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1. Introduction. The concept of "marked polygon", made explicit in this paper, is
implicit in all studies of the relationships between the edges and vertices of a fundamental
polygon for Fuchsian group, as well as in the topology of surfaces. Once the matching of
the edges under the action of the group is known, one can deduce purely combinatorially
the distribution of the vertices into equivalence classes, or cycles. Knowing a little
more, the order of the rotation group fixing a vertex in each cycle, we can write down a
presentation for the group.

It was recognized by Poincare that, when we have a polygon which is not a priori
associated with a group, but when a matching of its edges is known and certain simple
metric conditions, one of which he overlooked, are satisfied, then a group with the given
polygon as fundamental polygon can be constructed. This is the celebrated Poincare
Existence Theorem, for which a complete satisfactory proof has been published only as
recently as 1971, independently by Maskit and de Rham ([6], [12]).

If we choose a fixed base-point in the hyperbolic plane, then for every discrete
isometry group F we can form the Dirichlet polygon by selecting only those points of the
plane which are at minimal distance, among points in the same F-orbit, from p. We then
have an edge-matching for this polygon. The distribution of groups in a given isomorph-
ism class between the various combinatorially possible edge-matchings is of interest in
itself and will probably help us to understand related questions such as the action of the
Mapping Class Group on Teichmiiller space.

The first obvious question to be answered is which combinatorially possible edge-
matchings can actually be realized by Dirichlet polygons. In §8 we answer this question
for groups with a fundamental region of finite area with a Realization Theorem which
asserts that essentially all markings are possible. We use the theorem of Beardon on the
existence of hyperbolic polygons with prescribed angles and having an inscribed circle.
Beardon's polygon almost miraculously has precisely the properties we need to show that
it is a Dirichlet polygon.

In the last part of the paper we specialize to study fundamental groups of compact
orientable surfaces, associated with algebraic curves. Almost all Dirichlet polygons in this
case have a generic matching, that is, all vertex cycles have length 3. The technique used
to prove the Realization Theorem picks out, for each generic matching, a specially
symmetric Dirichlet polygon, defining what we call a central curve for each edge-
matching. We prove that all central curves can be uniformized by subgroups of the
modular group.

2. Notation and terminology. For the mere statement of the Realization Theorem
to make sense it is essential that we should define separate entities, combinatorial and
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geometric. The importance of this in the context of the Existence Theorem was clearly
recognised by Poincare ([14], p. 127). In the context of the modular group, Millington
[13] recognised that edge-matchings are essentially pairs of permutations. More recently,
Hussein ([8]) made a detailed study of generic matchings in genus 2 and 3, regarding them
simply as pairs of elements of Sn, n being the number of vertices of the polygon. To
include orientation-reversing isometries, we here use permutations of degree In, acting on
the set of directed edges. The reduction to degree n in the orientation-preserving case is
made in §9.

We distinguish therefore between the edge-matching, the topological marked polygon
and the geometric marked polygon. We also distinguish two concepts of "polygon"—
topological and geometric. The geometric polygons are always convex, for that is all we
need, and only their extreme points are counted as vertices.

We use the term "Dirichlet polygon" for the closure of the Dirichlet region rather
than as a synonym. The closure, after all, carries all the information about the group. The
term weight is used for the order of the orientable stabilizer of a vertex, rather than the
word "order", which is over-used in mathematics and therefore ambiguous. Otherwise I
have adhered to the terminology of [2], [9], with Magnus's notation [11] for triangle
groups and Coxeter's [4], [5] for tessellations.

3. Polygons. A polygon P is a disc B2 together with a finite subset V^8B2. The
points of V are the vertices of P, and, if there are n of them, P is an n-gon. We shall
always assume that n ^ 3 . An edge of P is the closure of a component of 5JB2\V and a
directed edge is a pair (c, u) where e is an edge and v is one of the two vertices in e. We
call v the initial point or initial vertex of the directed edge. Let E(P) denote the set of In
directed edges. The set of n undirected edges, when we need to refer to it, is denoted by
E0(P). If (e, v) is a directed edge, there is precisely one edge e', say, other than e, which
has v as a vertex, and precisely one vertex v', say, other than v, of the edge e. Define
permutations

p,v:E(P)^E(P) by p(e, v) = (e, v'\ v(e,v) = (e',v).

