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Abstract

Process data, in particular, log data collected from a computerized test, documents the

sequence of actions performed by an examinee in pursuit of solving a problem, affording an

opportunity to understand test-taking behavioral patterns that account for demographic

group differences in key outcomes of interest, for instance, final score on a cognitive item.

Addressing this aim, this paper proposes a latent class mediation analysis procedure. Using

continuous process features extracted from action sequence data as indicators, latent

classes underlying the test-taking behavior are identified in a latent class mediation model,

where an examinee’s nominal latent class membership enters as the mediator between the

observed grouping and outcome variables. A headlong search algorithm for selecting the

subset of process features that maximizes the total indirect effect of the latent class

mediator is implemented. The proposed procedure is validated with a series of simulations.

An application to a large-scale assessment highlights how the proposed method can be used

to explain performance gaps between students with learning disability and their typically

developing peers on the National Assessment of Educational Progress (NAEP) math

assessment.

Keywords: process data, latent class analysis, mediation analysis, variable selection,

large-scale assessment
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Explaining Performance Gaps with Problem-Solving Process Data via Latent

Class Mediation Analysis

Introduction

Using computers as assessment delivery platforms allowed the collection of process

data, which is computer log data that documents an examinee’s sequence of actions (e.g.,

clicks, keystrokes, and revisits) while solving a task (Bergner & von Davier, 2019).

Typically, the sequence of actions of an examinee on a particular item is stored as a tuple

of nominal elements, each representing a specific action. For example, an action sequence

on a constructed response item might be: (Enter_Item, Open_Scratchwork, Draw, Clear,

Zoom_In, Type_7.35, Exit_Item, Enter_Item, Type_73.5, Exit_Item). It shows us what

tools the examinee utilized, what answers the examinee typed in before submitting the

final response, and how many times the examinee visited this item page on the computer.

Such data can preserve valuable information on how examinees arrived at their outcome,

thus providing information beyond response data (i.e., correct/incorrect). A rich body of

literature demonstrated the utility of process data for common measurement and

educational tasks, for instance, to build measurement models characterizing examinee and

item characteristics (e.g., Chen et al., 2020; Fang, Ying, et al., 2020; LaMar, 2018; Xiao and

Liu, 2024; Zhan and Qiao, 2022) and improve proficiency scoring (e.g., He, Shi, and Tighe,

2023; Zhang et al., 2022), to identify behavioral prototypes or stages of problem-solving

(e.g., Eichmann, Greiff, et al., 2020; Hao and Mislevy, 2019; He et al., 2019, 2022; Tang,

2023; Ulitzsch, He, and Pohl, 2022; Wang et al., 2020), and to identify behavioral

characteristics that predict final performance (e.g., Greiff et al., 2015; He and von Davier,

2016; Qiao and Jiao, 2018; Ulitzsch, Ulitzsch, et al., 2022; Ulitzsch et al., 2021).

The current paper focuses on using process data to understand problem-solving

patterns that account for group differences in test scores. Test scores play a vital role in

many key decisions, both for individual candidates (e.g., in college admissions, licensing,

and recruitment) and for educators and policymakers using formative and large-scale
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assessment data to guide instruction and policy development. Understanding demographic

subgroup differences in test-taking behavior and performance is critical for mitigating

potential test biases and closing achievement gaps. An example is the achievement gap in

mathematics between US students from underrepresented groups, such as racial minority

groups and students with disabilities, and their peers, which has been persistently reported

based on the National Assessment of Educational Progress (NAEP) over the years (U.S.

Department of Education. Institute of Education Sciences, National Center for Education

Statistics, 2022). While the NAEP assessments are designed to measure student

performance instead of to explain the differences, there is growing interest in the potential

utility of test-taking process data, coupled with student background and proficiency

information, to provide additional insights into how problem-solving behavior (e.g.,

test-taking strategies, misconceptions, use of accommodation/universal design tools)

explains performance differences across demographic groups. This is exemplified by the

release of the restricted-use process data from select blocks of the NAEP 2017 Grade 8 and

Grade 4 math assessments (NCES, 2020), as well as recent Institute of Education Sciences

(IES) calls for proposals on the use of NAEP process data to understand the link between

test-taking behavior and mathematics performance for learners with disabilities, the goal

being to gather evidence that ultimately contributes to the improvement of learning of

these students from special populations.

