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Abstract

This paper is concerned with the well-known and long-standing k(G VO-problem: If the finite group G
acts faithfully and irreducibly on the finite GF(p)-module V and p does not divide the order of G, is the
number k( G V) of conjugacy classes of the semidirect product G V bounded above by the order of VI

Over the past two decades, through the work of numerous people, by using deep character theoretic
arguments this question has been answered in the affirmative except for p = 5 for which it is still open.
In this paper we suggest a new approach to the k(G V)-problem which is independent of most of the
previous work on the problem and which is mainly group theoretical. To demonstrate the potential of the
new line of attack we use it to solve the k(G V)-problem for solvable G and large p .

2000 Mathematics subject classification: primary 20C15, 20C20.

1. Introduction

A long-standing problem (dating back to the 1950s) in the modular representation
theory of finite groups is Brauer's fc(fi)-problem stating that if B is a p-block of a
finite group G, then the numBter k(B) of ordinary irreducible characters in B is bounded
above by the order of the defect group of B. For p -solvable groups Nagao [20] showed
that this problem is equivalent to what has become known as the it (G V) -problem:

If V is a finite irreducible faithful GF{p)G-module of the finite group G such that
(\G\, \V\) = 1, then the numberk(GV) ofconjugacy classes ofthe semidirect product
GV is bounded above by the number of elements of V, that is, k(GV) < \V\.

This difficult problem has been thoroughly investigated during the past two decades
and for a long time stubbornly resisted all efforts to solve it, but by now through the
combined efforts of many mathematicians major results have been obtained. The first
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significant breakthrough is due to Knorr [13] who proved the k(G V)-prob\em for
supersolvable groups. Even more important than this actual result are the character
theoretic techniques that he developed in his influential paper. Most remarkably, all
other significant contributions to the solution of the problem are extensions of Knorr's
approach. Early extensions due to Gluck, Knorr, Gow, Robinson and others culminated
in the well-known paper [25] by Robinson and Thompson solving the problem for
arbitrary groups and large p. The proof heavily depends on deep character theoretic
arguments.

Since then, all efforts concerning the k(GV)-problem centered around refining
this proof to make it work for smaller primes p, and hy work of Robinson [24],
Goodwin [6, 7], Gluck and Magaard [4], Koehler and Pahlings [14], Schmid and
Riese [22], Riese [21] the problem has been solved for all primes for which the
Robinson-Thompson method can be applied. Recently in work of Gluck [5] and
Riese and Schmid [23] all the remaining primes have been settled with the exception
ofp =5.

So while the actual results to the k(G V)-problem are very satisfying, the methods
used to solve it, which Gluck in his review of Gow's paper called 'powerful, but rather
mysterious' (see MR 94i:20020), remain so even today. Thus a deeper insight into
the mechanics of the problem remains highly desirable.

In this work, therefore, we will present a powerful 'Knorr-free' approach to the
problem. As such this paper is independent of most of the work previously done on the
k(G V)-problem. (For a different approach of a somewhat similar spirit, see [18, 19].)

One of the main difficulties is that the k(G V)-problem has a bad inductive behaviour
which is why slightly stronger, but with respect to induction better behaved conditions
were sought to make proofs work. Our approach however is elementary (albeit highly
nontrivial) and based on the inductive behaviour of k(G V) itself. At the same time it
deals with another curiosity of the history of the k(G V)-problem. Namely there are
some very elementary and beautiful formulas for k(G V) which one would expect to
play a major role in any serious approach to the k(G V)-problem—but they do not.
They even have been hardly of any use at all so far. In this paper now we will slightly,
but decisively, generalize these formulas such as to rendering them more suitable for
an inductive argument, and then we will heavily use them, thus showing that they are
more useful than they appeared to be.

The power of our new approach to the k(GV)-problem will be demonstrated by
using it to settle the &(G V)-problem for solvable groups and large primes p. Just as
was the case with Knorr's strategy, the method presented here has potential of being
extended to work for arbitrary groups (and large primes), but the approach developed
here is more group-theoretical and as such more elementary. It is hoped that the
ideas developed in this paper eventually will lead to an elementary, possibly purely
group-theoretical, solution of the k(GV)-problem in general.
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The paper is organized as follows: In Section 3 we will generalize well-known
formulas for the class number of a group and outline the key ideas of the new line of
attack on the k(G V)-problem, which in Section 4 will be used to solve it for solvable
groups and large primes p. It will become obvious that the proof for \G\ odd is a lot
easier than the proof for \G\ even; Lemmas 4.5-4.7 are needed exclusively to deal
with a special case in which \G\ is even. Finally in Section 5 we will give a brief
outlook on possible extensions of this work and open questions that arise from it.

2. Notation

All groups in this paper are finite. A^B means that the group A is isomorphic to a
subgroup of B. If a finite group G acts on a finite vector space V, then by n(G, V) we
denote the number of orbits in the action of G and V, that is, n(G, V) = \{vG\v 6 V}|.

By cl(G) we denote the set of conjugacy classes of a group G, and k(G) = | cl(G)|,
and if 5 is a set, then t?(S) is its power set. Irr(G) is the set of irreducible complex
characters of G.

When we say that a group G acts on a set £2, this means that every g e G permutes
the elements of £2 and for any g,h e G and co e £2 we have (cog)h = cogh. In particular,
the permutation action of G on Q need not be faithful. For g e G w e write Ca(g) for
the set of fixed points of g on Q, so CQ(g) = {co G Q | cog = co) (where the group
action is written exponentially), and for co e Q let Cc(co) = {g € G | cog = co}.

Moreover, if a group G acts on a group V such that the corresponding semidirect
product G V is a Frobenius group, then we say G acts fixed point freely on V, and an
element g e G is said to act fixed point freely on V if (g) V is a Frobenius group.

As in [17, Section 2], for V = GF(qm) (where q is a prime power and m e N)
we let r ( V) = [x h+ ax" \a e GF(qm)*, a € Gal(GF(qm)/GF{q))} and To( V) =
[x i-> ax \a 6 GF(qm)*) < T(V). Moreover we use l̂ J to indicate disjoint unions.

3. Goodness

We first introduce the notion of a goodness property and study a few important
examples, which will yield group theoretical proofs for two well-known formulas for
k(G V) (see Corollary 3.7).

DEFINITION 3.1. Let G be a group acting (not necessarily faithfully) on the finite
set Q. Let 5 be the set of all subgroups of G, and put T — \JUeS ^ (c l ( f / ) ) . Suppose
that there is a function P : 5 x SI -*• T such that for any U < G, co e Q we have
P(U, co) c c\{Cu(co)). Then we call P a goodness property and say that the classes
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in P( U, co) are P-good for co in U. Moreover, if g € Cv{co) and gCt/(a>) is P-good for
co in U, then we say that g is P-good for co in {/. For any U < G, g e U put

) = (we Cn(s) | g is P-good for co in £/}.

We also write P(U, co) =: clP(C{/(cw)), and \P(U, co)\ =: kP(Cu(oo)) is the number
of P-good classes for co in U.

Finally the goodness property P is special if for all U < G, co e fi, u € U we
have MC[/(<u)) =

DEFINITION 3.2. Let G be a group that (not necessarily faithfully) permutes the
elements of the finite set SI and let P be a goodness property. Then we define

,,- ™ xr\CG(co)\kP(CG(co))

<*'<G-") = E jcj •
If P is special, then clearly aP(G, Q) = £"!=?'"' kP(CG<fl>i)) (where o>,, i = 1
n(G, Q), are representatives of the orbits of G on Q).