The function p is direction Reversal, v(e, v) is a Neighbouring directed edge. Both p and v
are regular permutations of order 2. Their composite a = vp (p first, then v) is a regular
permutation of order n, a{e, v) being the Successor of (e, v) in the cyclic order of directed
edges indicated by the choice of v as initial point.

The set E(P), together with the pair of permutations p, v is a convenient algebraic
model for the polygon. The undirected edges can be identified with elements of the
quotient set E(P)l(p), the set of vertices with E(P)l(v). Working mainly with directed
edges, we shall use the single Greek letter -n, with or without suffixes, for a directed edge.
Then |-rj[ will denote the corresponding undirected edge and i(r\) will denote its initial
point. Thus TJ = (|T)|, I'(T))).

In terms of vertices, if v and v' are the two vertices of the same undirected edge e,
then (v, v') will denote the directed edge (e, u). Thus (v1, v) = p(v, v').
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An isomorphism of one n-gon (P, V) with another (P', V) is a homeomorphism of
the topological pair (P, V) onto (P', V), an automorphism being as usual a self-
isomorphism. Each automorphism induces a permutation of E(P) which commutes with
both p and v. The group Aut(E(P)) of permutations which commute with both p and v is
called the automorphism group of the set of directed edges. It is the quotient of the
automorphism group of the polygon modulo those which are isotopic to the identity and
can essentially be regarded as the automorphism group of P.

Since (p, v) acts regularly and transitively on E(P), its action on E(P) is equivalent
to the Cayley representation of the dihedral group on itself by left translation. In this
model, Aut(E(P)) is the group of right translations. However, p and v are not automorph-
isms of E{P) and there is no canonical isomorphism between (p, v) and the automorph-
ism group.

4. Marked polygons, cycles. Let P be a polygon and let /x0 be a permutation of
E0(P) such that /xo = id. Suppose that, to each e<=E0(P) there is assigned a homeomorph-
ism Tie): e —» fxo(e) such that

e)) = T(e)-1. (4.1)

The collection (P, (x0, {T(e): e e E0(P)}) is called a topologically marked polygon and
(fi,0, {T(e)}) is a topological marking of P. The homeomorphisms T(e) are called matching
homeomorphisms.

If v, v' are the two vertices of an edge e, then T(e) maps these to vertices vu v[ of
(xo(e) respectively, thus inducing a permutation (x of directed edges given by (x(t), v') =
(«!, v[). Clearly ^p = pfji and, by 4.1, |x2 = id.

DEFINITION 4.2. An edge-matching of P is a permutation /x :E(P)^>E(P) such that
ja2 = id, jnp = p|Li. A marked polygon is a pair (P,/x) where P is a polygon and JA an
edge-matching.

A topologically marked polygon induces an edge-matching (x. The matching /x
determines the pairing fx0 of undirected edges and we shall often write (P, /x, {T(e)})
instead of (P, /xo, {T(e)}). Unlike v, p, neither /xo nor /x need be regular permutations. In
the classical case of groups generated by reflections, /x = /xo = id.

DEFINITION 4.3. The quotient space of the topologically marked polygon is the space
P/q where q is the equivalence relation generated by identifying T(e)x with x for each
point x on each edge e.

A point x in the interior of P belongs to a singleton equivalence class, and a relatively
interior point y of an edge e is equivalent to T(e)y and to no other point. Consider next a
vertex v = i(r\) = i{vr\). By definition, v is q-equivalent to the initial points of both JATJ and
JAW). In fact, two directed edges have q-equivalent initial points if and only if they belong
to the same orbit under the dihedralt group (/x, v). The same vertex, not merely

tThe cyclic group C2 and of course the 4-group C2 + C2 are here given honorary membership of the club of
dihedral groups.
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q-equivalent vertices, is initial point of (|Av)rTj and V(ILV)'T\. SO we do not need the whole
dihedral group to generate the q-class of v, but only its cyclic subgroup of index 2
generated by T = jzv.

