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Slim Exceptional Sets for Sums of Cubes
Trevor D. Wooley

Abstract. We investigate exceptional sets associated with various additive problems involving sums of
cubes. By developing a method wherein an exponential sum over the set of exceptions is employed
explicitly within the Hardy-Littlewood method, we are better able to exploit excess variables. By way
of illustration, we show that the number of odd integers not divisible by 9, and not exceeding X, that
fail to have a representation as the sum of 7 cubes of prime numbers, is O(X23/36+ε). For sums of eight
cubes of prime numbers, the corresponding number of exceptional integers is O(X11/36+ε).

1 Introduction

Oftentimes in the additive theory of numbers, one encounters situations in which
current technology lacks the power to establish that all large integers are represented
in some prescribed manner, yet it can be shown that almost all positive integers are
thus represented. For example, while it remains only a conjecture that all large inte-
gers are represented as the sum of four positive integral cubes, a celebrated theorem of
Davenport [7] shows that almost all positive integers are represented in such a man-
ner. To be precise, Davenport establishes that for each positive number ε, at most
O(X29/30+ε) of the natural numbers not exceeding X fail to admit a representation
as the sum of four positive integral cubes. We remark that estimates for the size of
this exceptional set have since been sharpened, to the extent that the exponent 29/30
may now be replaced by a number slightly smaller than 37/42 (see Brüdern [3] and
Wooley [24]). One might imagine that for problems involving five or six cubes, the
availability of additional variables would permit substantially sharper estimates to be
obtained for the corresponding exceptional sets. Much to the chagrin of workers in
the area, however, such excess variables lead only to rather modest improvements.
Roughly speaking, the quality of available bounds in such problems depends on a
mean value estimate over minor arcs, and traditional methods exploit excess vari-
ables via comparatively weak bounds of Weyl-type for associated exponential sums.
This difficulty is universal in problems involving exceptional sets, and is particularly
acute when the representations under consideration generate exponential sums for
which available estimates of Weyl-type are barely non-trivial, as is the case for pow-
ers of prime numbers, for example.

In previous work devoted to sums of four squares (see Wooley [25]), we described
a novel approach to certain exceptional set problems in which excess variables are
more effectively exploited, and we announced our intention of providing a more
comprehensive discussion of applications accessible to the underlying ideas. Our
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418 Trevor D. Wooley

purpose in this paper is to fulfill the latter commitment with an investigation of ex-
ceptional sets stemming from problems involving sums of cubes. It transpires that
such problems already generate a full menu sufficient to satisfy the enthusiast’s ap-
petite, and so we again defer to a future occasion the discussion of such issues for
higher powers.

We begin our investigation of exceptional sets involving sums of cubes with a dis-
cussion of the Waring-Goldbach problem, which perhaps most clearly illustrates the
advantages of our new approach over traditional treatments. We first require some
notation. When s is an integer with s ≥ 5, define the subsets Ns of N by

N5 = {n ∈ N : n ≡ 1 (mod 2), n 6≡ 0,±2 (mod 9), n 6≡ 0 (mod 7)},

N6 = {n ∈ N : n ≡ 0 (mod 2), n 6≡ ±1 (mod 9)},

N7 = {n ∈ N : n ≡ 1 (mod 2), n 6≡ 0 (mod 9)},

Ns = {n ∈ N : n ≡ s (mod 2)} (s ≥ 8).

It is conjectured that whenever n is a large integer with n ∈ Ns, then n is represented
as the sum of s cubes of primes, the implicit congruence conditions arising naturally
from the observation that when p is a prime number exceeding 7, one has

p3 ≡ 1 (mod 2), p3 ≡ ±1 (mod 9) and p3 ≡ ±1 (mod 7).

Motivated by this conjecture, when s ≥ 5 we define Es(X) to be the number of
integers n ∈ Ns not exceeding X that cannot be written as the sum of s cubes of
prime numbers. Following the preparation of some technical estimates in Sections 2
and 3, we deploy our novel machinery in Sections 4–7 to obtain the bounds on Es(X)
recorded in the following theorem.

Theorem 1.1 Suppose that X is a large real number and suppose also that 5 ≤ s ≤ 8.
Then for every positive number ε, one has Es(X)� Xαs+ε, where

α5 = 35/36, α6 = 17/18, α7 = 23/36 and α8 = 11/36.

We remark that classical methods originating in work of Hua [17] show that
Es(X) �A X(log X)−A (5 ≤ s ≤ 8), for any positive number A, and moreover that
Es(X) � 1 for s ≥ 9. Very recently, Xiumen Ren [20] has sharpened Hua’s estimate
for E5(X) to obtain a conclusion resembling Theorem 1.1, save that the exponentα5 is
replaced by 152/153, and indeed Ren’s methods are readily modified to yield bounds
for Es(X) also when s > 5, with the exponents αs replaced by 1 − (s − 4)/153. The
estimate for E5(X) presented in Theorem 1.1 owes its superiority to a more effective
analysis of the major arcs underlying the implicit application of the Hardy-Littlewood
method. The bounds for Es(X) (6 ≤ s ≤ 8) recorded in Theorem 1.1, on the other
hand, owe their strength to the new ideas advertised in our opening paragraph.

As a second illustration of our methods we consider sums of cubes of smooth
numbers. Here we again encounter a situation in which available estimates for the
underlying exponential sums are currently rather weak. When n is a natural number,

https://doi.org/10.4153/CJM-2002-014-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2002-014-4


Slim Exceptional Sets 419

let P(n) denote the largest prime divisor of n. When s ≥ 4, we define Es(X;β) to be
the number of integers m with 1 ≤ m ≤ X for which the equation

n3
1 + n3

2 + · · · + n3
s = m

fails to possess a solution n ∈ Ns with P(n1n2 · · · ns) < mβ . In Section 8 we sketch
the proof of the following theorem.

Theorem 1.2 Suppose that X is a large real number, and that η is a sufficiently small
positive number. Then for every positive number ε, one has

Es(X; η)� Xγs+ε,

where

γ4 = 1− 1
3η, γ5 = 1− 2

3η, γ6 = 2
3 −

1
3η and γ7 = 1

3 −
1
3η.

Here, the implicit constants in Vinogradov’s notation may depend on ε and η.

The above estimate for E4(X; η) is established, in essence, in the work of Brüdern
and Wooley [6]. We record this bound only to provide a basis for comparison with
the bounds for Es(X; η) (5 ≤ s ≤ 7) available from the methods of this paper. We
note also that Harcos [10] has shown that Es(X; η) � 1 for s ≥ 9, and that Brüdern
and Wooley [6] have demonstrated that E8(X; η)� 1.

We turn our attention next to problems in which the cubes underlying the repre-
sentation under consideration are not restricted to exotic sets. Denote by Rs(n) the
number of representations of n as the sum of s cubes of positive integers. A heuristic
application of the circle method suggests that for s ≥ 4, one should have the asymp-
totic formula

(1.1) Rs(n) =
Γ(4/3)s

Γ(s/3)
Ss(n)ns/3−1 + o(ns/3−1),

where

(1.2) Ss(n) =
∞∑

q=1

q∑
a=1

(a,q)=1

(
q−1

q∑
r=1

e(ar3/q)
) s

e(−an/q),

and e(z) denotes exp(2πiz). It is worth noting that when s ≥ 4, the relation (1.1)
does indeed constitute an asymptotic formula, for it is known that the singular series
Ss(n) satisfies the lower bound Ss(n) � 1 whenever s ≥ 4 (see Theorem 4.5 of
Vaughan [22]). When ψ(t) is a function of a positive variable t , denote by Ẽs(N;ψ)
the number of integers n with 1 ≤ n ≤ N for which

(1.3)

∣∣∣∣Rs(n)− Γ(4/3)s

Γ(s/3)
Ss(n)ns/3−1

∣∣∣∣ > ns/3−1ψ(n)−1.
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In Section 9 we obtain the upper bound for Ẽ7(N;ψ) contained in the following
theorem.

Theorem 1.3 Suppose that ψ(t) is a function of a positive variable t, increasing mono-
tonically to infinity, and satisfying the condition that when t is large, one has ψ(t) =
O
(

(log t)1−δ) for some positive number δ. Then for each positive number ε, one has

Ẽ7(N;ψ)� N4/9+ε.

