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EMBEDDING PARTIAL GRAPH DESIGNS, BLOCK DESIGNS, 
AND TRIPLE SYSTEMS WITH X > 1 

BY 

C. J. COLBOURNt, R. C. HAMM, C. C. LINDNER AND C. A. RODGER 

ABSTRACT. A general embedding technique for graph designs and 
block designs is developed, which transforms the embedding problem for 
partial designs with \ > 1 into the embedding problem for partial designs 
with X = 1. Given an embedding technique for «-element partial block 
designs with \ = 1 into block designs with f(n) elements, the trans­
formation produces a technique which embeds an «-element partial design 
with X > 1 and block size k into a design with at most / (3*~ lXn2) 
elements. For graph designs and block designs with k > 3, a finite 
embedding method results. For triple systems, a quadratic embedding 
technique is obtained immediately; the best previous result here was ex­
ponential. Finally, for partial triple systems, Mendelsohn triple systems, 
and directed triple systems, these quadratic embeddings are improved to 
linear using a colouring technique. 

1. Introduction. A (directed) graph design B [ G, X; v] for a (directed) graph G is 
a pair (V,B); V is a v-set of elements and B is a collection of graphs isomorphic to 
G with vertices chosen from V. Each (directed) pair from V appears in precisely X of 
the graphs in B. A balanced incomplete block design B[k,\; v] is a graph design whose 
graph is the complete k-vertex graph. A triple system is a block design with k = 3. 
A directed triple system is a directed graph design with G being the transitive tourna­
ment of order 3. A Mendelsohn triple system is a directed graph design with G being 
the cyclic tournament of order 3. A partial design relaxes the condition on pairs, so that 
(directed) pairs appear in at most X graphs, or blocks. 

Embedding techniques for partial block designs have been the subject of a large 
amount of research in combinatorial design theory (see, for example, [5,10]). In the 
case of Steiner systems (X = 1), significant progress has been made. For Steiner triple 
systems (B [3, 1; v] designs), one can embed a partial Steiner triple system of order n 
in a Steiner triple system of order v for every v > An + 1, v = 1,3 (mod 6) [1]. Partial 
Steiner systems can always be finitely embedded [6, 12], but in this case the containing 
Steiner system is exponentially larger than the partial system. More generally, Wilson's 
theorem [ 12] gives a finite embedding for partial (directed) graph designs with X = 1. 
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The state of affairs for designs with X > 1 is much less satisfying. For triple systems 
#[3,X;v], finite embeddings are known for every X [11]. In the case of even X, 
embeddings exist for which the size of the containing system is quadratic in the size of 
the partial system [3]; for X = 2, this can be improved to linear [8]. Both results rely 
on the fact that every triple system with even X can be transformed into a directed triple 
system [4]; hence, they provide no improvement in the case of odd X. Finally, for block 
designs B[k, X;v] in general, no embedding result seems to be known. 

In this paper, we describe a general technique for solving the embedding problem for 
Z?[G,X;v] designs by reducing it to X instances of the embedding problem for 
# [ G , 1; v] designs. This provides a small (quadratic) embedding technique for partial 
triple systems with any X. It further gives a finite embedding technique for partial graph 
designs with any k and any X. Finally, we generalize the method of [8] to produce linear 
embeddings for triple systems, Mendelsohn triple systems, and directed triple systems. 

2. The Embedding Theorem for Graph Designs. The central idea of the proof is 
to decompose the partial design with X > 1 into X partial designs with X = 1, to embed 
each of these into a design with X = 1, and to recombine to form the containing design. 
There is a major stumbling block here: there are partial designs with arbitrarily large 
X which cannot be decomposed into X partial designs with X = 1 [2]. This problem is 
overcome here by first replacing each block by a collection of blocks in such a way that 
the resulting system is certainly decomposable. Having completed the embedding, this 
collection of blocks is then replaced by a set containing the original block. We 
formalize this approach in the remainder of this section. 