Indeed, many previous studies have shown that analyzing process data can aid in

understanding subgroup differences (e.g., He and von Davier, 2016; Liao et al., 2019) and

explaining differences in sequential patterns in correct/incorrect problem-solving (e.g.,

Greiff et al., 2015; He and von Davier, 2016; Ulitzsch, He, and Pohl, 2022). While these

findings provide supporting evidence on the potential use of process data to understand

subgroup differences in item performance, the limitation of prior approaches for

investigating the process data is that the relationship between action sequence patterns and

demographic backgrounds (e.g., Eichmann, Goldhammer, et al., 2020), and similarly the
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relationship between action sequence patterns and final response (e.g., Eichmann, Greiff,

et al., 2020; Gao, Zhai, et al., 2022; He, Borgonovi, and Suárez-Álvarez, 2023) are studied

separately. This does not directly address the question of what types of sequential patterns

contributed to group differences. Addressing this requires modeling problem-solving

patterns as a potential mediator that explains group differences in the final response. To

date, no model-based approach directly addresses this need. We propose a latent class

mediation analysis (LCMA) procedure to address this question. Using continuous process

features extracted from action sequence data (e.g., features extracted using

multidimensional scaling) as indicators, latent classes underlying the test-taking behavior

are identified in a latent class mediation model, where an examinee’s nominal latent class

membership enters as the mediator between the observed grouping and outcome variables.

In the traditional latent variable mediation analysis, the mediator is a continuous

latent construct that mediates the predictor’s effect on the outcome in a linear fashion.

Two methods can be used to estimate the mediation effect: the difference in coefficients

method and the product of coefficients method. In the difference in coefficients method, an

outcome is regressed on the predictor and then on both the predictor and mediator, and

the indirect effect is the difference in the coefficient of the predictor. In the product of

coefficients method, the mediator is regressed on the predictor, and the outcome is

regressed on the predictor and mediator, and the indirect effect is the product of the

coefficients associated with the predictor-mediator and mediator-outcome relationships. By

contrast, in latent class mediation analysis, the mediator is a discrete grouping variable

whose membership probabilities change with the predictor and generate stepwise changes

in the outcome. When both the mediator and outcome are continuous, the total effect of

the predictor can be additively decomposed into direct and indirect effects. However, this

additive decomposition is not straightforward when the mediator is discrete, and

traditional methods for identifying indirect effects are no longer applicable (Sint et al.,

2021). A counterfactual framework (Pearl, 2010; Robins & Greenland, 1992) resolves these
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issues by defining direct effect and total indirect effect for discrete mediators. The total

indirect effect summarizes the mediation effect of a latent class mediator as the expected

outcome difference in a focal group when class membership changes from what it would be

under the focal group to what it would be under a reference group.

One difficulty in analyzing process data arises from the nonstandard format of

response processes. That is, the length of action sequences varies across examinees and is

coded as nominal elements, making traditional analyses inapplicable to process data such

as generalized linear models. Addressing the issue of unstructured data format, we work

with features extracted from process data. One example of a process feature extraction

method is multidimensional scaling (MDS; Borg and Groenen, 2005; Tang et al., 2020).

The extracted MDS features are in a rectangular data format and scaled on a continuum

while containing the information of the original action sequences, making it suitable for the

proposed LCMA procedure.

Another challenge in process data analysis is that the features extracted from the

process data are often high-dimensional. To address this issue, we further perform

dimension reduction of the process features via model-based clustering on the process

features, that is, latent class analysis. Latent class analysis (Banfield & Raftery, 1993;

Lazarsfeld, 1950; Lazarsfeld, 1968; Oberski, 2016; Vermunt & Magidson, 2002) can be used

to identify latent nominal variables through a set of observed indicators. Clustering is often

used to explore common sequential patterns and to link them to variables of interest, such

as final performance and demographics (e.g., Gao, Cui, et al., 2022; Hao and Mislevy, 2019;

He, Borgonovi, and Suárez-Álvarez, 2023). Here, we use the term latent class to refer to

the latent profile or the Gaussian mixture component underlying continuous indicators.