Here we note that the constant in Vinogradov’s notation depends on both ε and ψ.

For comparison, the estimate Ẽ7(N;ψ) � N1/2 is easily derived from work of
Vaughan [21] via conventional methods. Indeed, as was essentially noted in Brüdern,
Kawada and Wooley [5], it is simple to establish from the refined estimates of Boklan
[2] that whenever ε > 0, one has

Ẽ4+t (N;ψ)� N1−t/6(log N)ε−3+t/2ψ(t)2 (0 ≤ t ≤ 3).

It is rather disappointing that in the current state of knowledge, the methods un-
derlying our proof of Theorem 1.3 fail to establish significant estimates for Ẽs(N;ψ)
when s < 7. The failure of such methods for s = 6 can be traced to the relatively
weak estimates currently available in an auxiliary representation problem involving
four cubes. When k 6= 0, denote by R(k; P) the number of solutions of the diophan-
tine equation

x3
1 + x3

2 − x3
3 − x3

4 = k,

with 1 ≤ xi ≤ P (1 ≤ i ≤ 4). The bound R(k; P) � P2+ε follows directly from
an elementary argument involving the divisor function, and the best available esti-
mate R(k; P) � |k|εP11/6+ε follows from an argument of Hooley [15] (see the proof
of Lemma 2.1 of Parsell [19] for a sketch of the necessary adjustments to Hooley’s
argument). A formal application of the Hardy-Littlewood method, meanwhile, sug-
gests that R(k; P)� |k|εP1+ε. Although the former estimates are too weak to provide
interesting information concerning sums of six cubes, sharper estimates can be ex-
ploited effectively through our methods. Rather than concentrate on the validity of
the expected asymptotic formula, we seek instead to provide insight into the existence
of a representation. Let Ê(X) denote the number of natural numbers not exceeding X
that are not the sum of six cubes of positive integers. We consider the consequences
of the truth of a hypothesis R(A), which we define to be the following assertion.

Hypothesis R(A) For each positive number ε, one has R(k; P)� |k|εPA+ε.

Thus the aforementioned conclusion stemming from Hooley’s methods shows
that the hypothesis R(11/6) is true, and it is conjectured that the hypothesis R(1)
holds. In Section 10 we establish the following conditional estimate for Ê(X).

Theorem 1.4 Suppose that, for some positive number ξ with ξ < 19/14, the hypothesis
R(ξ) holds. Then one has

Ê(X)� X3/14(log X)2.
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The sharpest unconditional bound available for Ê(X) seems to be the upper bound
Ê(X) � X23/42 reported in equation (1.3) of Brüdern, Kawada and Wooley [4]. We
remark that by properly exploiting the mean value estimates of Wooley [23] within
the methods of Brüdern, Kawada and Wooley [4], and thence within the argument of
Section 10 below, it would be possible to replace the assumption of hypothesis R(ξ)
above with R(19/14 + τ ), for a suitably small positive number τ . Also, one could
likewise replace the conclusion of Theorem 1.4 by the estimate Ê(X) � X3/14−σ , for
a sufficiently small positive number σ. Subject to the truth of an unproved hypothe-
sis concerning certain Hasse-Weil L-functions, one has sharp estimates for the sixth
moment of the cubic Weyl sum due to Hooley [16] and Heath-Brown [13]. Although
we have not properly examined the technical details associated with the problem of
inserting such an estimate into our analysis, it is clear that the limit of our methods
would yield the estimate Ê(X) � X13/42+ε, subject to the hypothesis of Hooley and
Heath-Brown, and Ê(X) � X1/7+ε, if one assumes also the hypothesis R(11/7 − δ),
for a positive number δ.

Throughout, the letter ε will denote a sufficiently small positive number. We use
� and� to denote Vinogradov’s well-known notation, implicit constants depend-
ing at most on ε, unless otherwise indicated. In an effort to simplify our analysis, we
adopt the convention that whenever ε appears in a statement, then we are implicitly
asserting that for each ε > 0 the statement holds for sufficiently large values of the
main parameter. Note that the “value” of εmay consequently change from statement
to statement, and hence also the dependence of implicit constants on ε. Finally, we
remark that the letter p will always be reserved to denote a prime number.

The author is grateful to the referee for useful comments.

2 Auxiliary Estimates

Before we are able to establish Theorem 1.1, we require some auxiliary estimates for
exponential sums over cubes of prime numbers. Although the technology underlying
these estimates is by now well understood, it would seem that the estimate that we
require for the application at hand is not immediately available from the literature.
We extract the desired estimate as concisely as we dare from work of Kawada and
Wooley [18] (see also Harman [11] and Baker and Harman [1] for related estimates).
It is convenient first to record some notation.

We define the multiplicative function w(q) by taking

w(p3u+v) =

{
3p−u−1/2, when u ≥ 0 and v = 1,

p−u−1, when u ≥ 0 and v = 2, 3.

Write ω(q) for the number of distinct prime divisors of q. Then it follows from the
definition of w(q) that for each natural number q, one has

w(q) ≤ 3ω(q)q−1/3 � qε−1/3,

for any positive number ε. Finally, we write τ (m) for the divisor function. We begin
with an estimate for certain bilinear sums.
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Lemma 2.1 Let P, P ′, M, M ′, U and U ′ be positive real numbers with

P1/2 ≤ M ≤ P, P ≤ P ′ ≤ 2P and M ≤ M ′ ≤ 2M.

Suppose that (am) and (bn) are sequences of complex numbers satisfying the inequalities

|am| ≤ τ (m) + log m and |bn| ≤ log n

for each m and n. Suppose further that α is a real number, and that there exist a ∈ Z
and q ∈ N with

(2.1) (a, q) = 1, 1 ≤ q ≤ P3/2 and |qα− a| ≤ P−3/2.

Then one has ∑
M<m≤M ′

am

∑
P/m<n≤P ′/m

U<n≤U ′

bne
(

(mn)3α
)

� PMε−1/12 + (PM)1/2+ε +
qεw(q)1/2P(log P)4

(1 + P3|α− a/q|)1/2
.

Proof We imitate the proof of Lemma 3.1 of Kawada and Wooley [18]. Write N =
P/(2M) and

I(n1, n2) = (M, 2M] ∩ (P/min{n1, n2}, P ′/max{n1, n2}].

Then on following the argument leading to equation (3.3) of [18], we find that

(2.2)
∣∣∣ ∑

M<m≤M ′

am

∑
P/m<n≤P ′/m

U<n≤U ′

bne
(

(mn)3α
) ∣∣∣ 2
� M(log P)5(P + S1),

where
S1 =

∑
N<n1<n2≤4N

∣∣∣ ∑
m∈I(n1,n2)

e
(

(n3
2 − n3

1)m3α
) ∣∣∣ .

Denote by N the set of ordered pairs (n1, n2), with N < n1 < n2 ≤ 4N, for which
there exist b ∈ Z and r ∈ N with

(2.3) (b, r) = 1, 1 ≤ r ≤ 2−6M1/2 and |r(n3
2 − n3

1)α− b| ≤ 1
2 M−5/2.

Then by Lemma 2.1 of [18], just as in the proof of Lemma 3.1 of that paper, we obtain

(2.4) S1 � S2 + N2M3/4+ε,

where

S2 =
∑

(n1,n2)∈N

w(r)M

1 + M3|(n3
2 − n3

1)α− b/r|
,
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and here, the integers b and r are those defined in (2.3).
When (n1, n2) ∈ N, we put

n0 = (n1, n2), n = n1/n0 and l = (n2 − n1)/n0.

Write also D =
(

(n + l)3 − n3
)
/l. For each pair (n0, l) with 1 ≤ n0 ≤ 4N and

1 ≤ l ≤ 4N/n0, we apply Dirichlet’s approximation theorem to deduce the existence
of c ∈ Z and s ∈ N with

(c, s) = 1, 1 ≤ s ≤ M5/2 and |sn3
0lα− c| ≤ M−5/2.

Next write

T(n0, l) =
sεw(s)Pn−1

0

1 + (P/n0)2M|n3
0lα− c/s|

.

Then on following the argument of the proof of Lemma 3.1 of [18] as far as the
inequality (3.12) of that paper, we find that

(2.5) S2 �
∑

1≤n0≤4N

∑
1≤l≤4N/n0

T(n0, l) + P1+ε.