THEOREM 2.1. For any {directed) graph G, there is a {directed) graph H having an 
induced {directed) subgraph isomorphic to G; moreover, H has two distinct edge-
decompositions into copies of G. 

PROOF. Let G = (V, E) be a directed graph on n vertices. If G has no arcs, the 
statement is trivial; otherwise, label the n vertices with labels {1, 2 , . . . , n} so that (1, 2) 
is an arc and (2, 1) is not an arc. Whenever such an arc cannot be chosen as (1,2), G 
is essentially an undirected graph; in this case, we select any edge {1,2} and replace 
"arc" by "edge" in what follows. 

We next produce a family of graphs F{G) containing the original graph G and a 
graph for each non-arc of G, constructed as follows. For every pair {x,y) of vertices 
which is not an arc of G, we include a graph isomorphic to G on n — 2 new vertices, 
together with {x,y}. The mapping of G onto this vertex set is arbitrary, except that 
(1,2) maps to {x,y). If G has t non-arcs, this produces a family F (G) of graphs, each 
isomorphic to G, on n + t {n — 2) vertices, which has the property that every pair from 
{ 1 , 2 , . . . , AÏ} appears in exactly one graph. This family is a partial graph design with 
X = 1, and so can be finitely embedded in a graph design F'{G) [12]. 
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We can similarly construct a different family of graphs K(G), each isomorphic to 
G, by constructing graphs as above for non-arcs and arcs of G; unlike F ( G ) , this 
family does not contain G, but like F(G) covers all pairs from -{1,2,.. . ,n}. Once 
again, we embed this family by Wilson's theorem into a graph design / / ' (G), ensuring 
that F'(G) and // '(G) are on the same number of vertices, z. Thus the z-vertex com­
plete digraph has two distinct edge-decompositions into copies of G; these are distinct 
since F'(G) contains the original graph G whereas H'(G) does not. 

In general, however, the z-vertex complete digraph contains no induced subgraph 
isomorphic to G. To obtain this latter condition as well, we produce F"(G) from F'(G) 
by omitting all graphs (isomorphic copies of G ) which contain an ordered pair which 
is a non-arc of the original graph G. H"{G) is produced similarly from H'(G). Then 
F"(G) and H"(G) decompose the same z-vertex directed graph, and this digraph has an 
induced copy of G on vertices {1, 2 , . . . , n}. • 

We now employ theorem 2.1 to obtain finite embeddings for (directed) graph designs 
with X > 1. 

THEOREM 2.2. A partial (directed) graph design can be finitely embedded in a 
(directed) graph design with the same X. 

PROOF. Suppose we are given a partial directed graph design PD with index X. If 
X = 1, Wilson's theorem [12] produces the required embedding. If X > 1, we proceed 
as follows. Let PD — {Gx,. . . ,G5}. Each G, is isomorphic to a given digraph G. 
Using theorem 2.1, we produce a graph H with two different edge-decompositions into 
copies of G; in addition, H has an induced subgraph isomorphic to G. Each G/ is 
replaced by a copy of//, // ,; the induced subgraph of// isomorphic to G is identified 
with G, and all other vertices in //, are new. 

Each Hi is then decomposed into copies of G in such a way that none of the original 
Gj are chosen. The resulting partial graph design D can be easily decomposed into X 
partial designs with index 1, since the only pairs appearing more than once are pairs 
of original vertices, and each graph in the partial graph design contains at most two of 
the original vertices. To carry out this decomposition, form a graph whose vertices 
represent the graphs in the partial graph design D. An edge connects two vertices 
whenever the corresponding graphs share an arc. Now observe that this graph is the 
disjoint union of some isolated vertices and some cliques of size at most X. This graph 
is therefore vertex-colourable with X colours; moreover, such a colouring provides a 
decomposition, as each colour corresponds to blocks of a partial graph design with 
X = 1. 