DEFINITION 4.4. An edge-cycle is a cycle of directed edges under the action of the
permutation T. A vertex-cycle is the set of initial vertices of an edge-cycle.

We obtain the same vertex cycle (as a set—the cyclic order is opposite) regardless of
which of the two edges with initial vertex v we choose. If TJ is a directed edge and v is its
initial vertex, the number of elements in the T-cycle of r\ is called the cycle-length
of T} (or v) and denoted by /(TJ) (or l(v)). It is not necessarily the number of elements in
the vertex cycle of v—it may be equal or it may be double that number.

5. Hyperbolic geometry. Let U, U, SU denote respectively the interior, closure and
boundary of the unit disc U = {zsC : | z |< l} . Points of U will be taken as points of the
hyperbolic plane, the infinitesimal metric being given by 2 \dz\l(l — \z\2) and points of SU
will be called ideal points. Geodesies in this metric are circles or lines orthogonal to SU
and will simply be called lines. When we need to talk about euclidean straight lines or
circles, we shall use the adjective euclidean. Otherwise all references to circles, lines,
half-planes, convex sets and so forth will apply in the sense of hyperbolic geometry. The
geodesic hyperbolic distance between two points p, q of U will be denoted by d(p, q).
Sometimes we shall refer to points of U as ordinary points,t to distinguish them from
ideal points. G will denote the group of all isometries of U and G+ the subgroup of G of
index 2 which preserves orientation. Elements, other than the identity, of G+ are of three
kinds:

(i) rotations, or elliptic elements with a single fixed point in U, no fixed point on SU,
(ii) parabolic elements, with a single fixed point on SU, no fixed point in U,
(iii) hyperbolic elements, with two fixed points on SU, no fixed point in U.

Hence:
5.1. If an element of G+ has on fixed point in U and another on SU, then it is the

identity.

If v is an ideal point, a v-horocycle is a euclidean circle internally tangent to SU at v.
Parabolic elements fixing v map each u-horocycle to itself. This property characterizes
them in the following strong sense which we shall need later.

LEMMA 5.2. Let v e SU, weU, TeG+, Tv = v. Then T is parabolic if and only if w,
Tw lie on the same v-horocycle.

Proof. If w and Tw lie on the same u-horocycle, there is a parabolic transformation
V, say, which maps u o n u and w on Tw. Then, since T - 1 V fixes veSU, w € U, we have
T~1V = id, by 5.1, T=V.

tThis is a slight departure from the usual terminology if one has a group with a proper subset of 0 for its
limit set; but we do not consider such groups in this paper.
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LEMMA 5.3. If Lx and L2 are two lines meeting at the ideal point v and if a circle
(euclidean or non-euclidean—if comes to the same) touches L b L2 at pu p2 then p1( p2 lie
on the same v-horocycle.

Proof. The euclidean common tangents at p1; p2, v to the three euclidean circles
touching in pairs at these three points are the three radical axes and therefore meet at a
point 0. The desired horocycle is a euclidean circle centre 0.

6. Dirichlet polygons, weighted marked polygons. Let F be a discrete subgroup of
G, p an ordinary point whose F-stabilizer is trivial. Let D(T, p) = {z e U:d(z, p)<
d(z, y), 1 f y eF}, and let F(F, p) be the closure in U of D(F, p). Then D(F, p), F(F, p)
are called the Dirichlet region and the Dirichlet polygon respectively for F at p. The
Dirichlet polygon, which, when possible, we denote simply by F, is a convex set whose
boundary is a union of line-segments and ideal points. In general there could be a
countable infinity of bounding line-segments, and an ideal boundary point of the
"polygon" need not be the endpoint of a line-segment. However, Siegel [15] proved that
if the area of the quotient 1//F is finite, then F is indeed a polygon in our sense—a convex
polygon bounded by a finite union of line-segments, some of which may have ideal
endpoints. Henceforth we shall restrict attention to this case. The edges of the polygon
will be maximal straight segments, and the only points regarded as vertices will be the
endpoints of such segments. Those vertices which are ideal points will be called ideal
vertices, the others ordinary vertices. If e is an edge of F, then there is a unique ye eF such
that e = FC\yeF. Let T{e) = y~^. Since y~le = F(~)y~1F,y~1e is also an edge of F and
T(y~le) = ye = T(e)~1. Thus we have a topological marking as at 4.1 of the Dirichlet
polygon. This is called the standard marking of F by F and the associated edge-matching
is the standard edge-matching.