REMARK 3.3. Suppose P is special. Using the Cauchy-Frobenius orbit counting
formula (also known as Burnside's lemma), we obtain

aP(G, Si) = - i - T \Cc(co)\kP(CG(co))

g is /'-good for m in G

= ]^7E E
; is P-good for w in C

E
<«eco(«),

with g P-good for w in C

Thus if fi (G, g) is Co (g)-invariant for all g 6 G, then we further conclude (using the
orbit counting formula again) that

, Si) = 7^
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If in addition n(Cc(g), CmG,g)(g)) = n(CG(gh), Q(G, gh)) for any h € G, then even

aP(G, £2) = E / i? n(Cc(gi), a(G, g,)) where g, (i = 1 k(G)) are representa-
tives of the conjugacy classes of G.

EXAMPLE 3.4. The following special cases of goodness properties are of particular
interest:

(a) Let G be a group acting on the finite set £2 and put P(U,co) = c\(Cu(co)).

Clearly this is a special goodness property, and for U < G and g 6 U obviously
Q(U, g) = Cn(g).

(b) Let G be a group and N < G. Then G/N acts on Irr(AO, and if f e Irr(A0 and
N < U < G, then in [2, p. 177] Gallagher defines what it means for a conjugacy class
of Cu/N(\jr) to be good for \Jr, and shows that it depends only on \j/ and the conjugacy
class in CU/NW)- Thus if we define

P(U/N, ir) = {M e cl(Cu/N(^)) I A/ is good for yjr).

then clearly P is a goodness property, and by the Theorem in [2], kp(CV/N(^r)) is
equal to the number of irreducible characters of G lying above \j/. In particular, from
this it is clear that P is special. We call P Gallagher's goodness property. Observe
that by [2] it follows that k(U) = aP(U/N, Irr(AO) for any N < U < G.

We next develop a group theoretical counterpart to Gallagher's goodness property.

DEFINITION 3.5. Let G be a group and N < G. Let SI = £lN(G) := {gN \ g € G)
be the set of Af-orbits as N acts on G by conjugation. Clearly G/N acts on £2
by conjugation. Note that for g e G obviously gN c gN, as for x € N we have
g* = g[g,x]. LetN < U < G,g e Uandco e Q. WesaythatgN e U/Nisgoodfor
coin U/N if co c gN. Note that if cN e Cu/N(co), then alsoco c (gN)cN = gcN, that
is, also gcN = (gN)cN is good for co in U/N. Hence we can define that (gN)0""1^
is good for co in t//Af if co c gN. Therefore if we define

P(U/N, co) = {(gN)c»>"M \co£gN e Cu/W(a>)} c c K C y ^ G u ) ) ,

then P is a goodness property. It is easy to see that P is special. Clearly P(U/N, co) =
[xN] for any x e co and thus kP{Cu/N{co)) = 1 for all co.

LEMMA 3.6. Let the notation be as in Definition?).5. Then the following hold:

(a) Let gjN (i = 1 , . . . , k(G/N)) be representatives of the conjugacy classes of

G/N. Then k(G) = £ ^ / A 0 n{CG/N{giN), Sl{G/N, giN)), where (in accordance

with Definition 3.1) Q{G/N, gN) = {co € Q | co C

(b)
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PROOF, (a) Let ft,- e G (i = 1 , . . . , \G/N\) be representatives of the cosets of N
in G. Let g € G. Then g = htv for some i and some v e N. We may assume that
i = 1. Thussc = (ft,v)G = Ulff'^i")""" ^ U\1[m(hW" = UlT^ 'W. Now
also let g' € G so that g' = ft;Uo for some / and some v0 6 N. Then likewise

|G/N| \G/N\

(g')G = U (/"u«)A"li £ U *?'*•
1=1 1=1

Now we observe the following:
(1) If gG = (g')G> then hiv e ft?1// for some i, so hx € h^N for some i, whence
ft] = ft*'* for some / and some x e N. This is equivalent to saying ft^ = h'l'N
which means that ft^ and ft;^V are in the same conjugacy class of G/N.
(2) Suppose that ft! Af and h[N are G/N -conjugate, so that ft,"W = hiN for some,/o-
Write ft, = ft*J0 v for some y € N and z = (yvo)

h^ e N. Then g' = htv0 = h^yvo =
(A,z)*>o and so (^')G = (ftiz)c = U w " " « * i ^ -

Next let d, e G (i = 1 , . . . , m := \(G/N)/Cc/N(hiN)\) such that the dtN are
representatives of the right cosets of CGINOIXN) in G/N. Moreover let /, e G
(i = l n := |Cc/tf (AiAOl) such that Ca/sihiN) = [etN | i = 1 n}. Then

m

G/N = ( J Co/AhiWdi = {Nejdi | j = 1,.. . , n, i = 1,.. . , m},
/=i

and the e^, are representatives of the cosets of N in G. We then may assume
that {ftj ft|G/jv|} = {ejdi \ j = 1 , . . . , n; i = 1 , m] and that ft! = exdx.
Moreover, as (hxN) = (ft,#)' '" = h'{Nx, clearly ftf = ft,n; for some «; e AT (for
all j ) . Hence we obtain

Observe that for all iu i2 e { 1 , . . . , m] we have ft,'1 N n ft/2 A' = 0, and so we even
have

Now analogously we obtain

if)0 = {hiz)G =\-)(h*\J[(njz«)d'}(
1=1 \ ;=i
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[7] A new approach to the k( G V)-problem 199

and so we see that gG = (g')G if and only if

/ " V I " V
h* \J{(njv")di) = h* [Jiinjz'')*) for i = 1,..., m,

\ 7 = 1 / \ 7 = 1 /

that is,

)

Now the left-hand side of (*) equals

7 = 1 7 = 1 7 = 1 7 = 1 xeCC/N(htN)

and analogously the right-hand side of (*) equals

7 = 1 7 = 1 xeCG/N(htN)

Consequently, gG = (g')G if and only if gN = (A,w)w and ((*')**)" = (Aiz)w lie in
the same orbit of CG/N(hiN) = CG/N(gN) on Q(G/N, gN) (note that g" c gN and
((*')**•')" C (g ' )^ '^ = hxZN = A,AT = gN).

Combining our findings in (1) and (2) yields that for any g, g' e G we have
g
G = (g')

G if and only if (i) (gN)' = g'N for some r € G and (ii) gN and ((g')'~')N

lie in the same orbit of Cc/N(gN) on £l(G/N, gN). From this we see that (a) follows,
(b) Observe that for any gN, hN € G/N we have

n(CG/N(gN), £l(G/N, gN)) = n(CG/N(ghN), G(G/N, ghN))

and furthermore clearly £l(G/N, gN) is CG/N(g/V)-invariant for all g € G. So the
assertion follows from Remark 3.3 and the fact that kP(Cu/N(co)) = 1 for all co e £2,
and the lemma is proved. \ •

Note that from the formula in Lemma 3.6 (a) it is clear that for any N < U < G
we have

k(U/N)

k(U)= Yl n(Cu/N(hiN),n(G/N,hi))

(where the hjN are representatives of the conjugacy classes of U/N), because

/ ) ( / )
Lemma 3.6 is a generalization of a well-known formula for k(GV) in the setting

of the k(G V)-problem, as we shall see next.
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COROLLARY 3.7. Let G be a group and V be a finite G module with (| G\, \ V\) = 1.
Then the following hold:

(a) Let gt; € G (i = 1 , . . . , k(G)) be representatives of the conjugacy classes of G.
Then

k(G) -

C ( ) )k(GV) =

(b) Let v,• € V (7 = 1 , . . . , "(G, V)j fee representatives of the orbits of G on V.
Then

n(C, V) j

*(GVO = £ Jfc(Cc(u,)) = — £|Cc(u)|*(Cc(i;)).
1=1 ' ' 1>€V

PROOF, (a) Apply Lemma 3.6 (a) to the group GV with the normal subgroup V
and write the addition on V multiplicatively.