Moreover, as in the argument leading to (3.13) of [18], one has T(n0, l)� PMε−1/6,
except possibly when

(2.6) 1 ≤ s ≤ M1/2 and |sn3
0lα− c| ≤ 1

2 M−1/2P−2.

For each integer n0 satisfying 1 ≤ n0 ≤ 4N, we denote by L the set of natural
numbers l with 1 ≤ l ≤ 4N/n0 for which the conditions (2.6) are met. Then on
writing

(2.7) S3 =
∑

1≤n0≤4N

∑
l∈L

T(n0, l),

we deduce from (2.4) and (2.5) that

(2.8) S1 � S3 + P1+ε + P2Mε−7/6.

For each integer n0 satisfying 1 ≤ n0 ≤ 4N, it follows from Dirichlet’s approximation
theorem that there exist d ∈ Z and t ∈ N with

(2.9) (d, t) = 1, 1 ≤ t ≤ P2M1/2 and |tn3
0α− d| ≤ M−1/2P−2.

Write

T1(n0) =
tεw(t)Pn−2

0 N log P

1 + (P/n0)3|n3
0α− d/t|

.
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Then on following the argument of the proof of Lemma 3.1 of [18] as far as (3.16)
and (3.17) of that paper, we deduce that∑

l∈L

T(n0, l)� T1(n0).

Consequently, as in the argument leading to (3.19) of [18], one finds that

(2.10) S1 �
∑

n0∈N0

T1(n0) + P1+ε + P2+εM−7/6,

where N0 denotes the set of natural numbers n0, with 1 ≤ n0 ≤ M1/6, such that the
integers t and d defined in (2.9) satisfy

(2.11) 1 ≤ t ≤ M1/2 and |tn3
0α− d| ≤ M1/2P−3.

Suppose now that n0 ∈ N0. When a ∈ Z and q ∈ N satisfy (2.1), it follows from
(2.11) that

|n3
0ta− dq| ≤ n3

0tP−3/2 + qM1/2P−3

≤ MP−3/2 + M1/2P−3/2 < 1.

Thus we have d/(tn3
0) = a/q and t = q/(q, n3

0), and we may proceed as in the final
phase of the argument of the proof of Lemma 3.1 of [18] to deduce that∑

n0∈N0

T1(n0)� qεw(q)PN(log P)2

1 + P3|α− a/q|
.

On substituting this estimate into (2.10) and recalling (2.2), the conclusion of the
lemma follows immediately.

Next we consider trilinear sums, and here we again turn to the work of Kawada
and Wooley [18] in order to economise on detail.

Lemma 2.2 Let P, P ′, M and N be real numbers with M ≥ 1, N ≥ 1, 2 ≤ P ≤ P ′ ≤
2P,

MN3 ≤ P and M3N−1 ≤ P.

Suppose that (am), (bn), (cl) are sequences of complex numbers satisfying

|am| ≤ 1 + log m, |bn| ≤ 1

for each m and n, and with cl = 1 for all l, or cl = log l for all l. Suppose further that α
is a real number, and that there exist a ∈ Z and q ∈ N satisfying (2.1). Then one has∑

1≤m≤M

am

∑
1≤n≤N

bn

∑
P/(mn)<l≤P ′/(mn)

cle
(

(lmn)3α
)

� P3/4+ε(MN)1/4 +
qεw(q)P(log P)4

1 + P3|α− a/q|
.
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Proof This is the special case of Lemma 3.2 of [18] in which k = 3. An inspection
of the proof of the latter lemma reveals that the condition k ≥ 4 imposed in its
statement may be replaced with the weaker constraint k ≥ 3 without impairing the
conclusion.

We now arrive at the object of our endeavours within this section.

Lemma 2.3 Let U be a real number with U ≥ 2. Suppose that α is a real number, and
that there exist a ∈ Z and q ∈ N satisfying

(a, q) = 1, 1 ≤ q ≤ U 3/2 and |qα− a| ≤ U−3/2.

Then one has ∑
U<p≤2U

(log p)e(p3α)� U 23/24+ε +
qεw(q)1/2U (log U )5

(1 + U 3|α− a/q|)1/2
.

Proof Equipped with Lemmata 2.1 and 2.2 above in place of Lemmata 3.1 and 3.2
of [18], one may follow the argument of the proof of Lemma 3.3 of the latter paper
without serious modification to obtain the desired conclusion.

3 The Major Arc Contribution

We are able to avoid technical discussion in our treatment of the major arc contri-
bution relevant to our proof of Theorem 1.1, but only by employing recent work of
Ren [20]. We begin by recording some notation. Let N be a sufficiently large positive
number. Following the notation introduced in [20], we write

(3.1) U = (N/20)1/3, P = N1/20 and Q = NP−1.

We define the set of major arcs M as the union of the intervals

M(q, a) = {α ∈ [0, 1) : |qα− a| ≤ Q−1},

with 0 ≤ a ≤ q ≤ P and (a, q) = 1. We then denote the corresponding set of minor
arcs by m = [0, 1) \M. Finally, we define the weighted exponential sum g(α) by

g(α) =
∑

U<p≤2U

(log p)e(p3α).

Lemma 3.1 Suppose that 5 ≤ s ≤ 8, and that the integer n satisfies N/2 < n ≤ N
and n ∈ Ns. Then one has

(3.2)

∫
M

g(α)se(−nα) dα� N s/3−1.

Proof A moment of contemplation reveals that the integral on the left hand side of
(3.2) is necessarily real. With this observation in mind, we seek to show that there
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exist positive numbers Cs (5 ≤ s ≤ 8) with the property that, whenever sN/18 <
n ≤ N and n ∈ Ns, one has

(3.3)

∫
M

g(α)se(−nα) dα ≥ CsN
s/3−1.

Furthermore, we aim to show that for any integer n one has

(3.4)

∫
M

g(α)se(−nα) dα ≥ −N s/3−1(log N)−1.

Having established the lower bound (3.3) for 5 ≤ s ≤ 8, it is apparent that the
conclusion of the lemma follows immediately.

We begin by discussing the desired bounds (3.3) and (3.4) when s = 5. Write

S(α) =
∑

U<m≤2U

Λ(m)e(m3α),

where Λ(·) denotes the well-known von Mangoldt function. Then as a consequence
of the argument employed by Ren [20] in his proof of Theorem 2 of the latter paper,
one finds that there exists a positive number c5 such that whenever 5N/18 < n ≤ N
and n ∈ N5, then

(3.5)

∫
M

S(α)5e(−nα) dα ≥ c5U 2.

Moreover, a modest modification of this argument also reveals that for any integer n,
one has

(3.6)

∫
M

S(α)5e(−nα) dα ≥ −U 2(log N)−1.

Two comments are in order here. Firstly, our definition of U differs from that of
Ren by a constant factor. A perusal of Ren’s argument will, however, convince the
reader that this modest adjustment is inconsequential so far as the conclusions (3.5)
and (3.6) are concerned. Secondly, our definition of the set N5 is more restrictive
than the corresponding definition implicit in the statement of Theorem 2 of [20]. It
would appear that Ren made an oversight in this definition, for it is clear that neither
even integers, nor those divisible by 7, can be represented as the sum of five cubes of
prime numbers exceeding 7.

On noting that the measure of the arcs M is O(P2N−1), and moreover that

|S(α)− g(α)| ≤
∞∑

h=2

∑
U<ph≤2U

log p � U 1/2 log U ,

one finds from the trivial estimate |S(α)| � U that∣∣∣∣∫
M

S(α)5e(−nα) dα−
∫

M

g(α)5e(−nα) dα

∣∣∣∣ � (U 9/2 log U )(P2N−1)� N19/30.
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We therefore conclude from (3.5) that there exists a positive number C5 such that,
whenever 5N/18 < n ≤ N and n ∈ N5, one has∫

M

g(α)5e(−nα) dα ≥ c5U 2 + O(N19/30) ≥ C5N2/3.

Also, for every integer n one obtains∫
M

g(α)5e(−nα) dα ≥ −U 2(log N)−1 + O(N19/30) ≥ −N2/3(log N)−1.

