(y) = 0, y > 0.

(1)

(2)

(3)

(jj-j denotes the derivative in the inward normal direction to the boundary x = ec(y).)
(An explanation of the derivation of this boundary condition follows.)

<p, |V0j —»• 0 as y ->• 0 in the case of water of infinite depth, (4)
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y =0 on y = h in the case of water of finite depth, (5)

and
<p - • 4>i(x,y) + R<pi(-x,y) as x -» oo (6)

in both cases considered, where R is an unknown constant representing the "reflection
coefficient", to be determined.

In order to arrive at the boundary condition (3) along the porous wall, we observe,
from Bernoulli's equation, that

P(x, y, t) = — /o4>, for small motion, (7)

where P(x, v, t) is the hydrodynamic pressure on the wall x = ec(v). Assuming the
wall to be made of fine pores we have that

d<D b
— = P(x,y,t) on x = ec(y). (8)
dn \x

The normal velocity of the fluid passing through the porous wall is proportional to the
pressure exerted on the wall, and \i is the dynamic coefficient of viscosity and b is a
constant which has the dimension of length (see Chwang [2]). On the other side of
the wall the pressure is constant. Without loss of generality we can take the pressure
to be zero there. Combining (7) and (8) we have that

d<$> bp
— = — <D, on x = ec(y). (9)
dn IM

Again, since <f»(;t, y, t) = Re(</>(jc, y)e~'°"), we can express the above condition in
the form

dd> ibpco
— = — <t> = -ik(f> on x = €c(y), (10)
dn fi

where A: = — . This explains the occurrence of the condition (3) to be used. Condition
(3) can be further expressed in the approximate form, for small values of e, after using
a Taylor-expansion procedure (see Mandal and Kar [6], Shaw [7]) and we obtain that

3d) d

We shall employ a perturbation expansion of the potential <j> and the reflection coeffi-
cients R (as in the work of Mandal and Chakrabarti [5], Mandal and Kar [6]) in the
forms

(j>(x, y, e) = <Po{x, v) + e<t>{(x, y) + o(e 2 ) , (12)

/?i + o(e2). (13)
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Then the problems under consideration reduce to two boundary value problems for
0o and 0i each as explained below. Using the notation P{ for the problem which
corresponds to the case of water of infinite depth and P2 for the problem which
corresponds to the case of fluid of finite depth, and writing L\ = (y : 0 < y < oo),
L2 = (y : 0 < y < h), the mathematical forms of the various boundary value
problems to be solved are given as follows.

2.1. Problem for (t>o(x, y)

= 0 in the region x > 0, (14)

ik<p0 = 0
30n
— + ik<p0 = 0 on x = 0, y e U for P,(y e L2 for P2), (15)
dx

+ X0o = 0 on y = 0, x > 0 for both Px and P2, (16)
dy

|V0O| - • 0 as y -+ oo for />,, (17)

^ = 0 on y = h for P2, (18)
dy

0o -> 0i(*> >0 + Ro<t>i{—x, y) as * -> oo in both cases. (19)

2.2. Problem for 0 i (x , y)

V20i = 0 in the region x > 0, (20)
301
- ^ + /*0, = / (y) on x = 0, y € L, for P,(y e L2 for />2), (21)
3*

where /(y) = ^ - [c ( j )—g ] - ikc(y)

30i
-^- + A.0, = 0 on y = 0, JC > 0 for both />, and P2, (22)

3y

|V0, |^-O as y - > o o for Pu (23)

30i
-p- = 0 on y = A for />2, (24)
3y

and
0i -> /?i0,(—*, y) as J: -> oo in both cases. (25)

In the next section, we present the methods of solution of the above boundary value
problems.
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3. The methods of solution

3.1. Determination of (j>o(x, y) (Infinite depth case) We put

<Po(x, y) = fo(x, y) + 4>i(.x, y) + RoM-x, y) (26)

for the problem P\ and use an integral transform of î oC*. y) given by
/»OO

iM£, y) = / Mx, y)(S cosfx - iksin?*)dx. (27)
Jo

Substituting for </>o in (14) to (19) and transforming the various equations and condi-
tions, we obtain that

(28)

where A — iA.(l - Ro) - ik(l + Ro), with

^ ^ = O on j = 0 (29)
dy

and
|V^ol -+ oo as v -^ oo. (30)