Observe that

Sl(GV/V,gV) = { ( h v ) v \heG,v e V wi th ( A v ) v c g V]

= { ( g v ) v | v G V} = {gvw | w e V} = {g[(g), V]v\ve V},

where the last equality holds as [(g), V] = {[g, v] | v e V] by the well-known
rules for commutators and because V is abelian. Now as (\G\, | V|) = 1, we see
that {[(g), V]v | v e V] = V/[(g), V] = Cvig) (as Cc(g)-module), and so clearly
Q(GV/ V, g V) = gCv(g) = Cv(g) as CG(s)-modules. So by Lemma 3.6 (a) the
first formula follows, and the second formula easily follows from the first.

(b) Let P be the (trivial) goodness property from Example 3.4 (a) with respect
to the action of G on V. Then we observe that £2(G, g) = Cv(g) and also that P
is special and S2(G, g) is CG(g)-invariant for all g e G. Hence Remark 3.3 yields
the second formula in (b), and the first formula is an immediate consequence of the
second. The proof of the corollary is thus complete. •

The formula in (b) can also be seen as a special case of the formula for k(G) in
Example 3.4 (b).

Note that the formulas in Corollary 3.7 have been known for a long time, since they
are special cases of the well-known group theoretic fact that if n is a set of primes
and G a finite group, then k(G) is the sum of the number of conjugacy classes of
7r'-elements of Cc(x) as x runs over a set of representatives of the conjugacy classes
of 7r-elements of G.

Observe that another consequence of Lemma 3.6 is the well-known formula k (G) <
k(G/N)k(N) for N < G, as is easy to see. We will use this formula freely in the
remainder of this paper.
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We now present the key idea that our approach to the k(G V)-problem is based on.
It is the following easy lemma.

LEMMA 3.8. Let G be a group acting on the finite set Q, and let P be a goodness
property. Suppose that there is a b € N, a 0 < € < 1 and an N < G such that the
following hold:

(i) aP(N,O)<b;
(ii) \Cn(g)\<b(forallgeG-N;
(iii) \G\ < b(l-f)'2/V2.

ThenaP(G,Q) < b.

PROOF. Clearly we may assume that N < G. Let T = {co e £2 | CG(co) £ N}.
Observe that co e T means that there is a g e G — N with co e Cn(g). Hence
T C U,eG_* Ca(g) and thus \T\ < \G - N\be < \G\be.

With this we find

+ 2

kP(CG(co
\G\

r * ffl 1

1 ,_f.

' - 2

|A

^ + \b <

|Cc(w)|*p(Cc(a>))

p(Q(o)))

M

b,

as wanted. •

REMARK 3.9. If in Lemma 3.8 in addition we assume that P is special and N < G,
then we can replace Hypothesis (iii) by the weaker hypothesis

(iii') k(U) < b(1~f)/2/V2 for all U < G.

To see this, let 7i = {coG | co e Q with CG(co) £ N}; so of e T, means that there is
a g e G — N such that g fixes an element of coG, that is, toG n C«(g) 5̂  0. Hence
<yGnCn(g'') ^0forall/i e G. This shows that if g,, 1 = 1 , . . . , f, are representatives
of the conjugacy classes of G which are not in N, then

Ti c (J{o>G I co 6 £2 and ooG n Cn(g,) ^ 0}
1=1

and thus |Xi| < /max1=i , |Cn(g,)| < k(G)be. Now consider wc i Tx. Thus
CG(co) = CN(a>) and so |o>c| > \coN\, and as G/N permutes the orbits oi N on Q, we
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see that coG is the disjoint union of at least two mutually distinct G-conjugate Af-orbits
on Q. Hence if a>,- (i = 1, . . . , n(G, J2)) are representatives of the orbits of G on fi,
then

7 kP(CN(c0j)) = - > 2kp(CN(a>j))
r 2 r

i with <uJV7"i < withajj^T!

1 "Y^ 1
~ 2 4^ ^ N J ~ 2

where the at; are representatives of the A7-orbits on £2.
So altogether with our hypothesis we obtain

aP(G, Q) =

V2 2

-5= b°-f)/2 + \b< b(\bx-f + \b = b,
V2 2 2 2

as desired.

4. Onthe*(GlO-problem

In this section we give a new proof of the k(G V)-conjecture for solvable groups and
large primes p, that is, p > K for some constant K e H, using the ideas developed
in Section 3. Note that no effort has been made to keep K small, but rather we are
satisfied with large K to make the proofs as short and smooth as possible. Due to the
nature of the problem still some technicalities cannot be avoided.

We begin with a series of auxiliary lemmas, some of which may be of independent
interest.

The first lemma studies the case of quasiprimitive group actions, and therefore
we will make use of the detailed analysis of solvable groups whose normal abelian
subgroups are all cyclic, which can be found in [17, Section 1] (see, in particular,
Corollary 1.10 of that book). We recall from there that if F = F(G) is the Fitting
subgroup of G, then there exist normal subgroups E, T of G such that F = ET,
Z = EHT and T = CF(E). Moreover, all Sylow subgroups of E are cyclic of prime
order or extraspecial of exponent a prime or 4, and there exists a U < T of index at
most 2 with [/cyclic, U < G and CT(U) = U.

LEMMA 4.1. Let G be a solvable group acting faithfully and irreducibly on a finite
vector space V over GF(p), where p is a prime. Suppose that the action of G on V

https://doi.org/10.1017/S1446788700003724 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700003724


[11] A new approach to the k( G VO-problem 203

is quasiprimitive so that every normal abelian subgroup of G is cyclic, and we adopt
the above notation and write e2 = \E/Z\. Then the following hold:

(a) | G\ < k\ U\eli/2, where k is the dimension of any irreducible Z-submodule of V.
(b) Ifp > 3112 and e > 9, then \G\ < (1/3)| V\1/&.
(c) //(|G|,|V|) = landp > 2U2,thenk(GV) < \V\.

PROOF. Write n = dim V. Observe that by hypothesis Vz is homogeneous, so write
Vz = s • X for an s e N and an irreducible Z-module X. By [9, II, Hilfssatz 3.11] it is
clear that G/CC(Z) ^ Aut(GF(pn/s) : GF(p)), so in particular \G/CG(Z)\ < n/s =
dimX. Write k = dim*. Then \G/CG(Z)\ • \T\ < 2k\U\. Using this estimate and
the proof of [17, Corollary 3.7] yields \G\ < 2k\U\en/2/2 = k\U\el3/2. This is (a).

Now if W is an irreducible f/-submodule of V, then \U\ | | W| — 1 and clearly
it < dim W =: /. Therefore obviously \G\ < lp'en/2. On the other hand, by [17,
Corollary 2.6] Vv = teW for a t e M and hence | V\ = p"e. Hence if p > 3 m and
e > 9, then |G| < lplen'2 < p'e/*/3 < \ V|1/8/3. This is (b).