This completes the proof of the desired lower bounds (3.3) and (3.4) when s = 5.
Suppose next that 6 ≤ t ≤ 8 and that the claimed lower bounds (3.3) and (3.4)

hold for s = t − 1. Plainly, one has∫
M

g(α)t e(−nα) dα =
∑

U<p≤2U

log p

∫
M

g(α)se
(
−(n− p3)α

)
dα.

Moreover, one has n − p3 ∈ Ns whenever n ∈ Nt . Thus we conclude that whenever
tN/18 < n ≤ N and n ∈ Nt , one has∫

M

g(α)t e(−nα) dα ≥ CsN
s/3−1

∑
U<p≤2U

sN/18<n−p3≤N

log p−N s/3−1(log N)−1
∑

U<p≤2U

log p.

Then it follows from the prime number theorem that under the previous conditions
on n,∫

M

g(α)t e(−nα) dα ≥ CsN
s/3−1

∑
U<p≤(10/9)1/3U

log p − 2N s/3−1U (log N)−1

≥ (18−1/3 − 20−1/3)CsN
t/3−1 + O

(
Nt/3−1(log N)−1

)
.

The desired lower bound (3.3) consequently follows with t in place of s, wherein

Ct = 1
2 (18−1/3 − 20−1/3)Ct−1.

For any integer n, moreover, it follows that∫
M

g(α)t e(−nα) dα ≥ −N s/3−1(log N)−1
∑

U<p≤2U

log p

≥ −2U N s/3−1(log N)−1,

and thus the lower bound (3.4) also follows with t in place of s. The claimed lower
bounds (3.3) and (3.4) therefore follow for 5 ≤ s ≤ 8 by induction, and this com-
pletes the proof of the lemma.
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4 Five Cubes of Prime Numbers

The preparations already behind us very nearly suffice to establish the upper bound
for E5(X) recorded in Theorem 1.1. The remaining additional tools that we require
cost us little further effort, and in any case prove valuable in subsequent sections. We
begin with some further notation. When 5 ≤ s ≤ 8, denote by Zs(N) the set of
integers n with N/2 < n ≤ N for which n ∈ Ns, and yet the equation

p3
1 + · · · + p3

s = n

has no solution in prime numbers p1, . . . , ps. Define the exponential sum

(4.1) Ks(α) =
∑

n∈Zs(N)

e(nα),

and, for the sake of convenience, write Zs = card
(
Zs(N)

)
. In view of the definition

of Zs(N), it is evident from orthogonality that∫ 1

0
g(α)sKs(−α) dα =

∑
n∈Zs(N)

∫ 1

0
g(α)se(−nα) dα = 0.

But by Lemma 3.1, one has∫
M

g(α)sKs(−α) dα =
∑

n∈Zs(N)

∫
M

g(α)se(−nα) dα

� ZsN
s/3−1,

and thus we deduce that

(4.2)

∣∣∣∣∫
m

g(α)sKs(−α) dα

∣∣∣∣ � ZsN
s/3−1.

Our objective in this and the following three sections is to obtain an upper bound for
the left hand side of (4.2), and thereby an upper bound for Zs, when 5 ≤ s ≤ 8.

Before launching our main argument in this section, we prepare the ground with
some notation and an auxiliary mean value estimate. When X is a real number with
1 ≤ X ≤ U , we define the set of major arcs N(X) to be the union of the intervals

N(q, a; X) = {α ∈ [0, 1) : |qα− a| ≤ XN−1}

with 0 ≤ a ≤ q ≤ X and (a, q) = 1. We then define the minor arcs n(X) by taking
n(X) = [0, 1) \N(X). Finally, we define the function g∗(α) for α ∈ [0, 1) by taking

g∗(α) = U w(q)1/2(1 + U 3|α− a/q|)−1/2,
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when α ∈ N(q, a; U ) ⊆ N(U ), and otherwise by putting g∗(α) = 0.

Lemma 4.1 Suppose that 1 ≤ X ≤ U . Then for every positive number ε, one has∫
N(X)
|g∗(α)4g(α)2| dα� U 3+ε.

Proof The desired conclusion is an immediate consequence of Lemma 3.1 of
Brüdern and Wooley [6].

Our first objective in the main part of our argument is to to derive an estimate
for the 10-th moment of g(α) restricted to the set m. Write P = N(U 1/4) and p =
[0, 1) \ P. By Dirichlet’s approximation theorem, for each α ∈ p, there exist a ∈ Z
and q ∈ N with

(a, q) = 1, 1 ≤ q ≤ U 3/2 and |qα− a| ≤ U−3/2.

But in view of the definition of p, whenever q ≤ U 1/4 one has |qα − a| > U 1/4N−1,
and thus it follows from the definition of w(q) together with Lemma 2.3 that

(4.3) sup
α∈p

|g(α)| � U 23/24+ε.

Consequently, an application of Hua’s Lemma (see, for example, Lemma 2.5 of
Vaughan [22]) yields the estimate∫

p

|g(α)|10 dα ≤
(

sup
α∈p

|g(α)|
) 2
∫ 1

0
|g(α)|8 dα

� (U 23/24+ε)2U 5+ε � U 83/12+3ε.

(4.4)

Next write

I1 =
∫

m∩P

|g∗(α)2g(α)8| dα,

and observe that for every number α, it follows from Lemma 2.3 that

(4.5) |g(α)|2 � (U 23/24+ε)2 + U εg∗(α)2.

Then on making use of the argument leading to (4.4), we find that∫
m∩P

|g(α)|10 dα� U 83/12+3ε + U εI1,

whence by (4.4),

(4.6)

∫
m

|g(α)|10 dα� U 83/12+3ε + U εI1.
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However, in a manner similar to that described above, it follows from Lemma 2.3
that

sup
α∈m∩P

|g(α)| � U 23/24+ε + U 1+εP−1/6

� U 1+εP−1/6.

(4.7)

Then by combining Lemma 4.1 with Schwarz’s inequality, one obtains the upper
bound

I1 �
(

sup
α∈m∩P

|g(α)|
) 2
(∫

P

|g∗(α)4g(α)2| dα
) 1/2(∫

m

|g(α)|10 dα

) 1/2

� (U 1+εP−1/6)2(U 3+ε)1/2

(∫
m

|g(α)|10 dα

) 1/2

.

On substituting this estimate into (4.6), we therefore deduce that

(4.8)

∫
m

|g(α)|10 dα� U 83/12+ε + U 7+εP−2/3.

Finally, on applying Schwarz’s inequality to (4.2) and substituting from (4.8), we
obtain

Z5N2/3 �
(∫ 1

0
|K5(α)|2 dα

) 1/2(∫
m

|g(α)|10 dα

) 1/2

� Z1/2
5 (U 83/12+ε + U 7+εP−2/3)1/2,

whence, on recalling (3.1), we arrive at the conclusion

Z5 � N35/36+ε + N1+εP−2/3 � N35/36+ε.

The upper bound for E5(X) recorded in Theorem 1.1 now follows on summing over
dyadic intervals.

5 Six Cubes of Prime Numbers

Our approach to bounding E6(X) is much the same as that applied to estimate E5(X)
so far as the minor arcs are concerned. However, the major arc treatment makes
use of a mean value estimate useful also in the next section, and employed in spirit
additionally in our discussion of Theorem 1.2.

Lemma 5.1 For each ε > 0, one has

(5.1)

∫ 1

0
|g(α)4Ks(α)2| dα� U ε(U Z2

s + U 3Zs).
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Proof By the Weyl differencing lemma (see, for example, Lemma 2.3 of Vaughan
[22]), one has

(5.2) |g(α)|4 ≤ (2U + 1)
∑
|h1|<U

∑
|h2|<U

∑
x∈I

ω(x; h)e
(

3h1h2(2x + h1 + h2)α
)
,

where

ω(x; h) = (log x)
(

log(x + h1)
)(

log(x + h2)
)(

log(x + h1 + h2)
)
,

and where the inner summation is over a certain interval I = I(h1, h2) of integers
contained in [U , 2U ], and is subject to the condition that each of the integers x, x+h1,
x + h2 and x + h1 + h2 be a prime number. By orthogonality, therefore, it follows that
the integral on the left hand side of (5.1) is bounded above by the number of integral
solutions of the equation

(5.3) u1u2u3 = n1 − n2,

with |ui | < 6U (i = 1, 2, 3) and n j ∈ Zs(N) ( j = 1, 2), and with each solution being

counted with weight 3U
(

log(6U )
) 4

.
Consider a solution u, n of the equation (5.3) satisfying the associated conditions.