If Tj is a directed edge of F with initial vertex v, the angle at TJ (or, the angle at v) is
defined to be the angle between TJ and VTJ at v, taken positive. It is denoted by 0(T)) or
0(u). The sum of the angles at an ordinary cycle of directed edges is an integral
submultiple of 2-JT, say

£ 0 ( T ' T ) ) = — - • (6.1)
i = 0 m(T))

The integer mOn) is the same for all -n in the cycle, and is called the weight of the cycle. It
is the order of the stabilizer of i(r)) in F n G+. We extend the terminology to ideal vertices
by putting mOn) = °° if i(°°) is an ideal point. These properties of the Dirichlet polygon,
which indeed it shares with any locally finite convex fundamental polygon, motivate the
following definition.

6.2. A weighted marked polygon is a triple (P, /x, m) consisting of a polygon P, an
edge-matching /x and a function m : E(P)l(v, /x) —» N U {°°} from the set of vertex-cycles to
the set of positive integers extended by including °°.

The Dirichlet polygon, together with the standard edge-matching and the weighting
of the edge-cycles given by the angle-sums, forms a weighted marked polygon, which we
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also denote by F. By the Gauss-Bonnet Theorem ([2], p. 153, Theorem 7.15.1), its area is

(6.3)
•neE(F) ^ -neE(F)/<T>

The factor \ is needed because each angle is counted twice, once for each of the two edges
enclosing it.

DEFINITION 6.4. If (P, /x, m) is a weighted marked polygon, its Ruler characteristic is
denned by the expression

T,SE(F)/<T>

DEFINITION 6.5. Two weighted marked polygons (P, jx, m) and (P', (x', m') are
isomorphic if there is a bijection cp : E(P)-+E(P') such that cp/x = /x'cp, <pv = vq>, <pp = pcp
and m'<p = m.

7. Geometric polygons. We now refine the idea of a topological marked polygon by
insisting that P should be a convex polygon in U and that the matching homeomorphisms
should be restrictions of isometries of U. The edges of P must be line-segments whose
endpoints, perhaps including some ideal points, are the vertices. We adopt the convention
that no points of P except vertices are ideal points and that each ordinary vertex is a
genuine "corner", not a relatively interior point of any line-segment contained in 8P. The
term convex polygon will be used only in this sense.

Suppose then that P is a convex polygon, /x0 a permutation of E0(P) such that
|Xo = kl- Suppose that, to each eeE0(P) is assigned an isometry T(e) of u, the assignment
to satisfy the following conditions:

T(e) maps e onto /xo(c), (7.1.1)

M-o(e) (7.1.2)

Xe)-1. (7.1.3)

The transformations T(e) are called matching isometries. By restricting the matching
isometries each to its assigned edge e, we obtain a topological marking inducing a
matching /x of directed edges. Let m be a weighting of the marked polygon (P, /x). The
entire collection (P, jx, m; {T(e)}) is called a geometric weighted marked polygon if, in
addition to 7.1.1, 2, 3, the following two conditions hold:
(7.1.4) If i(r\) is an ordinary vertex and l{r\) = I, then

,=o

(7.1.5) If KTJ) is an ideal vertex and l(i)) = l, then the isometry T(|T}|)T(|TT)|) . . . Td
is parabolic.
The raison d'etre of this elephantine concept is the following notorious theorem.
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7.2. POINCARE EXISTENCE THEOREM. The isometry group generated by the matching
isometries of a geometric weighted marked polygon is discrete, and the interior of the polygon
is a fundamental region for the group.

For proofs see [6], [12]. De Rham does not formally consider orientation-reversing
isometries, but the necessary modifications are immediate.