The solution of the differential equation (28) along with the boundary conditions (29)
and (30) is given by

f0 = A$e-k>/(X2 -12) ( ? # * ) . (31)

We observe that the expression (31) for \//0 involves an unknown constant A; in order
to determine this constant, we use the idea that ^0 is a Fourier transform which cannot
have a singularity on the real £ axis. This forces the result that

lim($ - AWoG, y) = 0, (32)

so that we obtain A = 0, which implies that

*). (33)

Again, considering the inverse transform of \jr0 and the condition on Vo as x —> oo,
we obtain that

TAO = 0. (34)

This gives the solution (po(x, y) in the form

4>o(x, y) = <t>i(x, y) + R0<t>i(-x, y ) , (35)

where #0 is given by (33).
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3.2. Determination of <j>i(x, y) (Infinite depth case) Putting 4>\ (x,y) = 4>\ (x, y)+
R\4>i(—x, y) for the problem Px and using the transform denned in (27), we have

- ^ , = f ( A e - 1 ' + /O0), (36)

where A = —i(k + k)Ru with the conditions

dh
= 0 on y = 0 (37)

ay

and
\Vi//i\ —> 0 as y -*• oo. (38)

It is straightforward to obtain the function ^ , by using the Green's function tech-
nique (see Friedman [3]). We find that

f ,(£, y) = f (HAe~"s + /(*))) G(y, s)ds, (39)
./o

where the Green's function G is defined by

S<"*}->•«*fe-Sj for y > s

y <

The unknown constant A in (39) can be determined in this case by using the regularity
condition used in the case discussed above. We obtain that

/•OO

A = -2k e'^f^ds, (40)
Jo

which implies

Next, inverting the transform ^i(£, y) given in (27), we derive that

\j/x(x, y) = Co(y)e~'kx H— / • ^—- d%, (42)
n Jo H ~ k2

in which (and in later occurrences) singular integrals are understood in the sense of
Cauchy principal values.

In (42) the arbitrary function co(y) is to be determined by using the condition that
ijf —> Oasx —»• oo. Now writing (§ cos%x — ik sinl-x) = j((£— k)e'^k + (t; +k)e~'*k)
and rotating the contour along the positive imaginary axis for the integral involving

https://doi.org/10.1017/S0334270000010754 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000010754


424 A. Chakrabarti and T. Sahoo [8]

e'S" and along the negative imaginary axis for the integral involving e~'^x, we can
write the expression for \ff{ (x, y) in (42) in another form

/»0O

irx{x, y) = co(y)e-ikx+iiri(k, y)e~ikx+ / exp(-r)x)A0(r))(r) cosr)y-k sinr)y)dr}.
Jo

(43)
where

. . . 2 f°° f(s)(rj cos r)s - k sin ks)
A0(r)) = / —-. r ds. (44)

n J ^ ^

2 f°
= /

n Jo

This form of \jf\ along with the condition at infinity suggest that

co()O = - ! > , ( * , 3O (45)

and then

&i(.x,y)= I exp(—r)x)A0(r])(r) cos rjy — ksinr)y)dr), (46)
Jo

where A0(r)) is given in (44). We get

<Pi(x, y) = xff\(x, y) + R^ii—x, y), (47)

where î i (x, y) and R] are as given above. This completes the solution of the problem
in this case.

3.3. Determination of <f)0{x, y) (Finite depth case) Proceeding in the same way
as in the case of infinite depth, we find that

<t>o(x, y) = <t>i(x, y) + Robi-x, y) (48)

for problem P2, where
D ^ ft. Ic^/dc -\- k} f49^

3.4. Determination of 0i(x, y) (Finitedepth case) Putting^ = yjf\+R\(f>i{—x,y)
for problem P2 and using the transform as defined in (27), we obtain the ordinary
differential equation

— + / O 0 ) 0 <y<h, (50)

with the conditions that

d <•
— T / C , + A . ^ I = O on y = 0 (51)
dy
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and

^ i . = 0 on y = h. (52)
ydy

Using the Green's function technique as before, we obtain the solution of the problem
posed by the relations (50) to (52) in the form

&($. y) = -'? f G(y, s) [*,(* + k0)
CO*hkf!~s) + /(*)] ds, (53)