There are plainly O(U 2) choices of u in which one at least of the u j is zero, and in such
circumstances one necessarily has n1 = n2. Meanwhile, given any one of the O(Z2

s )
possible choices for n1 and n2 with n1 6= n2, a simple divisor function argument
reveals that there are O(U ε) permissible choices of u satisfying (5.3). We therefore
conclude that the total number T1 of solutions of (5.3) satisfies

T1 � U 2Zs + U εZ2
s .

On taking account of the weights attached to each solution counted by the integral
on the left hand side of (5.1), we may conclude that∫ 1

0
|g(α)4Ks(α)2| dα� U 1+ε(U 2Zs + Z2

s ).

The conclusion of the lemma is now immediate.

We now establish our estimate for E6(X). Defining the arcs P and p as in the
previous section, we note initially that an argument parallel to that leading to (4.4)
now yields ∫

p

|g(α)|12 dα ≤
(

sup
α∈p

|g(α)|
) 4
∫ 1

0
|g(α)|8 dα

� (U 23/24+ε)4U 5+ε � U 53/6+ε.

(5.4)

Next write

I2 =
∫

m∩P

|g(α)6K6(α)| dα.
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Then on applying Schwarz’s inequality in combination with (4.2), we deduce that

Z6N � I2 +

∫
p

|g(α)6K6(α)| dα

≤ I2 +

(∫
p

|g(α)|12 dα

) 1/2(∫ 1

0
|K6(α)|2 dα

) 1/2

,

whence by (5.4),

(5.5) Z6N � I2 + Z1/2
6 U 53/12+ε.

In order to estimate I2, we note from (4.5) that

(5.6) I2 � U 23/12+εI3 + U εI4,

where

I3 =
∫ 1

0
|g(α)4K6(α)| dα

and

I4 =
∫

m∩P

|g∗(α)2g(α)4K6(α)| dα.

By Schwarz’s inequality, it follows from Hua’s lemma that

I3 ≤
(∫ 1

0
|g(α)|8 dα

) 1/2(∫ 1

0
|K6(α)|2 dα

) 1/2

� U 5/2+εZ1/2
6 .

(5.7)

A second application of Schwarz’s inequality, meanwhile, reveals that

I4 ≤
(

sup
α∈m∩P

|g(α)|
)(∫

P

|g∗(α)4g(α)2| dα
) 1/2(∫ 1

0
|g(α)4K6(α)2| dα

) 1/2

.

Then it follows from (4.7) and Lemmata 4.1 and 5.1 that

(5.8) I4 � U 1+εP−1/6(U 3+ε)1/2(U 1+εZ2
6 + U 3+εZ6)1/2.

On substituting (5.7) and (5.8) into (5.6), we therefore conclude from (5.5) and (3.1)
that

Z6N � N1+εP−1/6Z6 + N53/36+εZ1/2
6 + N4/3+εP−1/6Z1/2

6 ,

whence
Z6 � N17/18+ε + N2/3+εP−1/3 � N17/18+ε.

The upper bound for E6(X) recorded in Theorem 1.1 is now immediate on summing
over dyadic intervals.
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6 Seven Cubes of Prime Numbers

Our treatment of the exceptional set for sums of seven cubes of prime numbers makes
use of the mean value estimate recorded in Lemma 5.1, and also requires a new mean
value estimate that we record in Lemma 6.2 below. Before we establish the latter
estimate, we prepare the ground with an auxiliary bound.

Lemma 6.1 For each ε > 0, one has

(6.1)

∫ 1

0
|g(α)2Ks(α)2| dα� U ε(U Zs + Z2

s ).

Proof The mean value on the left hand side of (6.1) counts the number of solutions
of the equation

p3
1 − p3

2 = n1 − n2,

with U < pi ≤ 2U (i = 1, 2) and n j ∈ Zs(N) ( j = 1, 2), where each solution
is counted with weight (log p1)(log p2). There are plainly O(ZsU/ log U ) solutions
of this equation with n1 = n2 and p3

1 = p3
2. Given any one of the O(Z2

s ) available
choices of n1 and n2 with n1 6= n2, meanwhile, one may apply an elementary estimate
for the divisor function to show that there are O(U ε) possible choices for p1− p2 and
p2

1 + p1 p2 + p2
2, whence also for p1 and p2. We therefore conclude that∫ 1

0
|g(α)2Ks(α)2| dα� (log U )2(ZsU/ log U + U εZ2

s ),

and the conclusion of the lemma follows immediately.

We are now able to establish the new mean value estimate crucial in this section
and the next.

Lemma 6.2 For each ε > 0, one has

(6.2)

∫ 1

0
|g(α)6Ks(α)2| dα� U ε(U 3Z2

s + U 4Zs).

Proof On recalling (5.2), it follows from orthogonality that the integral on the left
hand side of (6.2) is bounded above by the number of integral solutions of the equa-
tion

(6.3) u1u2u3 = (p3
1 − p3

2)− (n1 − n2),

with |ui | < 6U (i = 1, 2, 3), U < p j ≤ 2U ( j = 1, 2) and nl ∈ Zs(N) (l = 1, 2), and

with each solution being counted with weight 3U
(

log(6U )
) 6

.
Consider a solution u, p, n of the equation (6.3) satisfying the associated condi-

tions. There are plainly O(U 2) choices of u in which one at least of the u j is zero, and
in such circumstances one necessarily has

(6.4) p3
1 − p3

2 = n1 − n2.
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It follows that the number of solutions, T2, of this type satisfies

T2 � U 2

∫ 1

0
|g(α)2Ks(α)2| dα,

whence by Lemma 6.1,

(6.5) T2 � U 2+ε(U Zs + Z2
s ).

On the other hand, given any of the O(U 2Z2
s ) possible choices for p1, p2, n1, n2 in

which the equation (6.4) is not satisfied, a simple divisor function argument ensures
that there are O(U ε) permissible choices of u satisfying (6.3). Thus the number of
solutions, T3, of this complementary type satisfies

(6.6) T3 � U 2+εZ2
s .

On combining the estimates (6.5) and (6.6) and accounting for the inherent weights,
we may conclude that∫ 1

0
|g(α)6Ks(α)2| dα� U 1+ε(U 3Zs + U 2Z2

s ).

This completes the proof of the lemma.

We are now equipped to establish our estimate for E7(X). We define the arcs P and
p as in the previous sections, and begin by applying Schwarz’s inequality to obtain

∫
p

|g(α)7K7(α)| dα ≤
(∫ 1

0
|g(α)4K7(α)2| dα

) 1/2(∫
p

|g(α)|10 dα

) 1/2

.

Then as a consequence of Lemma 5.1 and the inequality (4.4), we deduce that∫
p

|g(α)7K7(α)| dα� U ε(U Z2
7 + U 3Z7)1/2(U 83/12)1/2

� U 95/24+ε(Z2
7 + U 2Z7)1/2.

Next write

I5 =
∫

m∩P

|g(α)7K7(α)| dα.

Then we conclude from (4.2) and (3.1) that

Z7N4/3 � I5 +

∫
p

|g(α)7K7(α)| dα

� I5 + N4/3−1/72+εZ7 + N5/3−1/72+εZ1/2
7 .

(6.7)
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We estimate I5 by applying Lemma 2.3 to obtain

(6.8) I5 � U 23/24+εI6 + U εI7,

where

I6 =
∫ 1

0
|g(α)6K7(α)| dα

and

I7 =
∫

m∩P

|g∗(α)g(α)6K7(α)| dα.

On combining Schwarz’s inequality with Hua’s Lemma and Lemma 5.1, we find that

I6 ≤
(∫ 1

0
|g(α)|8 dα

) 1/2(∫ 1

0
|g(α)4K7(α)2| dα

) 1/2

� (U 5+ε)1/2(U 1+εZ2
7 + U 3+εZ7)1/2.