Identifying latent classes in process data can classify examinees into subgroups based on

their test-taking behavior and reveal individual differences in sequential patterns (e.g.,

Bergner and von Davier, 2019; Welling et al., 2024).

These latent classes may also help explain performance gaps, such as those observed
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on the NAEP Math Assessment between students with learning disabilities and their peers

(Judge & Watson, 2011). This can be achieved by considering the latent class variable as a

mediator explaining the effect of a predictor on the outcome (e.g., Muthén, 2011; Sint

et al., 2021). Literature discussing latent classes as potential mediators has primarily

focused on latent class mediators with discrete indicators (e.g., Hsiao et al., 2021; Muthén,

2011). However, there is a lack of methodological investigation in latent class mediation

analysis with continuous indicators (Hsiao et al., 2021). Literature considering the

extension of latent class analysis with continuous indicators is limited to latent class model

with either covariates (Murphy & Murphy, 2020; Vermunt & Magidson, 2002), or latent

class model with distal outcomes (Dziak et al., 2016; Vermunt, 2010). In this study, we

extend the latent class analysis with continuous indicators (e.g., process features) to

explain the effect of a binary predictor on a binary outcome through the nominal latent

class mediator. An EM algorithm is implemented for parameter estimation.

Extracted process features may contain noise or irrelevant information, which can

weaken the generalizability of results in latent class mediation models. Removing noisy

indicators can enhance classification accuracy and parameter precision in latent class

analysis (Dean & Raftery, 2010). To address this, variable selection methods, such as the

headlong search algorithm, have been proposed to identify the optimal set of indicators. In

this study, a headlong search algorithm, which is generally used to explore the model space

and select clustering variables, was used to select process features that maximize the total

indirect effect of the latent class mediator in explaining group differences in outcomes.

In summary, we propose a latent class mediation analysis procedure for 1)

identifying the latent class underlying the distribution of process features, 2) finding the set

of process features that can best explain the effect of observed group membership on the

outcome, and 3) assessing the indirect effect of the group membership on the outcome

through the nominal latent class mediator. A headlong search algorithm is used to find the

set of process features that best explains the group difference in performance. This is
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achieved by finding the optimal subset of process features that maximizes the total indirect

effect. The proposed framework is intended primarily as an exploratory tool for hypothesis

generation from the complex process data, rather than a confirmatory tool for drawing

causal conclusions about test-taking behaviors.

The rest of the article is structured as follows. The next section begins with a

motivating example based on one item from the NAEP 2017 grade 8 math assessment.

Then, the latent class mediation model and the parameter estimation algorithms are

introduced. It is followed by the headlong search algorithm for selecting the optimal set of

process features. In a simulation study, the performance of the proposed analysis procedure

is evaluated in terms of classification accuracy and parameter estimation accuracy. This is

followed by an empirical application of the procedure on the NAEP Math Assessment item

from the motivating example. Lastly, the significance and limitations of the current study

are discussed.

Latent Class Mediation Analysis

Motivating Example

As a motivating example, we consider one item available from the restricted-use

response and process data in the digital version of the 2017 NAEP Grade 8 Math

Assessment. NAEP adopts a probabilistic sampling approach to select schools and students

to represent the diverse student population in the United States. The data set consisted of

28, 194 nationally sampled students who were administered a 15-item block (block

1717MA2N03CLID30EX) on the eNAEP, which was administered with a Surface tablet

and a stylus. The eNAEP was also embedded with a set of universal design tools, including

scratchwork (where students could draw and erase), zooming, color theme change, equation

editor, text-to-speech (TOS), and highlighting. Students were allowed to revisit an item

multiple times during the test, and each enter/exit of the item page was recorded. For this

block, students were not allowed to use a calculator. The data set consisted of students’

ordinal scores to the 15 math items, as well as their log data on the math block, which
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contained student interactions with the eNAEP platform, such as item visits, tool usage,

and response entries to the 15 multiple choice, constructed response, or drag-and-drop

items. Students, teachers, and schools also completed a series of survey questionnaires,

which contained information on students’ disability status and accommodation on the test.