Moreover, if p > 528, and e > 5, then

(1) k(G) <\G\< lp'en/2 < p'e/*/2 < | V|1/4/2

Now let (|G|, | V\) = 1 and recall that by Corollary 3.7 (a)

i), Cv(g,)),

where g\ = 1, g2, • • •, gk(G) are representatives of the conjugacy classes of G. Now
as |Cv(g)| < I V|3/4 for 1 ̂  g € G (see part (a) of the proof of [17, Proposition 4.10])
and n(CG{g), Cv(g)) < \Cv(g)\ for g e G, we have

k(GV) < n(G, V) + (k(G) - 1)| V\v*.

Moreover, by the Cauchy-Frobenius formula we have

Therefore,

(2) k(GV)<\V\/2

and together with (1) this clearly yields (c) for e > 5. It remains to prove (c) in
case that e < 4. If e = 1, then by [17, Corollary 2.3 (b)] G < T(V), in which
case it is well-known (and easy to see using the formulas in Corollary 3.7) that
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k(G V) < | V\. So we may assume that 2 < e < 4. Suppose now that p > 2112. By (a)
\G/U\< ken/2 < /213. Now if \U\ < pu\ then

k{G) < \G\ < / 2 ' V / 8 < P//4/2 < | W|l/4/2 < | V|1/4/2

(as p > 2"2) and thus with (2) we obtain the conclusion. We thus may assume that
| U\ > p ' / 8 . Now as UV is a Frobenius group, we easily see (with the formulas in
Corollary 3.7) that k(U V) = (| V| - 1)/| U\ + \U\<\ V\/p'l% + pl and therefore

k(GV)<k(G/U)k(UV)<2ul (^ + p A = ^ i | v | + 2I3Zp'.

Hence it suffices to show that (213l)/p'/s | V\ + 2nlpl < \ V\ which is equivalent to

For this, it suffices to show that

21 V < (1 - (213/)/p//8) P2' or 213Z < (1 - (213l)/p"&) p1.

As p > 2112, this is certainly true and so also the proof of (c) is complete. •

LEMMA 4.2. Let G be a solvable group and V ^ 0 a faithful, irreducible and
finite G-module. Suppose that V — WG for an irreducible H -module W for some
H < G (possibly H = G). Assume further that \H/CH(W)\ < | W|1/8/3. Then
\G\ <

PROOF. Since V = WG, we may write V = X} ©• • -®Xm for subspaces Xt of V that
are transitively permuted by G with W = X\. Let A' be the kernel of this permutation
action. Then G/N is a solvable subgroup of Sm, and by [1, Theorem 3] we know that
|G/iV| < 24C"-"/3 < 3""1. Moreover, N/CNiVdZNcW,)/CG(Xt) = H/CH(W)
for/ = 1 m, and thus \N/CN(V,) \ < (1/3)| VJ|1/8 forall i. As 07=1 CN(V,) = 1,
we have N gXJli N/CN( Vt) and therefore we see that

i=\

Hence altogether we have \G\ = \G/N\\N\ < 3m-'(l V|'/8/3m) = | V|1/8/3, as
wanted. •

LEMMA 4.3. Let G be a solvable group and V be a G-module over an arbitrary
field. Suppose that there are N < G and N-submodules V, (i = 1 , . . . , m)for m e N
such that V = ®£Lt V, and G/N permutes Vt primitively and faithfully. Then for any
geG-N we have \Cv(g)\ < | V\v\
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PROOF. Let g e G — N. Obviously we may assume that g is of prime order. Then
g permutes the V, (i = 1, . . . , m) nontrivially. If n(g) is the number of orbits of {g)
on Q := {VI,..., Vm] (that is, n(g) is the number of cycles of g on £2), then it is
clear that | Cv(f)| < | V, |"(«\ because if i e { 1 , . . . , m) and <€ = [V? \j € 1} is the
orbit containing V, and Xt = £ 7 6 Z Vf\ then \CXl(g)\ < I V,\ = | V,|. Now by [17,
Lemma 5.1] we know that n(g) < 3m/4, and thus \Cv(g)\ < I V,r(«> < | V,|3m/4 =
| V|3/4, as claimed. D

LEMMA 4.4. Let G be a solvable group acting faithfully on a finite G-module V
over GF(q) (q a prime) such that V = VJ © • • • © Vnfor an n 6 N with n > 2 and
G-invariant subspaces V, (i = 1, . . . , n) of V. Let GV be the semidirect product
with respect to this action and suppose that there are automorphisms ©, of GV such
that V,0' = V, (i = I,... ,n); so in particular the semidirect products (G/ Cc( Vf)) Vt

(i = l , . . . , n ) are all isomorphic. Assume that Z(F(G))Cc(Vi)/Cc(Vl) (which
clearly is nontrivial) is cyclic and acts fixed point freely on V\. Suppose further that
d := G/ Cc(Vi) contains a normal cyclic subgroup Z\ — Z\/Cc(V\) where Z\ < G
such that Z(F(G))CG(Vi) < Zt (thus, in particular, Z~x acts fixed point freely on Vi).

Put d = G/Cc(Vj) and let Z, = Z\@l be the corresponding subgroup in G,-. As
G acts faithfully on V, clearly f)"=1 CG( Vj) = 1 and so there is a U < X"=] ~G~i and
an isomorphism <p : G -> UJnamely, <p(g) = (gCG(Vx), ..., gCG(Vn))for g € G).
Now let Z :-<p-l(Un X"=, Zj) and put s = d(Z). Then the following hold:

(a) Z = f)"=i z - a / w / * < Z/Cz(Vf) £ Z^/or i = l « i» idZ is an abelian
normal subgroup of G which acts nontrivially on each V, (i = 1 , . . . , n).
(b) There exist an s0 e N with s < s0 < n and Nt < G, W, < V (i = 0, . . . , s0)

such that each W, w the sum of some of the Vj and if we put No = I, Wo = 0, then
No < Ni < ••• < N« = G, W,nWj = Ofor all i £j, d(Z n N,) < i for all
i, Nt acts trivially on V/( 0 ] ^ Wj) for all i = 0 , . . . , s0, G/Nt acts faithfully on
V / ( 0 ] = o Wj)andNi+1/Ni acts faithfully each Vj with V; < Wi+} (i = 0 , . . . , so-l),
and (Z fl Ni+i)Ni/Ni (possibly = 1) acts fixed point freely on Wi+i. In particular,
V = 0 t , W and k(G V O ^ M kM,+i/N,) Wl+l).
(c) Suppose that \ G\/Z\ \ < kdfor d = dim VI a/wf 5o»ie it > 1, a«d also suppose

that \Z\ > | V\f/l"for some I > 1 W 5ome 0 < e < 1/2 an̂ f f/zar V, \j; in the direct
sum of at least two irreducible Z\-modules. Suppose that q > (2e+1lfk)2/e . Then
k(GV) < \V\/2n.

PROOF, (a) It is obvious from the definition of Z that Z < G and Z is abelian. Let
H = f|"=i Z, and C, = CG( Vf) for all i. Now ifgeH, then clearly gC,̂  e Ẑ~ for all i
and thus <f>(g) e X"=i Z, which shows that g € Z. Thus // < Z. On the other hand, if
g e Z, then # C, e Z, for all i and thus g e Z, for all /, that is, g e H and so Z < H.
So indeed // = Z. Moreover clearly Z/Cz( V,-) = ZC,/C, < Z,/C, = Z^ for all i.
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Now clearly Z(F(G)) < Z and Z(F(G)) acts nontrivially on every VJ (i = 1 , . . . ,« ) ,
so 1 < Z / Cz(Vi) for all i. So (a) is proved.