(6.9)

A second application of Schwarz’s inequality, moreover, reveals that

I7 ≤
(

sup
α∈m∩P

|g(α)|
) 1/2

(∫
P

|g∗(α)4g(α)2| dα
) 1/4

×
(∫ 1

0
|g(α)6K7(α)2| dα

) 1/2(∫ 1

0
|g(α)|8 dα

) 1/4

.

Then by Lemmata 4.1 and 6.2, Hua’s lemma and (4.7), we deduce that

I7 � U 1/2+εP−1/12(U 3)1/4(U 3Z2
7 + U 4Z7)1/2(U 5)1/4

� U 4+εP−1/12Z7 + U 9/2+εP−1/12Z1/2
7 .

(6.10)

On substituting (6.9) and (6.10) into (6.8), we thus conclude from (3.1) and (6.7)
that

Z7N4/3 � N4/3+εP−1/12Z7 + N4/3−1/72+εZ7

+ N5/3−1/72+εZ1/2
7 + N3/2+εP−1/12Z1/2

7 ,

whence

Z7 � N23/36+ε + N1/3+εP−1/6 � N23/36+ε.

The estimate for E7(X) recorded in Theorem 1.1 now follows on summing over
dyadic intervals.
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7 Eight Cubes of Prime Numbers

No further apparatus being required for our analysis of E8(X), we launch our argu-
ment for this case immediately. First, by Schwarz’s inequality, we find that∫

p

|g(α)8K8(α)| dα ≤
(∫ 1

0
|g(α)6K8(α)2| dα

) 1/2(∫
p

|g(α)|10 dα

) 1/2

.

Then by Lemma 6.2 and the inequality (4.4), we deduce that∫
p

|g(α)8K8(α)| dα� U ε(U 3Z2
8 + U 4Z8)1/2(U 83/12)1/2

� U 119/24+ε(Z2
8 + U Z8)1/2.

Next write

I8 =
∫

m∩P

|g(α)8K8(α)| dα.

Then we obtain from (4.2) and (3.1) the inequality

Z8N5/3 � I8 +

∫
p

|g(α)8K8(α)| dα

� I8 + N5/3−1/72+εZ8 + N11/6−1/72+εZ1/2
8 .

(7.1)

We estimate I8 by first applying Lemma 2.3 to obtain

(7.2) I8 � U 23/24+εI9 + U εI10,

where

I9 =
∫ 1

0
|g(α)7K8(α)| dα

and

I10 =
∫

m∩P

|g∗(α)g(α)7K8(α)| dα.

By Schwarz’s inequality combined with Hua’s lemma and Lemma 6.2, we find that

I9 ≤
(∫ 1

0
|g(α)|8 dα

) 1/2(∫ 1

0
|g(α)6K8(α)2| dα

) 1/2

� (U 5+ε)1/2(U 3+εZ2
8 + U 4+εZ8)1/2.

(7.3)

Next, by Hölder’s inequality together with Hua’s lemma, Lemma 4.1 and (4.7), we
find that

I10 ≤ K8(0)
(

sup
α∈m

|g(α)|
) 1/2

(∫ 1

0
|g(α)|8 dα

) 3/4(∫
P

|g∗(α)4g(α)2| dα
) 1/4

� Z8U 1/2+εP−1/12(U 5+ε)3/4(U 3+ε)1/4

� Z8U 5+εP−1/12.

(7.4)
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Thus, on substituting (7.3) and (7.4) into (7.2), we conclude from (3.1) and (7.1)
that

Z8N5/3 � N5/3+εP−1/12Z8 + N5/3−1/72+εZ8 + N11/6−1/72+εZ1/2
8 ,

whence
Z8 � N11/36+ε.

Consequently, the estimate for E8(X) recorded in Theorem 1.1 in this case again fol-
lows instantly on summing over dyadic intervals.

8 Waring’s Problem for Cubes of Smooth Numbers

The object of this section is to prove Theorem 1.2. Since this theorem is of somewhat
less interest than the remaining results of this paper, we aim here to be concise, and
we feel free to leave the verification of certain details to the reader. We begin by
introducing some notation drawn from Section 5 of Brüdern and Wooley [6]. Let δ
be a sufficiently small positive number. When P, Q and R are positive real numbers,
we write

A∗(Q,R) = {n ∈ [1,Q] ∩ Z : p prime, p|n⇒ R1−δ < p ≤ R},

and then define the set C(P,R) of smooth numbers by

C(P,R) = {lm : m ∈ A∗(PRδ−1,R) and 1 ≤ l ≤ R1−δ}.

We note here that each element of C(P,R) is uniquely represented in the form lm
described in the definition of this set. We remark also that whenever A and B are fixed
real numbers with B > A ≥ 1, and P and R are large real numbers with RA ≤ P ≤ RB,
then it follows from Friedlander [8] that

(8.1)
P

log R
�A,B card

(
C(P,R)

)
�A,B

P

log R
.

Define the exponential sum h(α) = h(α; P,R) by

h(α; P,R) =
∑

x∈C(P,R)

e(αx3),

and when 4 ≤ s ≤ 7, write

Ts(n) =
∫ 1

0
h(α)se(−nα) dα.

We apply the Hardy-Littlewood method to estimate Ts(n) on average. Let N be large,
and write P = N1/3 and R = (N/2)η , where we suppose that η is a sufficiently
small, but fixed, positive number. We then define two Hardy-Littlewood dissections
by taking

W = N(P1/3), V = N(R1−δ), w = [0, 1) \W, v = [0, 1) \V,
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where N(X) is defined as in the preamble to Lemma 4.1 above. The following three
lemmata provide the tools essential to the analysis of this section.

Lemma 8.1 Suppose that 4 ≤ s ≤ 7 and N/2 < n ≤ N. Then one has∫
V

h(α)se(−nα) dα� N s/3−1(log N)−s.

Proof A simple modification of the argument of Section 5 of Brüdern and Wooley
[6] establishes the desired conclusion in all essentials. Our use of s ≥ 4 variables in
this instance rather than 4 variables therein is, of course, inconsequential. Also, our
modified definition of the set C(P,R) brings about only cosmetic alterations in the
implicit proof of the desired lower bound.

Lemma 8.2 For each ε > 0, one has

sup
α∈v

|h(α)| � P(R1−δ)ε−1/6.

Proof Define the function h∗(α) for α ∈ [0, 1) by taking

h∗(α) = Pw(q)1/2(1 + P3|α− a/q|)−1/3,

when α ∈ N(q, a; P1/3) ⊆ W, and otherwise by putting h∗(α) = 0. Then the ar-
gument of [6] leading from equation (5.7) to (5.8) of that paper establishes that for
each ε > 0, one has

h(α)� Pεh∗(α) + P17/18+ε,

uniformly in α. Thus the estimate recorded in the lemma follows from the definition
of w(q) whenever η is sufficiently small.

Lemma 8.3 For each ε > 0, one has∫
v

|h(α)|8 dα� P5(R1−δ)ε−1/3.

Proof This conclusion is a slightly modified version of Lemma 5.2 of [6]. We begin
by observing that the argument of the latter paper leading to equation (5.8) therein
readily yields the estimate ∫

w

|h(α)|8 dα� P5R−1,

whenever the positive number η is sufficiently small. Also, it follows from the argu-
ment leading to equation (5.9) of that paper that∫

W

|h(α)|6 dα� P3+ε.
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Thus we deduce from Lemma 8.2 that∫
v∩W

|h(α)|8 dα ≤
(

sup
α∈v

|h(α)|
) 2
∫

W

|h(α)|6 dα

�
(

P(R1−δ)ε−1/6
) 2

P3+ε.

We consequently conclude that∫
v

|h(α)|8 dα ≤
∫

w

|h(α)|8 dα +

∫
v∩W

|h(α)|8 dα

� P5R−1 + P5+ε(R1−δ)2ε−1/3,

and the desired estimate follows immediately.

When 4 ≤ s ≤ 7, we now denote by Zs(N) the set of integers n with N/2 < n ≤ N
for which the equation

m3
1 + · · · + m3

s = n

has no solution in integers mi with P(mi) < nη . We define the exponential sum Ks(α)
as in (4.1), and write Zs = card

(
Zs(N)

)
. It is evident in the situation at hand that

∫ 1

0
h(α)sKs(−α) dα =

∑
n∈Zs(N)

∫ 1

0
h(α)se(−nα) dα = 0.