In the NAEP Math Assessment, students with learning disabilities (LD)

consistently underperformed compared to their typically developing (TD) peers (Judge &

Watson, 2011). For the current example, we aim to identify test-taking process patterns

that can explain this performance gap between LD and TD learners, by focusing on one

item on the multiplication of decimals (VH336968) from this block (Figure 1). The item

asked students to find the solution to 1.5 × 4.9 without using a calculator, and the correct

response was 7.35. This item was chosen because it was a constructed response item

allowing various responses, and it was a relatively computationally involving task, where

students use a certain tool (i.e., scratchwork) to facilitate computation.

Figure 1

Item VH336968 from the 2017 National Assessment of Educational Progress (NAEP)

Grade 8 Math Assessment.

Note. https://www.nationsreportcard.gov/nqt/

The NAEP restricted-use log data recorded each response entry to a constructed

response item, from putting the cursor in the textbox to leaving the textbox, as one event.

The log data thus contained the sequence of interactions of a student on the item,

including various constructed response entries (a student can have multiple entries if they
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made answer changes throughout the test), tool usage, and item revisits (Exit_Item,

Enter_Item in the middle of the action sequence). In the data preprocessing stage, we

removed system events from the log data and recoded repeated actions, such as consecutive

draws/erases for each stroke using the scratchwork tool, into a single action. The first and

the last actions (Enter_Item, Exit_Item) were discarded as these were the common

elements in all students’ action sequences. We masked the final responses to ensure the

action sequence does not directly predict the final outcome, and the answer entries were

recoded into two categories. The “735” category includes answers containing the number

sequence 7, 3, and 5, with the decimal place masked. The “non-735” category includes

responses that do not include the numbers 7, 3, or 5. A preliminary analysis revealed a

common error where many test takers placed the decimal point incorrectly, leading to

errors of 735 and 73.5. Recoding the answers in this way masked the final responses while

retaining information about the types of mathematical concepts the test takers struggled to

demonstrate. Students with disabilities other than LD (e.g., Autism) and those who

received extended time accommodation (90-minute version) were excluded from the

analysis. The sample size of the LD group was 590. 2500 students from the TD group were

randomly selected to balance the sample size between the two groups and reduce

computational demand. The sample size of the final data set used in the analysis was thus

N = 3090. Descriptive statistics of the sample are given in Table 1. The marginal

proportion of correct responses was .49 for the TD group and .21 for the LD group.

To transform the process data into continuous features suitable for the subsequent

analysis while preserving the original sequential pattern information, multidimensional

scaling (MDS) was applied for feature extraction. MDS is a dimension reduction method

that extracts latent features based on the pairwise dissimilarity measure between two

observations. The technical details of extracting MDS features from the action sequence

process data are summarized in Appendix A. The proposed LCMA procedure has a

multivariate normal distributional assumption on the indicators of the latent class variable.
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Table 1

Descriptive Statistics of the NAEP Math Assessment Item VH336968

LD TD LD TD
Response time (secs) 102.55 88.03 Disability severity
Male, % 64 49 Profound, % 3
Age 14.57 14.38 Moderate, % 29
White, % 47 47 Mild, % 59
African American, % 11 14 Omitted, % 8
Hispanic, % 25 24 Breaks during test, % 7 0
Other, % 16 14 Cueing, % 3 0
ELL, % 13 4 Bilingual dictionary, % 1 0

Preferential seating, % 5 0
Separate sessions, % 13 0

Note. ELL is the English language learners. The number of LD students was 590 and the number

of TD students was 2500. The sample sizes are rounded to the closest 10.