Having decomposed D into X systems with index 1, each is embedded separately 
using Wilson's theorem, into complete digraphs of the same order. The union of these 
forms a completed graph design with index X. Finally, each of the edge-decompositions 
of//, is replaced with the alternate edge-decomposition, i.e. the one which contains the 
graph Gj. The result is a directed graph design which contains the partial graph design 
supplied. • 
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Theorem 2.2 establishes the existence of finite embeddings for a very wide variety 
of embedding problems. These embeddings are, however, astronomical in size, since 
the two applications of Wilson's theorem each dramatically increases the magnitude. 
In subsequent sections, we improve on the sizes of the embeddings obtained in special 
cases. 

3. Embedding Block Designs. Wilson's theorem produces directed graphs with 
two distinct edge-decompositions, which we required in the proof of theorem 2.2; 
however, the graphs obtained are very large. In the case of block designs, we can 
employ an interesting family of graphs to avoid this. 

LEMMA 3.1. There is a graph Gk with 3*_1 vertices having exactly two different 
edge-decompositions into /c-cliques. Moreover, any two ^-cliques of Gk have at most 
two vertices in common. 

PROOF: Define a graph whose vertex set V = {(JCJ, . . . ,JC*)|JC,-E{—1,0, 1}, 
2 / = 1 JC/ = 0 (mod 3)}. Two vertices are adjacent if the corresponding vectors agree 
everywhere except in two positions. This graph has 3k~] vertices and has exactly two 
different edge-decompositions into ^-cliques; moreover, two distinct /c-cliques have at 
most a pair in common [9]. • 

This lemma gives us the necessary ingredient to prove a bound on the embedding 
which improves on that obtained from theorem 2.2. 

THEOREM 3.2. Suppose a partial Steiner system B[k, 1; n] with n elements can be 
embedded in a Steiner system with f{n) elements. Then a partial block design 
B [ k , X; n] with n elements can be embedded in a block design with at most f (3 k]Kn2) 
elements. 

PROOF. Let B — {b\,.. ., bs} be the collection of blocks in a partial block design 
with n elements, block size k, and X > 1. We produce a new set of blocks B' as follows. 
Each block fr; involves k elements, say xn , . . . , xik.. We replace the block b,by a copy 
of the graph Gk from lemma 3.1, in such a way that k of the vertices in the Gk cor­
responding to a /c-clique in one of the two edge-decompositions are identified with the 
elements xn,. . . ,xik; the other vertices correspond to new elements which are added 
to the partial design. This is done for every block in B\ for each, different new elements 
are added. Then the collection B' of blocks is obtained by edge-decomposing each Gk 

into ^-cliques so that none of the original blocks from B is included. 
The collection B contains at most \n2 blocks, and hence the collection B' has at most 

3k~]Xn2 elements. Moreover, B' can be decomposed into X disjoint sets of blocks 
L i , . . . ,LX, each of which is a partial Steiner system, as follows. Consider the graph 
obtained by treating each block of B' as a point, with adjacency between points when 
the corresponding blocks share a pair. Each block in B' contains at most two of the 
original n elements, and these are the only elements in which blocks can intersect; 
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hence, the graph obtained consists of cliques of size at most X. A proper colouring of 
this graph in X colours produces the required decomposition, since each colour class 
induces a partial Steiner system. 

We next embed each partial Steiner system in / ( r ) elements, where r < 3k~lXn2 

is the number of elements in the blocks of B'. Combining the Steiner systems which 
result gives a B [k, X;/(r)] design. In this design, we replace the blocks arising from 
each Gk by the blocks produced in the other edge-decomposition of the Gk. Note first 
that this replacement yields a block design, since exactly the same pairs are used. 
Finally, note that the original blocks from B all appear in this design, and hence we have 
the required embedding. • 

COROLLARY 3.3. Partial block designs B[k, X; v] can be finitely embedded. 