(b) We prove the assertion by induction on i. For i = 0 there is nothing to show.
So let i > 0 and Z > 1 and suppose that we already have Wj (j < i) and A7,-. Then let
V = ( 0 J = I Wj) 0 X, for a G-invariant X, which is the sum of some of Vj. Clearly
X, = V/(By=i Wj as G-module, and so (by induction) we know that G/Nt acts
faithfully on X, and A7,- centralizes X,. Moreover by induction we have d(Z n A7,) < i.

If Z < A7,- then as Z acts nontrivially on each V; and A7,- acts trivially on V/ 0 ' =1 Wj,
this implies that V = 0 ] = 1 W}, and if we put s0 = i, then s0 = i > d(Z n A7,) =
<i(Z) = s and we are obviously done. In particular, ifNve put L, = 0 J = 1 W, for
i = 0 , . . . , s0, then in G V we have the normal series

1 = N0L0 < N,L, < • • • < N^L^, = GV

with Nj+iLj+i/NjLj = (Nj+l/Nj)WJ+i for ally. Therefore clearly

so—I so—I

k(GV) < Ylk(Nj+lLJ+l/NjLj) = Y\k«NJ+l/Nj)WJ+l).
j=0 j=0

So next we have to consider the case that Z/Z n Nt > 1. Observe that any element
g e Z acts either fixed point freely or trivially on Vj (for any fixed j e { 1 , . . . , n}).
Now let f € Z be minimal such that there is a g e G acting nontrivially on t
of the Vj with Vj < X, and trivially on all the other Vj with Vj < X,. Clearly
t > 1, and by renumbering the V̂  we may assume that W, = 0 * ^ Vj for some
kx € N U {0} and that there is a g e G acting nontrivially on Wi+X := 0 ) = 1 Vtl+J

and trivially on K/+1 := 0 ; = t l + ( + 1 V} = V/ Wi+l (as G-modules). Put Ni+l =
CG(Yi+i). Clearly A7, < //,-+, < G, Wi+i n W, = 0 fo r ; = 1, . . . , i . By our
construction (Z n Ni+X)/(Z n A7,) = (Zf l Ni+i)Ni/Ni (which might be trivial) acts
fixed point freely on W)+1 and thus is cyclic; so as (by induction) d(Z n A7,) < i and
d((Z n Ni+i)/(Z n AT,-)) < 1, it follows that d(Z D N,+,) < i + 1. Moreover, as
G/A7, acts faithfully on X, and A'j+i acts trivially on Yi+\, Ni+i/Nj must act faithfully
on Wi+\ and by our minimal choices of t obviously Nj/Ni+\ even acts faithfully on
each Vj with V} < Wi+\. So Ni+U Wi+l have all the properties asserted in (b), and (b)
is proved.

(c) As | V\(/l" < \Z\ < \Z~i\a, we have \Z[\ > | V\e/l, and as Yx acts fixed point
freely on VJ and V\\-^ is the sum of at least two irreducible Z\-modules, clearly
\Z[\ < | Vi |1/2. So altogether | V, \(/l < \z[\ < | V, |'/2. Now if we put

z;+1 = ( z n ^ + , ) / ( z n JV,) = ( zn Ni+l)N,/Ni

for i = 0 Jo - 1, then |Z| = fl?^' |Z;+11. Put
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We claim that a > ne (*).
To see this, assume a < ne. As \Z*\ < |ZJ < | VI |1/2, it follows that

i=0

°~f)n

\e/2
/I v,\e'2\°~f)n

<ivir f / 2 ( ) <w\e

This implies |V|f2/2 < ln/l(X-()n and so | V|e/2 < /". Now | V| = | V,|" > q\ and
with our hypothesis on q we obtain (2e+llek)n/e < I" which implies 2" /" kn/t < I" or
2 kl/e < 1, a contradiction. This establishes the claim (*).

Now let {0, 1 , . . . , s0 - 1} = Mi U M2, where M, = {i | |Z*+11 > | V, \(/2/l) and
M2 := {0, 1, . . . , 5b — 1} — M\.

Let i € Mi and choose m such that Vm < W]+i, and write Y = (Zm D Ni+i)Ni/Ni.
As by (b) Nj+i/Ni acts faithfully on each Vy < W,+i, we see that Y is cyclic and acts
fixed point freely on Vm. Moreover Y > (Z D Nj+^Nj/Nj which is cyclic and acts
fixed point freely on W,+i; also observe that (Z D Ni+\)Ni/Ni > 1 because with our
hypothesis on q we conclude that

l(zn #,+,)#,/#,• 1 = iz;+1| > |V!|(/2// > <7e/2/z > 1.

This forces Y to act fixed point freely on Wi+\. Now we have

= k(Ni+l/(Zmr\Ni+])Ndk(YWi+i).

Now as Ni+l/Ni acts faithfully on Vm, we see that \Ni+1/(Zm D Ni+i)Nj\ | | G ^ / Z ^ |
and thus by hypothesis \Ni+l/(Zm D Ni+i)Ni\ < kd. Moreover, as K acts fixed point
freely on Wi+\, we clearly have (for example by the formulas in Corollary 3.7)

k(YWi+i)=
lWi+^~l+\Y\.

Since i e Mu we have | Y\ > \Z*+, | > | V, \e/2/l and also | K| < |Z^| = |ZJ"| < | V, |1/2.
Therefore

(where the last inequality holds true because | W;+i | > | VI | > | V, |1/2 | V, |€/2 and / > 1).
Now if i e Mi, then we simply use the trivial estimate that
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Thus altogether we get

\kd2l\WM\/\V^2 ifieMu

[kd\Wi+i\ if J e M2.

Thus with (b) we conclude that

J O - 1

i=0

Now note that by our hypothesis (2/)/ | VI |e /2 < (2l)/q(/2 < 1, so that with (*) we find
that

Now | Vi | = qd, and as by our hypothesis clearly q(1/2 > 2, we see that

d d 1

and thus it(GV) < ((2/)f ) t / ^ 2 / 2 ) " | V| and as ((2/)f )t)/gf2/2 < 1/2 by our hypothesis,
we obtain k(G V) < | V|/2", and the proof of the lemma is complete. •

LEMMA 4.5. Let n e N and A, B e K with A > 1 and 1 < B < A". Let

U=\(xu...,xn)eRn
l

< x,r < A for all i and Y\x> = B\ - K">

and consider the function f : R" -* IR rfe^neJ i> / (x,, . . . , A:«) = f]"=i (A /** + X)-
L«r s e N U (0) t e maximal subject to As < B. Write x = (JCI, . . . , xn) for elements
in R". Then max^y/ (x) = 2J (A + I)"-5-1 (AI+1/S + l).