Jo L coshk0h J

where G(y, s) is given by

f ^ h / ; - X s ^ cosh§(/i -y) for y > s
C(v si =

I *cosh*y-*sinh*y 3 h ^ ( / ) for

Now the expression (A. cosh %h — £ sinh£/i) has a zero at f = ko on the real axis,
so that \fri (f, >>) has an apparent singularity on the real axis at £ = &0- Using the
regularity of the transform as before, we obtain

-4ik0 cosh koh /0* / ( s ) cosh £0(/* - s) ds
R\ = ; . (54)

Finally, taking the inverse transform of ^1 (.%, y), we derive that

'I, (55)+ - / fc2 _ ^2 "

where c, (y) is to be determined by using the condition at infinity on t̂ i (x, y). Trans-
forming the integral in (56) into one over the imaginary axis as was done in the case
of infinite depth and using the fact that % = ±ikn (n = 1, 2 , . . . ) are the zeros of
(A. cosh | h — £ sinh£/i) = 0, we obtain

) , (56)

and î i (x, y) is given by

J2 h ~ ?>• (57)

where
4(*. + ik)kn fQ

h f (s) coskn{h-s)ds
(k2P)(2kh + sin2kh)

Finally, we obtain the solution of the problem for the case of water of finite depth as

0,(JC, y) = Rrfii-x, y) + iM*. 30, (59)

where Rx is given in (54) and \j/x by (57).
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4. Particular shape of the wall

As an illustration, we have calculated the reflection coefficient and the value of
f(y) for a particular shape of the cliff, for which c(y) = ye~py for p > 0. Then f{y)
and R\ are given by

f(y) =

i4X2 I X2

rt. = —

for water of infinite depth, and

2k0e-py[k0 (sinh ko(h -y)-py sinh £0(/i -y)- J^o cosh A:o(̂  - y)) + B]
r I V ) ^ :^

(*b + ^)cosh*bA
(62)

. D = ^ ( ^ - g - £).

(63)
and

where B = ^ £ g £
and £ = (yt0 + — )2(sinh2k0h + 2koh) for water of finite depth. Here one can see
that as h —> oo, R\ is the same in both cases.

5. Numerical results and discussion

The magnitude of \Rt\ has been calculated for both water of finite and infinite
depth, for different cases, and the numerical results have been presented graphically.
It is observed that \Rt\ varies between zero and one in both cases, as is to be expected.

In case of water of finite depth, |/?, | is a function of p, (bpio)/fi and X. Results
varying one variable and keeping the other two variables fixed have been presented
in Figure 3. From the figure it is clear that as porosity (bpco)/^ increases, |/?i|
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initially decreases and then goes on increasing; p increases as |/?,| decreases, and as
A. increases, | R\ | increases.

1

bp<o/ji = 1.p=1. \ varies

X=1,p=1.bp(o/u. varies

0 2 4 6 8 10

FIGURE 3. \R\\ for water of infinite depth. X, p, bpco/fi vary along jr-axis.

FIGURE 4. |/?,| for water of finite depth. A. = 1, h = \, bpw//j. varies along x-axis.

In the case of water of finite depth, one can see that as h increases, k becomes
equal to &0- Hence the results for the case of infinite depth hold good for large h.
Here there are two cases. In the case p ^ 2k0, the value of p has been considered as
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FIGURE 5. \Ri1 for water of finite depth, p = 1, X = 1, bpo/n varies along x-axis.

p = 1. In Figures 4 and 5 for different values of h, \R\\ has been plotted separately
along with (bpco)/fi,. It is observed that for h = 5 onwards the values of |/?i | become
numerically equal and the graphs overlap. From Figure 6 it is observed that increases
in h initially increase the value of |/?i | in the case p = 2k0 and decrease the value of
\Ri\in the case p ^ 2k0; after a certain stage, \Rt\ remains constant in both cases.

FIGURE 6. \Ri\ for water of finite depth. A = 1, bpa>/n = 1, h varies along jc-axis.

https://doi.org/10.1017/S0334270000010754 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000010754


[13] Reflection of water waves by a nearly vertical porous wall 429

6. Conclusion

A more general problem of water wave scattering involving a nearly vertical porous
wall has been handled completely, and as a particular case of this problem, the results
available for much simpler problems have been rederived.
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