4. Embedding Partial Triple Systems. Each of the embeddings produced so far 
has been obtained by describing a graph which has two distinct edge-decompositions. 
In the case of triple systems, one can employ a graph with only six vertices: the 6-vertex 
cocktail party graph CP (i.e., K6 omitting a 1-factor) has two edge-decompositions into 
triangles. This graph can be used in the construction of theorem 3.2 to improve the 
constant for triple systems; however, the embedding would still be quadratic. 

A different observation is required in order to obtain a linear embedding. In the 
embedding, each triple is replaced by a copy of CP using the method previously 
developed in [3,8]; in the process, three new vertices are added. It is important to 
observe that these three vertices need not be different for every copy of CP to be added; 
this idea forms the basis for the following result. 

THEOREM 4.1. A partial triple system of order v and index X can be embedded in a 
triple system of order at most 4(3X/2 + l)v + 1. 

PROOF. Consider the partial triple system PT. PT is the edge-decomposition of some 
multigraph M into triangles. We produce an edge-colouring of M as follows. For a 
triangle (a,b,c) of PT, we colour (a,b) with c, (a,c) with b, and (b,c) with a. This 
assigns v colours to the edges of M; each colour / induces a subgraph C(i) with 
maximum degree X. Each C(i) can be properly edge-coloured in 3X/2 colours, hence 
giving a proper v(3X/2)-edge-colouring of M. 

These colours on M are now interpreted as names of new elements. That is, v(3X/2) 
new elements are added to the v elements of PT. Each triangle of PT is replaced by a 
copy of the cocktail party graph — the six vertices employed are the three original 
vertices, and the three vertices corresponding to the colours of the edges in the original 
triangle. 

The resulting collection of triples has (3X/2 4- l)v elements; moreover, triples 
intersect in pairs only in pairs of original elements. Each triple involves at most two 
original elements, and hence the collection can easily be decomposed into X partial 
Steiner triple systems. We embed each partial Steiner triple system on (3X/2 + l)v 
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elements into a Steiner triple system on 4 ( 3 A / 2 + l)v + 1 elements using the 
Andersen-Hilton-Mendelsohn technique [1], and recombine to form a triple system 
with index X. As before, we now replace each edge-decomposition of CP by the 
alternate edge-decomposition in order to reintroduce the original triples. • 

These techniques can be easily adapted to partial Mendelsohn triple systems and 
partial directed triple systems, producing linear embeddings for every index X in each 
case. In particular, using the "18v + 3" embeddings of Hamm, Lindner and Rodger 
[8], we obtain the following two results. 

LEMMA 4.2. A partial Mendelsohn triple system of order v and index X can be 
embedded in a Mendelsohn triple system of index X on 6(3X/2 + 1) v + 3 elements. 

LEMMA 4.3: A partial directed triple system of order v and index X can be embedded 
in a directed triple system of index X on 18(3X + 1) v + 3 elements. 

In lemma 4.3, the constant is twice that of lemma 4.2 due to a technicality: the graph 
induced by a single colour may have degree 2X in the directed case, unlike the Steiner 
and Mendelsohn cases. Otherwise, the details parallel theorem 4.1 quite closely and so 
we have omitted them here. 

5. Concluding Remarks. Theorem 2.2 demonstrates the existence of finite em­
beddings of partial graph designs with arbitrary index; these results extend those for 
X = 1 which follow from Wilson's theorem. Theorem 3.2 demonstrates that embedding 
block designs for X > 1 does not differ substantially from the embedding of Steiner 
systems. In fact, whenever an embedding result is available for Steiner systems, it can 
be exploited with only a polynomial increase in size to handle block designs in general. 
It is important to note that the technique employed here will work equally well for 
^-designs in general; in this case, the role of Gk can be served by any Mmiform 
hypergraph with two different edge-decompositions into ^-cliques. Any f-design could 
serve as such a Mmiform hypergraph. 

In view of the results here, the fundamental question in embedding is now to produce 
a small embedding technique for Steiner systems in general. This would, along with 
theorem 3.2, provide small embeddings in all cases for block designs. 
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