8. The Realization Theorem. In this section we prove the following result.

8.1. REALIZATION THEOREM. Let (P, /x, m) be a weighted marked polygon. Then there
exists a discrete isometry group F of U and a point p e l / such that F(T, p), with the
standard weighting and marking, is isomorphic to (P, n, m) if and only if

(8.1.1)

/(T,)m(T))^3 for all r , eE(P) . (8.1.2)

Condition 8.1.1 is necessary by 6.3. Condition 8.1.2 is forced on us by our unyielding
attitude that only extreme points of the polygon can be called vertices. It could be
circumvented at a slight cost, but we prefer not to do so.

Suppose then that (P, jz, m) is a weighted marked n-gon of negative Euler charac-
teristic, and with the property that, for every directed edge TJ we have l(T))m(r\)^3.
Number its vertices, in one of the two possible cyclic orders, 1,2,... ,n. Let mu ..., mn

be the weights of these vertices, so that mr = ms if r and s belong to the same vertex-cycle.
Let lu ... ,ln be the lengths of the edge-cycles denned by edges with initial vertices
1 , . . . , n, so that again lr = ls if r and s belong to the same cycle. For / = 1 , . . . , n, set
a, = 2ir/JJmj. The condition of negative Euler characteristic can be written in the form

a ! + . . . + a n < (n -2 )77 . (8.2)

This is precisely the condition needed for the existence of a convex n-gon Px in U with
angles alt..., an at vertices vu...,vn in cyclic order, where Px has an inscribed circle of
radius r given by

I ( ^ W (8.3)I s i n ( ^
i~, Vcosh r

For the elegant proof of this see [1], or [2], p. 155-6. Though Beardon does not say so
explicitly, it is implicit in his argument that, if the polygon is to have an inscribed circle,
then its radius is uniquely determined by 8.2 and that the polygon is unique up to an
isometry.

Let P, be such a polygon. Let /xj be the edge-matching of P, so chosen that / •-> u, is
an isomorphism of marked polygons, that is, we must have ^l{vi,vj) = (vk,v[) whenever
jx(i, /) = n.(k, I), where, of course \i-j\ = \k-l\= 1. For each directed edge r\ = (vh «,-), let
P(TJ) be the point of contact of |TJ| with the inscribed circle, at the foot of the
perpendicular from the centre c of the inscribed circle to |TJ|. The right-angled triangle
with vertices t)j, p(i)), c has a side of length r opposite to v{ and angle \a{ at vh so the

https://doi.org/10.1017/S0017089500006133 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500006133


136 A. M. MACBEATH

distance df from u; to P(TJ)—or to p(vrj)—is given by

d, = s i r u W ^ ^ ) ([2], p. 147, Theorem 7.11.2).
uan^a/

If v is an ideal vertex, the angle is zero and the distance from the contact point is infinite,
so the formula is still correct with the only reasonable interpretation.

We now define a set of matching isometries compatible with JXJ. Suppose first that vh

vi+1 are both ordinary vertices and let TJ =(vh vi+1), fx1r) =(vk, vt). Then vt, vk belong to
the same cycle so at=ak and dt = dk. Similarly di+1 = d,. The lengths of the edges |TJ|,
1/XiTjlare equal and there is a unique isometry T(|T)|) satisfying 7.1.2 and mapping |TJ| to
|(X!T||. The condition d{ = dk ensures that T(|T)|) maps the contact point p(r\) to pC/x^).

If one of the vertices vu vi+1 is an ideal point, T(|T| |) can be constructed uniquely so as
to map the ordinary vertex on its mate, and again it will map P(TJ) to p(/xfT|), because their
distances from the ordinary vertices are finite and equal. If, however, U; and ui+1 are both
ideal vertices, there are infinitely many isometries mapping TJ to /xj-r) and satisfying 7.1.2.
Only one of these maps p(-r)) to p(niTi), and we define T(|T)|) to be this one.

We verify next that the polygon (P, nlt m) with the T(|T)|) as matching isometries is a
geometric weighted marked polygon. The angle condition 7.1.4 is an immediate conse-
quence of the choice of angles a,-. We therefore need only verify 7.1.5.