Then Lemma 8.1 leads to the relation∫
V

h(α)sKs(−α) dα =
∑

n∈Zs(N)

∫
V

h(α)se(−nα) dα

� ZsN
s/3−1(log N)−s,

and so we deduce that

(8.2)

∣∣∣∣∫
v

h(α)sKs(−α) dα

∣∣∣∣ � ZsN
s/3−1(log N)−s.

With the above prerequisites in hand, we dispose swiftly of the arguments required
to establish Theorem 1.2, beginning with the estimation of E4(X; η). This conclu-
sion is due, in all essentials, to Brüdern and Wooley [6]. We simply observe that by
Schwarz’s inequality in combination with Lemma 8.3, one has∣∣∣∣∫

v

h(α)4K4(−α) dα

∣∣∣∣ ≤ (∫
v

|h(α)|8 dα

) 1/2(∫ 1

0
|K4(α)|2 dα

) 1/2

� P5/2(R1−δ)ε−1/6Z1/2
4 ,
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whence by (8.2),

Z4N1/3(log N)−4 � Z1/2
4 N5/6(R1−δ)ε−1/6.

We may therefore conclude that

Z4 � N1−η/3+ε,

provided that we choose δ sufficiently small in terms of ε. The estimate for E4(X; η)
recorded in Theorem 1.2 now follows on summing over dyadic intervals.

Next, on applying Schwarz’s inequality in combination with Lemmata 8.2 and 8.3,
one obtains∣∣∣∣∫

v

h(α)5K5(−α) dα

∣∣∣∣ ≤ ( sup
α∈v

|h(α)|
)(∫

v

|h(α)|8 dα

) 1/2(∫ 1

0
|K5(α)|2 dα

) 1/2

� P(R1−δ)ε−1/6
(

P5(R1−δ)ε−1/3
) 1/2

Z1/2
5 ,

whence by (8.2),

Z5N2/3(log N)−5 � Z1/2
5 N7/6(R1−δ)ε−1/3.

We thus obtain
Z5 � N1−2η/3+ε,

and the desired estimate for E5(X; η) follows as before.
In order to tackle the estimation of E6(X; η), we begin by noting that the argument

of the proof of Lemma 5.1 is easily modified to provide the estimate∫ 1

0
|h(α)4K6(α)2| dα� Pε(PZ2

6 + P3Z6).

Thus, on applying Schwarz’s inequality together with Lemma 8.3, we now obtain∣∣∣∣∫
v

h(α)6K6(−α) dα

∣∣∣∣ ≤ (∫ 1

0
|h(α)4K6(α)2| dα

) 1/2(∫
v

|h(α)|8 dα

) 1/2

� Pε(PZ2
6 + P3Z6)1/2

(
P5(R1−δ)ε−1/3

) 1/2
,

whence by (8.2),

Z6N(log N)−6 � N1+ε(R1−δ)ε−1/6Z6 + N4/3+ε(R1−δ)ε−1/6Z1/2
6 .

We thus obtain
Z6 � N2/3+ε(R1−δ)ε−1/3,

and the conclusion required follows as in the previous cases.
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Finally, on modifying the argument of the proof of Lemma 6.2 above, one finds
that ∫ 1

0
|h(α)6K7(α)2| dα� Pε(P3Z2

7 + P4Z7).

Then applying Schwarz’s inequality with Lemma 8.3, we deduce that∣∣∣∣∫
v

h(α)7K7(−α) dα

∣∣∣∣ ≤ (∫ 1

0
|h(α)6K7(α)2| dα

) 1/2(∫
v

|h(α)|8 dα

) 1/2

� Pε(P3Z2
7 + P4Z7)1/2

(
P5(R1−δ)ε−1/3

) 1/2
,

whence by (8.2),

Z7N4/3(log N)−7 � N4/3+ε(R1−δ)ε−1/6Z7 + N3/2+ε(R1−δ)ε−1/6Z1/2
7 .

We therefore conclude that

Z7 � N1/3+ε(R1−δ)ε−1/3,

and we complete the proof of the claimed estimate for E7(X; η) as in the previous
cases. This completes the proof of Theorem 1.2.

9 The Asymptotic Formula for Seven Cubes

Our proof of Theorem 1.3 involves only modest prerequisites easily accommodated
en passant. We therefore launch our first broadside immediately. Let N be a large
positive number, and let ψ(t) be a function of the type described in the statement of
Theorem 1.3. We denote by Z(N) the set of integers n with N/2 < n ≤ N for which
the inequality (1.3) holds with s = 7, and we abbreviate card

(
Z(N)

)
to Z.

Write P = [N1/3] and define

f (α) =
∑

1≤x≤P

e(αx3).

By orthogonality, for each integer n with N/2 < n ≤ N one has

(9.1) R7(n) =
∫ 1

0
f (α)7e(−nα) dα.

Let M denote the union of the intervals

M(q, a) = {α ∈ [0, 1) : |qα− a| ≤ 1
6 PN−1},

with 0 ≤ a ≤ q ≤ 1
6 P and (a, q) = 1. Then by Theorem 4.4 of [22], there is a positive

number τ such that whenever N/2 < n ≤ N, one has

(9.2)

∫
M

f (α)7e(−nα) dα =
Γ(4/3)7

Γ(7/3)
S7(n)n4/3 + O(n4/3−τ ).
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Now write m = [0, 1) \M. Then for n ∈ Z(N), it follows from (1.3), (9.1) and (9.2)
that

(9.3)

∣∣∣∣∫
m

f (α)7e(−nα) dα

∣∣∣∣ > 1
2 n4/3ψ(n)−1.

Next define the complex number ηn by taking ηn = 0 for n /∈ Z(N), and when
n ∈ Z(N) by means of the equation∣∣∣∣∫

m

f (α)7e(−nα) dα

∣∣∣∣ = ηn

∫
m

f (α)7e(−nα) dα.

Of course, one has |ηn| = 1 whenever ηn is non-zero. In view of (9.3), one finds that

n4/3ψ(n)−1 card
(
Z(N)

)
�

∑
N/2<n≤N

ηn

∫
m

f (α)7e(−nα) dα

=
∫

m

f (α)7K(−α) dα,

(9.4)

where

(9.5) K(α) =
∑

N/2<n≤N

ηne(nα).

On applying Schwarz’s inequality to (9.4), one deduces that

(9.6) N4/3ψ(N)−1Z � T1/2
1 T1/2

2 ,

where

(9.7) T1 =
∫

m

| f (α)|12 dα and T2 =
∫ 1

0
| f (α)K(α)|2 dα.

We estimate T1 immediately by noting that, on combining the refined estimates of
Hall and Tenenbaum [9] for Hooley’s ∆-function with the proof of Lemma 1 of
Vaughan [21], one obtains

sup
α∈m

| f (α)| � P3/4(log P)1/4+ε.

Thus, on exploiting the estimate∫
m

| f (α)|8 dα� P5(log P)ε−3

due to Boklan [2], we obtain the upper bound

(9.8) T1 ≤
(

sup
α∈m

| f (α)|
) 4
∫

m

| f (α)|8 dα� P8(log P)ε−2.
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By orthogonality, meanwhile, we find that T2 is bounded above by the number of
integral solutions of the equation

(9.9) x3
1 − x3

2 = n1 − n2,

with 1 ≤ x1, x2 ≤ P and n1, n2 ∈ Z(N). The number of such solutions with n1 = n2

and x1 = x2 is plainly PZ. When n1 6= n2, it is possible that the integer n1 − n2

is represented uniquely as the difference of two cubes of natural numbers. Plainly,
the number of such solutions of (9.9) is O(Z2). Let S denote the number of positive
integral solutions of the equation

y3
1 − y3

2 = y3
3 − y3

4

with 1 ≤ yi ≤ P (1 ≤ i ≤ 4) and y1 /∈ {y2, y3}. Then it follows from work of Heath-
Brown [12] that S = O(P4/3+ε). We therefore deduce that there are at most O(P4/3+ε)
integers m that have two or more representations in the shape m = x3

1 − x3
2, with

1 ≤ x1, x2 ≤ P. Since each such integer m has at most Z representations in the shape
m = n1 − n2, with n1, n2 ∈ Z(N), we conclude that the contribution to T2 arising
from this class of solutions of (9.9) is O(ZP4/3+ε). Combining the above estimates,
we arrive at the upper bound

(9.10) T2 � Z2 + ZP4/3+ε.