PROOF. Let ( x i , . . . , xn) e U, and choose a pair of indices, i and j . If A;,J:7 > A,
then put yt = (XJXJ)/A and yj = A. If JC£JCJ < A, then put y, = 1 and yj = x,-x;-.
Also let yk = xk for k g {i,j}- Then clearly (y\,... ,yn) e i/, and it is easy to check
that / (>> , , . . . , yn)-f(xl x B ) > 0 .
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Repeatedly applying this procedure shows that f (xy,...,xn) < f (z\, • • • ,zn) for
a ( z i , . . . , zn) € U such that there is at most one index i with z, £ {1, A). But then
necessarily s of the Zj have to equal A and n — s — 1 of them have to be 1. Thus
/ (zi, • • •, zn) = 2s(A + l)n-'-x(A'+1/B + 1), and the lemma is proved. •

We remark that with the method of the Lagrange multipliers it can easily be shown
that the function / in Lemma 4.5 has an absolute minimum at x^ = • • • = xn = \ / f l .

COROLLARY 4.6. Let n e N, let q be a prime power, and suppose that Vit i =
1 , . . . , n, are Grmodules, where \Vj\ = q, G, is a cyclic group of order q — \ and G,
acts fixed point freely on Vjfor all i. Let G = G] x • • • x Gn act on V = Vj © • • • © Vn

such that Gt acts trivially on Vj whenever i ^ j (so that with the notation of [17,
Chapter 2] we have GV = Aro(q)n). Let M < G. Then

n(M, V) < 2V~S = (2/qY I V\

where s e N U {0} is chosen maximal subject to (q — l)s < \M\.

PROOF. For i = 1 , . . . , n define

and observe that 1 < x,•• < q — 1 for all i and J~["=1 xt = \M\. Next we claim that(**) n(M, V)<f\ (^-

We prove this by induction on n. If n = 1, then M < G\ and \M\\ = JCI, and as G\
acts fixed points freely on V, the assertion follows.

Let n > 2 and write W = V2 © • • • © VJ,. Now we have (by Cauchy-Frobenius)

«,€V,

, HO,
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where the last equality holds as for 0 j± vx e Vu we clearly have CM{v\) = CM( Vj).
So we further conclude that

n(M, V) = n(M, W) + ^Zln(CM( V,), W) < (^- + l\ n(CM( V,), W).

Now CM( V,) < G2 x • • • x Gn, CM( VI) acts faithfully on V2 © • • • © Vn, and

fory = 2 , . . . , n.

Thus we may apply induction which yields n(CM( Vj), W), < ]~[J=2 ((? ~ 1)A; + 0"
So altogether (**) follows.

Now (**) and Lemma 4.5 (with A = q — 1, B = \M\) imply that

and since by definition of s clearly (q — l)s+l/\M\ < q — 1, the assertion of the
corollary now follows. •

LEMMA 4.7. Let G be a group and V be a finite faithful G-module. Suppose that
N <G such that G/N is cyclic, and suppose that V = Vi © • • • © Vnfor some n G N
and N-modules V, (i = 1 , . . . , n) such that the following hold:

(i) N/ C/v( Vt) ^ T( V() = T{q)for all i and a prime power q, and the semidirect
products (N/CN(Vj)) V, (i = 1 , . . . , n) are mutually isomorphic.

(ii) G/N permutes the Vt(i = I,... ,n), and if I € N is the number affixed points
of G/N on {Vu ..., Vn), then I < n/2.

Then the following hold:

(a) AT ^ T( VI) x • • • x T( Vn) = (F( V,))". We identify N with its isomorphic subgroup
in r ( Vx)

n and write T - (To{ V,))" and M = N D T. Then M is an abelian normal
subgroup of G, and each nonidentity element ofM acts fixed point freely on at least
one of the VJ.
(b) Let g e G - N such that G/N = (gN), and put Q = {Vx Vn) and

m = n((g), Q) — 1. Then g has on Q exactly I orbits of length 1 and m orbits of
length > 2. Suppose that [ Vf}, i = 1 , . . . , / are the orbits of length 1 and let G{

(i — 1 , . . . , m) be the orbits of length > 2. Define

R t = { ( f t , , . . . , h m ) | h , e T o ( V , ) , hj = I f o r j ^ i } < T

for i = 1 , . . . , I, and

R*= X r o ( v ; ) < r
; with Vff

https://doi.org/10.1017/S1446788700003724 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700003724


[19] A new approach to the *(G V)-problem 211

as well as W, = 0 7 with v.€ff. Vj < Vfor j = l,...,m. Moreover put 5, = CRl(g)
(i = 1 /) and S* = 'cR.(g) (i = l , . . . , « ) . 7fof/i Q,(s) < Cr(#) = 5, x
• • • x 5/ x 5* x • • • x 5* =: Tu and all the 5,, S* are cyclic (possibly trivial); 5,
acts fixed point freely on Vjfor i = 1 , . . . , / and S* acts fixed point freely on Wtfor
i=l,...,m. In particular, d(CM(g)) < I + m < I + (n - Z)/2 = (n + Z)/2.
(c) bet ft, = cl(M V) and let g be as in (b). Then Cn,(g) = {h[{h), V]X | h e

CM(g), X is an orbit of M on CV(K) with X* = X). Moreover, \Cn,(g)\ < 4V7/8)'1.

PROOF, (a) As G acts faithfully on V and thus f)"=i C G ( K ) = 1, we have
N 5X"=i N/CN(Vi) = X?,i F( V,) = r ( Vi)". The rest of (a) is easy to see.

(b) Obviously g e Nc(Ri) for i = 1 , . . . , /, and also g e NG(R*) for i = 1 , . . . , m
and moreover by reordering the Vt we may assume that M = /?i x • • • x Rt x R* x
• • • x /?*. Hence CM(g) < Cr(^) = Si x • • • x 5, x 5,* x • • • x 5*, and clearly the
5, are cyclic and act fixed point freely on Vt (i = 1 . . . /).

It remains to show that the 5* are cyclic and act fixed point freely on Wt (i =
1 , . . . , m). For this fix / 6 { 1 , . . . , m). Without loss of generality we may assume
that i = 1 and W| = V,+l 0 • • • © Vl+P for some /' € N with Vt+j = GF(q) for
j — 1 , . . . , / ' . Clearly we may assume that

\

^ ~ \ Vl+i if; = r.

Thus R* = r o ( Vt+i) x • • • x Fo( V/+i), and these direct factors are permuted by g
correspondingly. Now there exist functions/7 : GF(q) —• GF(q)(j = 1,...,/ ')
such that for all Xj € F( V/+J), j = 1 , . . . , / ' , we have

and obviously fi(x) = 1 if and only if x = 1 for all i. This shows that if there is an
1 j£ x = (*!, . . . , x/0 6 Cr(g), then we see that xt ^ 1 for all i, and thus x acts fixed
point freely on Wt. Consequently S* acts fixed point freely on Wt and thus is cyclic.
This proves (b).

(c) Similarly as in the prdof of Corollary 3.7 (a) and using the fact that M is abelian
we see that for h € M, v e V we have

(hv)MV = {hwvx | JC e M, w e V) = {/i[fc, u>]u* | j t e M , w e

= ( J h[(h), V]v* = h

where [(ft), V]v e V/[(h), V] ^ Cv(h) (as Af-modules). Thus (/iu)MV = (hvo)
MV

for some v0 e Cv(h) and

(hv)MV = h \J[(h), V]v*.
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Hence if for any M-module W we write N(M, W) = [xM | x e W] for the orbits of
M on W, then we conclude that

«i = {h[(h), V]X | h € M, X e N(M, Cv(h))).

Soif co = h[(h), V]X € fi, for some /i e M, X eN(M, Cv(h)), then cog = co if and
only if A* = A and Xg = X. Hence

(3) COl(s) = {MW. V]X | A 6 Cw(g), X e Q(M,CvW)(g)}.