Suppose then that i(-n) is an ideal vertex v, and let / = /(TJ). For r = 1, 2 , . . . , define
yr = T(|TT)|)T(|T2T)|) . . . T(|i-rT||), and let 70 = id. Then we assert

7rO"(TrT|)) = «. (8.4)

Proof by induction on r. Make the induction hypothesis that 7r_1(i(T
r~1T|)) = u, cer-

tainly satisfied for r = 1.
Since T(TrT|) maps T'TJ on tir'j], it maps the initial point of the one on the other, so

T(TrT|)i(TrT,) = i((XTrT|) = i

Applying yr_1 to both sides we derive

and 8.4 is proved by induction.
Next we have

8.5. 7r(p(TrT))) and p(r\) are on the same v-horocycle.

To prove 8.5 observe that T(TrT|) maps p(TrTj)on p((XTrT|) = p(vTr-1T]). Now by 5.3 the
contacts with the inscribed circle of two edges with the same initial point lie on a
horocycle through that initial point; so T(TrT))p(TrT|) and p(i-r~1T|) lie on the same
»(i"r~1T))-horocycle. Applying the isometry yr-x, which, by 8.4, maps i(Tr~1T|) on v, we
deduce that 7rp(rrT)) and 7r-i(p(Tr~1Tj)) lie on the same u-horocycle. 8.5 follows by
repeated application.

Let us now put r = l. Since rlr] = TJ, 7( maps v on itself by 8.4. Also 7( preserves
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orientation because it maps P1 outside the angle between TJ and YITJ while fixing v.
Therefore by Lemma 5.2 7, is parabolic and 7.1.5 is proved.

By the Poincare Existence Theorem, the group F = (T(T)):T) e E ^ ) ) is discrete and
has P1 as a fundamental polygon. We complete the proof by showing that Pj is the
Dirichlet polygon for F at the centre c of the inscribed circle.

Let T) be any directed edge of Px. By construction, T(TJ)P(T)) = P(/XTJ). Applying
T(T])~\ we see that T(TJ)~1P(JXT}) = p(rj) is the foot of the perpendicular from the point
T(TJ)~1C to TJ. Thus Tj is part of the perpendicular bisector of the segment (c, T(TJ)~1C) and
the half-plane containing P1 and bounded by this perpendicular bisector is

H,, ={z€ U:d(z, c)«d(

Now P,, being a convex polygon, is the intersection of the half-planes bounded by its
sides. Thus it is defined by a finite subset of the inequalities definining the Dirichlet polygon
F(F, c), so that F^P^ Since F and Px are both fundamental polygons, they have the same
finite area, and since both are closed and convex, they are equal.

9. Positive matchings. Suppose that we have an undirected edge e e E0(P). Once we
direct it by choosing one of its two endpoints as initial vertex to obtain a directed edge TJ,
which we say is positively directed, we can direct all the edges coherently to obtain the set
E+(P) = {17, (JT),..., cr"~1T)} of positively directed edges. The complement E(P)\E+(P) is
denoted by E~(P) and we have E~(P) = pE+(P). A polygon with a choice of one of the
two (cr)-orbits as the set of positively directed edges is said to be oriented.

DEFINITION 9.1. The edge-matching /x is positive if Tje£+(P) implies /XTJ6.E~(P).

Positive edge-matchings are precisely those associated with Fuchsian groups, and can be
described combinatorially by permutations of degree n instead of In. For if /x is a positive
edge-matching, the permutation \ip maps E+(P) to E+(P). Let /x* be the restriction of /xp
to E+(P). Since /xp = pjx, /x is known when jx* is known, and, if <r* is the restriction of <r
to E+(P), then the positive matching is known up to isomorphism when we know the pair
of permutations (p.*, o-*) of degree n, where fx*2 = id and cr* is an n-cycle. Two such
permutation-pairs (/x ,̂ <r*) (/x*, o-*) define isomorphic edge-matchings if and only if there
is a permuation A such that AJLL̂  = jx*^ and either Ao-t = o-*A or A(rt = cr|~1A, the latter
possibility occurring if the isomorphism reverses the polygon's orientation.

In this case too, the initial vertex function i: E+(P) -* V is a bijection, so we can
regard the vertices, each identified with the positively directed edge of which it is initial
point, as being permuted by /x*<r*, which is the restriction T* of (fxp)(pv) = T to E+(P).
Vertex-cycles are thus permutation-cycles in a strict sense.