On substituting (9.8) and (9.10) into (9.6), we find that

N4/3ψ(N)−1Z �
(

P8(log P)ε−2
) 1/2

(Z2 + ZP4/3+ε)1/2,

whence

Z � Zψ(N)(log N)ε−1 + Z1/2N2/9+εψ(N).

Thus, whenever ψ(N) = O
(

(log N)1−δ) , it follows that

Z � N4/9+2εψ(N)2 � N4/9+3ε.

On summing over dyadic intervals, we conclude that Ẽ7(N;ψ) � N4/9+ε, and this
completes the proof of Theorem 1.3.

We emphasise the crucial role played by the estimate S = O(P4/3+ε) in the above
argument. If one were able to replace this consequence of Heath-Brown’s work with
the new estimate S = Oε(Pξ+ε), then one obtains Ẽ7(N;ψ) � Nξ/3+ε. The latter
estimate supersedes the classical estimate only for ξ < 3/2, while the conjectured
permissible exponent ξ = 1 yields Ẽ7(N;ψ)� N1/3+ε.
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10 Conditional Conclusions for Sums of Six Cubes

We conclude this paper with an account of the proof of Theorem 1.4, and this entails
some further auxiliary estimates. The prerequisites for Theorem 1.4 may be cheaply
disposed of by exploiting the work of Sections 2 and 3 of Brüdern, Kawada and Woo-
ley [4]. We begin with some notation. Let N be a large positive number, and write
P = 1

2 N1/3. We take η to be a sufficiently small positive number depending at most

on ε, and we consider a real number R with Pη/2 < R ≤ Pη . Denote by A(X,R) the
set of R-smooth numbers not exceeding X, that is

A(X,R) = {n ∈ [1,X] ∩ Z : p prime, p|n⇒ p ≤ R}.

Also, put Q = P6/7 and Y = P1/7. We then define the generating functions

f (α) =
∑

P<x≤2P

e(αx3), fp(α) =
∑

P<x≤2P
(x,p)=1

e(αx3),

g(α) =
∑

Q<y≤2Q

e(αy3), h(α) =
∑

z∈A(Q,R)

e(αz3).

Following Brüdern, Kawada and Wooley [4], we define

F(α) =
∑

Y<p≤2Y
p≡2 (mod 3)

fp(α)g(αp3)h(αp3)2,

and then put

(10.1) S(α) = f (α)2F(α).

We require two different Hardy-Littlewood dissections, and in this context we
write L = (log P)1/100, and define N to be the union of the intervals

N(q, a) = {α ∈ [0, 1) : |qα− a| ≤ LP−3},

with 0 ≤ a ≤ q ≤ L and (a, q) = 1. Also, we write n = [0, 1) \ N. Before defining
our second dissection, we pause to record a major arc estimate.

Lemma 10.1 Uniformly for N/2 < m ≤ N, one has the estimate∫
N

S(α)e(−αm) dα�η Y Q3(log P)−1.

Proof The desired lower bound follows easily via the argument of the proof of
Lemma 2.1 of [4]. In the present situation, the generating function S(α) contains
two copies of the complete exponential sum f (α), as opposed to only one in the
analogous situation in the latter paper (although therein our second copy of f (α) is
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replaced by a smooth Weyl sum). However, this modification in fact facilitates the
details of the analysis at hand.

Next define the set of major arcs M to be the union of the intervals

M(q, a) = {α ∈ [0, 1) : |qα− a| ≤ P−9/4},

with 0 ≤ a ≤ q ≤ P3/4 and (a, q) = 1. Define also m = [0, 1) \M.

Lemma 10.2 One has ∫
m

|F(α)|2 dα� Y 2Q6P−19/14.

Moreover, there is a function F1 : [0, 1)→ C with the property that∫
M

|F(α)− F1(α)|2 dα� Y 2Q6P−19/14,

and satisfying the condition that∫
n∩M

|F1(α) f (α)2| dα� Q3Y L−1/4(log Y )−1.

Proof The first two conclusions are immediate from Lemma 3.2 of [4]. The final
estimate, meanwhile, is essentially the inequality (3.13) of the latter paper.

We are now equipped to establish Theorem 1.4. Let Z(N) denote the set of integers
n with N/2 < n ≤ N for which the equation

x3
1 + · · · + x3

6 = n

has no solution in positive integers xi (1 ≤ i ≤ 6). We define the exponential sum
K(α) by

K(α) =
∑

n∈Z(N)

e(nα),

and we abbreviate card
(
Z(N)

)
to Z. Then by orthogonality, it is apparent that∫ 1

0
S(α)K(−α) dα =

∑
n∈Z(N)

∫ 1

0
S(α)e(−nα) dα = 0.

Then Lemma 10.1 leads to the relation∫
N

S(α)K(−α) dα =
∑

n∈Z(N)

∫
N

S(α)e(−nα) dα

� ZY Q3(log P)−1,
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whence we deduce that

(10.2)

∣∣∣∣∫
n

S(α)K(−α) dα

∣∣∣∣ � ZY Q3(log P)−1.

Next, on recalling (10.1) we find that

(10.3)

∣∣∣∣∫
n

S(α)K(−α) dα

∣∣∣∣ ≤ U1 + U2 + U3,

where

U1 =
∫

n∩M

|F1(α) f (α)2K(α)| dα,(10.4)

U2 =
∫

M

∣∣ (F(α)− F1(α)
)

f (α)2K(α)
∣∣ dα,(10.5)

U3 =
∫

m

|F(α) f (α)2K(α)| dα.(10.6)

But the final conclusion of Lemma 10.2 reveals that

U1 ≤ K(0)

∫
n∩M

|F1(α) f (α)2| dα� ZQ3Y L−1/4(log Y )−1,

whence it follows from (10.2) and (10.3) that

(10.7) ZY Q3(log P)−1 � U2 + U3.

On writing

U4 =
∫ 1

0
| f (α)4K(α)2| dα,

we next deduce from Schwarz’s inequality together with (10.5) and (10.6) that

U2 + U3 ≤ U 1/2
4

(∫
M

|F(α)− F1(α)|2 dα +

∫
m

|F(α)|2 dα

) 1/2

.

Then in view of the first two conclusions of Lemma 10.2, we may conclude from
(10.7) that

ZY Q3(log P)−1 � U 1/2
4 (Y 2Q6P−19/14)1/2,

whence

(10.8) Z � U 1/2
4 P−19/28 log P.
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The mean value U4 can be estimated with the aid of Hypothesis R(A), and this we
discuss in a general context via the following lemma.

Lemma 10.3 Let A be a positive real number, and suppose that the hypothesis R(A)
holds. Then for each ε > 0, one has

(10.9)

∫ 1

0
| f (α)4K(α)2| dα� ZP2 + Z2PA+ε.

Proof The mean value on the left hand side of (10.9) counts the number of solutions
of the equation

x3
1 + x3

2 − x3
3 − x3

4 = n1 − n2,

with P < xi ≤ 2P (1 ≤ i ≤ 4) and n1, n2 ∈ Z(N). Given any one of the O(Z2)
possible choices for n1, n2 with n1 6= n2, it follows from Hypothesis R(A) that the
number of permissible choices for x is O(PA+ε), and thus the contribution arising
from this class of solutions is O(Z2PA+ε). When n1 = n2, on the other hand, the
variables x satisfy the equation x3

1 + x3
2 = x3

3 + x3
4. Here, one finds from Hooley

[14], for example, that the number of solutions with 1 ≤ xi ≤ 2P (1 ≤ i ≤ 4) is
O(P2). Thus we conclude that the number of solutions of this type is O(ZP2). The
estimate (10.9) is now immediate on combining the above upper bounds.

On substituting the conclusion of Lemma 10.3, with A = ξ < 19/14, into the
relation (10.8), we find that

Z �
(

ZP2 + Z2P19/14(log P)−4
) 1/2

P−19/28 log P

� Z1/2P9/28 log P + Z(log P)−1.

We therefore conclude that

Z � P9/14(log P)2 � N3/14(log N)2,

and the conclusion of Theorem 1.4 follows on summing over dyadic intervals.
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