SOURCE: U.S. Department of Education, National Center for Education Statistics, “Response

Process Data from the NAEP 2017 Grade 8 Mathematics Assessment.”

The process features extracted from MDS are scaled on a continuum and are suitable for

the proposed analysis. However, note that our proposed method is not limited to process

features from MDS. Any feature extraction method that transforms the original action

sequence data to a rectangular and continuous data format while preserving the

information of examinees’ problem-solving behavior could serve as a viable alternative to

MDS. Based on a five-fold cross-validation, K = 15 total features were extracted. The

cross-validation was run on the dissimilarity matrix of the action sequence data using the

ProcData R package (Tang et al., 2021). The dissimilarity matrix of the action sequence

data was obtained as described in Appendix A. Then, the 15 process features

Mk (k = 1, ..., K) extracted using MDS were used as the potential candidates of continuous

indicators in the latent class mediation analysis.

The latent class mediation analysis aims to find the latent classes underlying the

process features that can explain the correct response probability gap between the LD and

TD students. In the latent class mediation model, the predictor G was the binary disability
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membership variable, where G = 0 if the student belongs to the typically developing group

and G = 1 if the student belongs to the learning disability group, the outcome Y was the

binary score on the multiplication item, with Y = 0 indicating an incorrect response, and

Y = 1 indicating a correct response (i.e., answers equivalent to 7.35). The English language

learner (ELL) variable was included as a covariate X to control for potential confounding

effects between the predictor and mediator, as well as between the mediator and outcome.

Here, X = 1 indicates an English language learner, and X = 0 indicates otherwise. The

K = 15 process features, M, were the candidate indicators of the latent class membership

variable (Ω) that mediates the relationship between G and Y . The proposed latent class

mediation analysis procedure can be applied to find the optimal subset of process features

maximizing the total indirect effect of the latent class mediator between the predictor and

the outcome. We next articulate the model formulation as well as the technical details.

Latent Class Mediation Model

The latent class part of the model assumes a nominal latent class variable

Ωi (i = 1, ..., N) for N observations exists underlying the distribution of relevant process

features Mκ,i. The set of relevant features Mκ,i is assumed to follow a mixture of

multivariate normal distributions with class-specific mean µω and covariance Σω.

Mκ,i | Ωi = ω ∼ MVN(µω, Σω). (1)

Equation (1) implies that the distribution of an examinee’s process features, which contain

information on their sequential patterns in pursuit of solving the item, differs across the

latent classes. For a randomly sampled examinee, the probability density function of Mκ,i

given µ˜ = {µ1, ..., µL}, Σ˜ = {Σ1, ..., ΣL}, and π = {π1, ..., πL} is

f(Mκ,i|µ˜ , Σ˜ , π) =
L∑

l=1
πlfl(Mκ,i | µl, Σl), (2)

where L is the number of latent classes and πl is the probability of belonging to latent class

l. Here, fl(Mκ,i|µl, Σl) denotes the class-specific multivariate normal density.
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The effect of the binary group membership variable Gi on the latent class Ωi,

controlling for covariate Xi (i = 1, ..., N), can be described by a multinomial logistic

regression model in Equation 3.

P (Ωi = ω | Gi = g, Xi = x) = eβ0ω+β1ωg+ξωx∑L
l=1 eβ0l+β1lg+ξlx

. (3)

The regression coefficients β0ω, β1ω and ξω are the class-specific intercept and slope for class

ω. For model identification, we set the intercept and slope of the first class to

β01 = β11 = ξ1 = 0. Equation (3) implies that for an examinee i, the membership

probability associated with the problem-solving latent class, Ωi, depends on the observed

group membership Gi, controlling for the covariate Xi. When the predictor G does not

represent a randomized intervention, associations among variables may be influenced by

confounding factors. In such cases, it is common practice to adjust for potential

confounders of the predictor–mediator (G → Ω) and mediator–outcome (Ω → Y )

associations by including relevant covariates in the model (Muthén, 2011; Preacher, 2015;

Valente et al., 2017; Witkiewitz et al., 2018). This approach helps to reduce bias in the

estimated associations.