10. Surface groups. Let $ = <l>g be the fundamental group of a compact orientable
surface of genus g s* 2 and let So(3>) be the space of all Fuchsian groups isomorphic to <I>,
topologized as in [3], [10]. Let p be a fixed base-point. Then So(3>) is a non-compact manifold
of dimension 6 g - 3 and the points FeSoC^) can be labelled according to the standard
edge-matching of the Dirichlet polygon F(F, p). This labelling will dissect the manifold
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S0(4>) into subspaces, each subspace consisting of all points with the same label. The
picture obtained is essentially independent of the base-point p, because G acts transitively
on U and, if 7 e G, then F(T, 7p) = yFiy^Ty, p).

If reS0(^>), the standard weight of every cycle is 1, since a weight greater than one
indicates a point with a non-trivial F-stabilizer ([9], p. 125-6). For the same reason, the
standard edge-matching ju, never maps a directed edge 17 on prj, or, what is the same
thing, ju,* never maps r\ to itself; for then the matching isometry would fix the midpoint of
hi.

DEFINITION 10.1. A generic surface matching is a positive edge-matching such that /x*
is a regular permutation of order 2 and every vertex-cycle has length 3.

It follows from [2] Theorem 9.4.5, p. 232, that, for almost all Te So($), F(T, p) will
have a generic surface matching. It is therefore important to make a special study of
generic surface matchings, given abstractly by the set of regular involutions >x* such that
/xV* is a regular permutation of order 3, where a* = (12. . . n). We call such an
involution a cubic involution, because in this case the graph in the quotient surface given
by the edges of the Dirichlet polygon is a cubic graph.

LEMMA 10.2. If a cubic involution of degree n exists, then n = 6 ( 2 g - 1), where g is a
positive integer.

Proof. For regular permutations of order 2 and 3 to exist, n must be divisible by 6.
Since n is even, cr* is an odd permutation, while ii*o-*, consisting of cycles of length 3, is
an even permutation. Hence /x* is an odd permutation, so n is twice an odd number.

This can also be seen geometrically, in a manner which identifies g with the genus of
the compact orientable surface P/q of Euler characteristic 2-2g. Counting faces, edges
and vertices on the quotient surface, we find

2-2g = l-\n+\n, so n = 6(2g-l).
There is precisely one cubic involution of degree 6, namely (14)(25)(36). Since g = 1, this
is not realized by any Fuchsian group; but it is of course realized in the Euclidean plane as
the classical tiling by hexagons.

Cubic involutions were studied by Hussein [8], who obtained the following formula
for the number of cubic involutions of degree n = 6(2g- l ) :

(10.3)

where dr is the bonomial coefficient ( I and ar, br are given by the expansions

r=0
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Hussein computed C(g) in his thesis up to g = 17, and his results agree with the formula

which I have found empirically. At present, however, I lack a proof.
10.3 gives C(2) = 105, C(3) = 50 050, and the function C(g) grows quite rapidly with

g. Two distinct cubic involutions can give isomorphic edge-matchings if one is derived
from the other by a symmetry of the polygon. For example, there are 8, not 105, distinct
isomorphism classes of generic surface matchings of genus 2. These are listed in a diagram
on p. 267 of [7], which appeared in print eighty-eight years ago!

11. Generic curves and the modular group. A generic surface matching is as-
sociated with three permutations, /x* of order 2, T* of order 3 and <x* of order
n = 6(2g-l) . Since T* = fi*cr*, the triple can be denned by any two of them. Now the
classical modular group F(l) is the free product of the cyclic groups of orders 2 and 3
generated by T, V respectively, where Tz = - l / z , Vz = - l / (z + l). Each generic surface
matching of degree n defines a permutation representation of F(l) of degree n by
mapping T—»/x*, V—*T*. Thus cubic involutions correspond to subgroups of index n
and level n which are cycloidal and torsion-free. See for instance [13].