Now for /i e M define V(/i) := {V; | h acts fixed point freely on K}- Clearly if
fr € C«(g), then V(/i) is a union of some the the Vt, i = 1 , . . . , Z, and some of
the ffj, j = 1, . . . , m. For any subset B c {VI,..., Vn] we define MB c M by
MB = (/i e Cw(^) | V(ft) = B}. So Ms ^ 0 is only possible if B is a union of some
of the V; (/ = 1 , . . . , /) and some of the ffj (j! = 1 , . . . , m). More precisely, if

f(B) = \U e[l,...,m}\0j C 8 ) |

and

g(B) = \{i € { 1 , . . . , n) | Vi e ffj for some./ with 0} c B}|,

then by (b) it is clear that

(4) |A/B|<(<7-2)|B|-«(B)+/(B)

and as \GS \ > 2 fory" = 1 , . . . , m, we have g(B) > 2/ (B), so in particular

(5)

For the moment, fix B and h e MB- Then \Cv(h)\ - q"~w. Let r e R such that
(q-l)r = \CM(Cv(h))\ and s e R such that (g-1)1 = \M\. Then \M/CM(Cv(h))\ =
(q — l)s~r. Hence by Corollary 4.6 we see that in this case

(6) n(M, Cv(h)) = n{MICM(Cv(h)), Cv(h))

qn < 2" qr q" ' ' = 2" q" .

Now consider the action of g on CV(/i). There are exactly m — f (B) indices j such
that VV̂  < Cv(h). For any such j and any x € M it is immediate that \Cw (gx)\ < q.
Also there are exactly n — l — g(B) indices i e {1,...,«} such that K < Ŵ  < CV(^)
for somej e { 1 , . . . , m}. Altogether we see that

< n-|B|-(n/-«(B))+m/(B) _ m+l+g(B)-\B\-f(B)^
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Moreover, if v e Cv(h), then (vM)g = vM if and only if there is an x e M such that
u* = vx'\ that is, v e Ccv(ii)(gx). This shows that

As clearly CCl,(/,)(^y) = CCl,(/,)(g*) for all* € Mandy e CM(CvW), we conclude
that if Xi (i = 1 , . . . , |M/ CM(Cv(h))\) are representatives of the cosets of CM(Cv(h))
in M, then \Jxeit CCv{h)(gx) = \JWc»^h™ Cc^igxd- Hence

(7) \CNiMXvm(g)\ <
< s-r+m+l+g(B)-\B\-f(.B)

Next we claim that

(8) aB,h •= \MB\ \CN(M,CvW)(g)\ < 2nqlnli.

To see this we consider two cases:
Case 1: s - r < n/8: First observe that m < (n - l)/2 and so / + m < (n + /)/2.

Then by (4) and (7) we have aBth < q*-r+m+l < q»i*«»+W = qW+Vi which together
with our hypothesis that / < n/2 implies (8) in this case.

Case 2: s - r > n/8: Then r - s < - n / 8 , and with (5) and (6)

ccB,h < \MB\ \N(M, CvQi))\ = \MB\ n(M, Cv(h))
< 2nqn+r~s+x~w q\B\-f(B) < 2nqn+r~s < 2"qn~"l% = 2"qlnl%

as wanted. So (8) is established.
By (3) and (8) we finally obtain

\Ca1(g)\= ^ \CN(M,CvW)(g)\ = ^2 ^ \CN(M,Cy(h))(g)\
BC[V, K)

B£{V,

\MB\max\CN(MXvih))(g)\= Y] m a x a w
n€Affl ' ' h€Mg

BC(V, V.)

which was to be shown. So the proof of the lemma is complete. •

Finally, we can prove the main theorem of this section. For this we will use the
concept of an imprimitivity chain, which was introduced in [12, Definition 1.12]. We
will use the notation introduced there.
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THEOREM 4.8. Let G be a solvable group and let V be a finite faithful G-module

over GF(p) (where p is a prime). Suppose that (|G|, p) = land that p > 24620 • 320.
Thenk(GV) < \V\.

PROOF. Let G be a counterexample with |G| |K| minimal. Write H = GV for
the semidirect product of G and V with respect to the action of G on V. First we
prove that V is irreducible. If not, then V = Vx © V2 for G-modules Vj, V2 (note
that V is completely reducible by Maschke as (|G|, | V|) = 1). So if C = CG(Vi),
then CV2 < H and H/CV2 = (G/C)Vi. By induction, k((G/C)Vx) < |Vj| and
fc(CV2) < | V2| and thus k(H) < k(H/CV2) • k(CV2) < I V,|| V2| < | V| contradicting
H being a counterexample to the theorem. Thus V is irreducible.

Next suppose that G acts quasiprimitively on V. As by our hypothesis p > 2112, we
are done by Lemma 4.1 (c). Thus we may assume that G does not act quasiprimitively
on V.

Now let G = Ho > Hx > • • • > # / with V = Vo > V, > • • • > V, be an
imprimitivity chain of G with respect to 1 and V. As V is not quasiprimitive, / > 1.
Obviously for all / e {0 , . . . , / } we have that Vj is an irreducible //,-module with
Vf = V.

In particular, V(
G = V, and therefore we can write V = ©^L, Xt for m = \G : Ht\

and subspaces Xt (i = 1, . . . , m) that are transitively permuted by G and where
X\ = V/. The kernel of this permutation action is M := OgeG Hf = coreG(///) < G,
and we have M/ CM (X,) £ / / , / Cw, (V/) for all /, and % := H,/ CH, (V,) acts faithfully,
irreducibly and quasiprimitively on V;. In particular, every abelian normal subgroup of
Hi is cyclic and we adopt the notation of [17, Corollary 1.10] and write e2 = \E/Z\ in
that corollary. Furthermore, by Dixon's bound [ 1 ] for the order of solvable permutation
groups we know that \G/M\ < 3m~' .

Next observe that as Vf = V, we also can write V = 0 " = 1 W, forn = | G : Hx | and
subspaces W> (i = 1 , . . . , n) that are transitively permuted by G and where Wj = Vj.
If Af := (~)gec H* = c o r e c ( ^ i ) ^ G is the kernel of this permutation action, then we
even know from the construction of an imprimitivity chain that G/N permutes the W,
primitively and faithfully. Note that by Lemma 4.3 we have |CV(g)| < I V|3/4 for all
gzG-N.

We claim that

To see this, assume that |G| < | V|1 / 8 /3. Observe that by induction and Corollary 3.7
we know that

ueV
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where P is the goodness property described in Example 3.4 (a). Hence we can apply
Lemma 3.8 with SI = V,b= \V\,e = 3/4 which yields k(G V) = aF(G, V) < | V\
contradicting (G, V) being a counterexample. This establishes our claim.