That gives a purely algebraic connection between cubic involutions and F(l). We
show in this section that there is also a close geometric link. Motivated by the construction
of §8, we call a Dirichlet polygon F(F, p) circular if it has an inscribed circle which
touches all its edges, and then we call the group F circular at p. Whether F(F, p) is circular
or not, all points of a vertex cycle are equidistanct from p. Therefore if F is circular, all
the angles at a vertex-cycle are equal. To obtain a group F which is circular at p we must
therefore use the construction of §8 and we deduce

THEOREM 11.1. Two groups Tu T2 which are circular at p with isomorphic standard
markings and weightings for their Dirichlet polygons are conjugate under a rotation or
reflection fixing p.

Let us now consider the surface groups circular at p with quotient space of genus g
and with generic surface matchings for their Dirichlet polygons at p. All cycles have length
3 and weight 1, so the Dirichlet polygon for such a group is a regular n-gon, n = 6(2g -1) ,
with all its angles equal to 2TT/3. It is remarkable that we obtain the same Dirichlet
polygon regardless of which generic surface matching is involved. To remove the am-
biguity given by the possibility of rotations and reflections, let us fix one such regular
n-gon with centre at p, orient it, and label its positively directed edges 1,2,... ,n in
order, so that a* = (12. . . n). Then each cubic involution of degree n defines a unique
positive edge-matching of P and, as in §8, for each such involution n we have a surface
group F^ of genus g with P as its Dirichlet polygon.t Beginning with P we can fill up the
plane with congruent polygons, three at each vertex, to form a honeycomb {n, 3} in
Coxeter's terminology and notation ([4], [5]). For any one of the groups F^, the

tWe change the notation by dropping the asterisk from fi*, er* since the original p., a will no longer be
needed.
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honeycomb is its Dirichlet tessellation consisting of P, all its F^ -images and all their edges
and vertices. Every transformation of F^ is an automorphism of the honeycomb, that is, it
maps the faces, edges and vertices among themselves, so all the F^ are subgroups of the
automorphism group (or complete symmetry group) of {n, 3}. This group is described in
[4] p. 67, 90 (see also [5], p. 53) and is discrete. A fundamental region is given by the
triangle pqr, where r is the initial vertex of positively directed edge 1 and q is its mid
point. The automorphism group is generated by the reflections R, S, T in the edges
opposite p, q, r respectively, with defining relators

R2, S2, T2, (ST)n, (TR)2, (RS)3.

It is the extended triangle group T*(2, 3, n) which contains, as a subgroup of index 2, the
Fuchsian triangle group T(2, 3, n) with presentation

<u, v | u2, v3, (uv)n)

with u = TR,v = RS ([11], p. 65).
Since all the F^ preserve orientation, they are subgroups of the smaller Fuchsian

triangle group T(2, 3, n). If we call the algebraic curves associated with the Riemann
surfaces U/T^ the central curves for the involutions jut, we have proved

THEOREM 11.2. All central curves of genus g are uniformized by subgroups of index
n = 6(2g- l ) inT(2,3,n).

The index is calculated from the Riemann-Hurwitz relation, or indeed more simply by
counting the number of triangles in the barycentric subdivision of P. The central curves
can also be uniformized by subgroups of the modular group. To prove this, consider the
classical modular figure in the upper half-plane model H of hyperbolic geometry,
focussing attention on the triangle bounded by x = -\, x = 0 and the circle \z\ = 1. We can
map this triangle, by the Riemann mapping theorem, analytically on the triangle pqr,
mapping °° to p, i to q and -j-jis/3 to r. This function can be extended by the reflection
principle to an analytic map of H into U with infinite branching at the centres of all the
polygons in the tessellation, and inducing the obvious homomorphism <p of the modular
group onto T(2, 3, n). The curve LtyF ,̂ punctured at. the central point p, is birationally
equivalent to H/cp"1^). The groups i p " 1 ^ ) are precisely the cycloidal torsion-free
subgroups of F(l) of index n and level n.

It is interesting to note that the euclidean case g = 1 also has a place here—the
unique normal subgroup of index 6 and level 6 in F(l) is its derived group, with quotient
space a punctured equianharmonic torus associated with the tiling of the plane by regular
hexagons—the original honeycomb found in nature!
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