Now we show that e < 8. For this assume that e > 9. As p > 3 " 2 , Lemma 4.1 (b)
yields that \H~i\ < | V,|1 /8A but then Lemma 4.2 implies that \G\ < \ V\l/i/3 contra-
dicting (*). So indeed e < 8, and the rest of the proof splits into two parts:

Case 1: 2 < e < 8. Here we first recall that | G/M | < 3m~' , as seen above. Next we
consider the action of M on V. Clearly the M/CM(Xj) (i = 1, . . . , m) are mutually
isomorphic. Furthermore, M/CM(X\) s //,. Now let ( / < / / / be a normal cyclic
subgroup of Hi corresponding to the U in [17, Corollary 1.10], so that U acts fixed
point freely on X, = V,. LetfA = Vf)M CHl(V,)/CH,( V,)^ M/ CM(XX) and observe
that the action of M on V satisfies the hypotheses of Lemma 4.4 with the image
U±/CM(Xi) (for some CM{XX) < (/, < M) of Th in M/CM{XX) playing the role of
Zx inLemma4.4. Also let Ui/CM(Xi) be the corresponding subgroups of M/CM(Xt)
for all i, and let Zo = H/l i U< s o t n a t ^o plays the role of Z in Lemma 4.4. Observe
that by Lemma 4.1 (a) we have |M/CM(X,) | < |7^| < d \VWV1 where d := dim V,,
and thus

(9)

< el3/2d _

With (*) and (9) and the fact that M/Zo g X™=, M/ Ut we obtain

I|V|'/8 < |G| = \G/M\\M/Z0\\Z0\ < 3m~1|A#/t/iriZ0| <3m-i220mdm\Z0\

which, using | V| = | Vj |m = pdm, leads to

IZol
I 220n ( r,dl%\ m

Now as by hypothesis p > 240, we have prf /40 > d for all possible d, and thus
pW/d = (pd/A0/d)pd/l° >j}d/xo. Thus we conclude that

(10) |Zo1 " 5 ^ = (3

As e > 2, from the structure of Ht (described in [17, Corollary 1.10]) it is clear that
V; = X\ is the direct sum of at least two irreducible (/-modules; in particular, X\ is
the direct sum of at least two irreducible [/rmodules. This together with (9) and (10)
allows us to apply Lemma 4.4 (c) with e = 1/10, k = 220, / = 3 • 220; note that by our
hypothesis

> (2n/l0 • 31/10 • 4 • 220^200 = 2220 • 320 • 2400 • 24000 — 24620 • 320
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Thus Lemma 4.4 (c) yields k(M V) < \ V\/2m. As G/M is a solvable subgroup of Sm,
by [15, Theorem 2.2] we have k(G/M) < 3(m~1)/2. Hence altogether we find that

HG V) < k(G/M) k(M V) < 3m/2 ~ < | V\
2m

and we are done in this case.
Case 2: e = 1. In this case, by [17, Corollary 2.3 (b)] we have that % < T( Vt)

and so M/CM(Xd £ r(Xt) for i = 1 . . . , m. Now let g € G - N and put Gg =
{g, M) < G. By [17, Lemma 5.1] we know that g fixes at most n/2 of the Wt in
its permutation action on [W\,..., Wn). Consequently, it fixes at most m/2 of the
Xi in its permutation action on [Xi,..., Xm). Altogether we see that Gg satisfies the
hypothesis of Lemma 4.7, and by Lemma 4.7 (a) M 5X/li r(X,). Identify M with
its isomorphic subgroup in X^, T(X,) and put M0 = Mfl XJLi ro(X,) < G. Also put
Sit = cl(M0 V0- Then by Lemma 4.7 (c) we know that |Cn, (g)| < 4mq7m/s, where we
write q :=\Vi\ = \Xi \. Since g e G- N was arbitrary and as 4 < p1/16 < <?1/16, we
conclude that |Cn, (g)\ < ql5m/16 for all g e G - N.

Put £20 = Irr(A/0 V). Clearly G acts on ^ as well as £20 by conjugation, and clearly
Mo < G is contained in the kernel of those actions. By Brauer's permutation lemma
(see for example [10, Theorem 18.5 (b)]) we obtain |Cno(g)| = |Cn,(g)| for g € G;
in particular,

(11) |Cno(£)|<<715m/16 = |V|15/16 f o r a l l s e G - t f .

Now put lR = R/Mo for any Mo < R < G and observe that 7F = R V/Mo V <
GV/MQ V = G. Then G acts (not necessarily faithfully) on £2o> and we have \G\ =
|G/M| \M/M0\. As observed earlier, \G/M\ < 3m~l. Now

\M/M0\ < X <(logp?r<(log2<7)m.

Furthermore, as q > p > 22'°, we see that {q^l'i2l\og2q)'n > 3m > 3m~'V2. Thus
altogether we obtain

(12) \G\ < 3m-l(log2q)m < qm/i2/V2 = | V\i/n/V2.

Next let P be Gallagher's goodness property and remember that by Example 3.4 (b) we
have k(R V) = aP(R V/(M0V), Qo) for any Mo < R < G. In particular, k(GV) =
aP(GV/(M0 V), £20) and also by induction

(13) aP(NV/(M0V),Q0) = k(NV)<\V\.

We now apply Lemma 3.8 to the action of GV/(M0V) on £20 with b = | V\
and € = 15/16. Observe that (11)-(13) imply that aP(N V/(MQ V), Qo) < \V\,
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\Qio(gMoV)\ < \ V\< for all gM0Ve G V/(M0 V)-N V/(M0 V),and|G V/(M0 V)\ =
\G\ < | V|(1-f)/2/V2. Hence Lemma 3.8 yields

k(GV) = aP(GV/(M0V),Q0) < \V\,

and the proof of the theorem is complete. •

5. Outlook

While the proof of Theorem 4.8 in many instances makes use of the solvability
hypothesis, it is likely that with some effort the methods used can be expanded to work
for arbitrary groups. Notice that Hypothesis (iii) in Lemma 3.8 typically will not be
satisfied in nonsolvable groups, but by Remark 3.9 we can weaken it in the crucial
situation to a condition involving class numbers only—and by results of Liebeck and
Pyber [16] we know that k(U) < 2n~l for any U < Sn (where Sn is the symmetric group
on n letters); so this weakened hypothesis will be satisfied in arbitrary permutation
groups.

Thus Hypothesis (ii) of Lemma 3.8 remains the critical one. A key point in
verifying this condition in the proof of Theorem 4.8 was the well-known fact that a
nontrivial element of a solvable primitive permutation group on a set £2 fixes at most
half of the elements (see [17, Lemma 5.1]). But there are strong (slightly weaker)
generalizations of this result to arbitrary primitive permutation groups available today,
thanks to results of Guralnick and Magaard (see [8, Corollary 1]). Dealing with the
exceptional cases in this result will be one of the problems one faces in generalizing
our approach to arbitrary groups.

It is also interesting to compare the approach via Knorr to the approach presented
here. The most difficult case in the proof in Theorem 4.8 occurs when the module V
is induced from a module of a semilinear group. This case, however, does not provide
any difficulty in the solution of the k{G V)-problem for solvable groups using Knorr's
approach (see for example [^5], or [3] for \G\ odd). Using this approach the case of
primitive V is the most difficult whereas in our approach imprimitive modules are the
hardest to come by.

Another interesting question is the following: One of the marvels of Knorr's
paper [13] is the theorem that if CG(V) is abelian for some v e V, then k(G V) < | V\,
in particular this is the case if G has a regular orbit on V. Here a small piece of
information that can often be verified yields the wanted conclusion which makes the
result very powerful. Is this result somehow hidden in the approach here? Or is there
a more elementary proof for it?

Finally, we point out that the proof of Theorem 4.8 involves a little bit of character
theory only to deal with the above-mentioned most difficult case where V is induced
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from the module of a semilinear group. Here we invoked Gallagher's goodness
property which is based on characters. It would be nice if we could replace it by
our goodness property developed in Definition 3.5 and Lemma 3.6, so that the proof
would be entirely group theoretical.
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