Given the group membership Gi and the latent class membership Ωi, examinee i’s

outcome Yi is modeled via a logistic model, controlling for the covariate Xi,

P (Yi = 1 | Gi = g, Ωi = ω, Xi = x) = eγg+αω+ζx

1 + eγg+αω+ζx
. (4)

Each latent class of the problem-solving process is associated with a class-specific intercept

(αω). The coefficient vector α = (α1, ..., αL)′, together with β0 = (β01, ..., β0L)′ and

β1 = (β11, ..., β1L)′, are associated with the indirect effect of the group membership G on

the outcome Y , mediated by the nominal latent class Ω. The coefficient γ is associated

with the direct effect of G on Y , after controlling for Ω and covariate X. Figure 2 shows

the structure of the latent class mediation model using process data.

The likelihood of the model parameters given the observed group memberships

G = (G1, . . . , GN)′, the final outcome Y = (Y1, ..., YN)′, the process features
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Figure 2

Latent Class Mediation Model

Note. Mk represents a process feature, Ω is a latent class variable, G is a binary group

membership (e.g., learning disability = 1 vs. typically developing = 0), Y is a binary

outcome (e.g., correct = 1 vs. incorrect = 0)

, and X is a covariate. Solid arrows indicate predictive relationships: G and X predict Ω,

while Ω and X predict Y . The dashed arrows indicate that the Mks serve as measurement

indicators of Ω.

Mκ = (Mκ,1, ..., Mκ,N)′, and the covariate X = (X1, ..., XN)′ is

L(µ˜ , Σ˜ , γ, α, ζ, β0, β1, ξ; Y, Mκ, X)

= P (Y, Mκ, X | G, µ˜ , Σ˜ , γ, α, ζ, β0, β1, ξ)

=
N∏

i=1

L∑
l=1

P (Ωi = l | gi, xi, β0l, β1l, ξl)P (Yi = yi | gi, xi, γ, αl, ζ)P (Mκ,i | µl, Σl)

=
N∏

i=1

L∑
l=1

{
eβ0l+β1lgi+ξlxi∑L

d=1 eβ0d+β1dgi+ξdxi
× eyi(γgi+αl+ζxi)

1 + eγgi+αl+ζxi
× fl(Mκ,i | µl, Σl)

}
.

(5)

Note that the process features are assumed to be independent of the final outcome given

the latent class membership. That is, the latent class is assumed to fully capture the

relationship between the process features and the outcome, given the covariates.

The number of latent classes (L) is determined by fitting the latent class model only
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using the process features and comparing the Bayesian information criterion (BIC).

BIC = 2 × loglikelihood − p × log(N), (6)

where p is the number of parameters, and N is the sample size. BIC is known to be

consistent in choosing the number of classes in a mixture model (Keribin, 1998).

The class-specific covariance matrix of process features for class l, Σl, is

parameterized through an eigenvalue decomposition of the following form:

Σl = λlDlAlDT
l , (7)

where λl is a scalar controlling the volume of the ellipsoid, Al is a diagonal matrix

specifying the shape with |Al| = 1, and Dl is an orthogonal matrix determining the

orientation of the ellipsoid (Banfield & Raftery, 1993; Celeux & Govaert, 1995; Fraley &

Raftery, 2002). Various equality constraints can be assumed between and within group

covariance structures. In their works, Banfield and Raftery (1993) and Celeux and Govaert

(1995) present models tailored to various clustering scenarios. These models are

implemented in the mclust R package (Scrucca et al., 2023). Celeux and Govaert (1995)

recommended using the model allowing different volumes and more parsimonious models,

such as a diagonal covariance matrix for high-dimensional data. Here, we adopted the

model that assumes varying volumes but equal shapes between classes and orientations

aligned with the coordinate axes. In this parsimonious model, the class-specific covariance

matrix becomes,

Σl = λlB, (8)

where B is a diagonal matrix with |B| = 1.

Parameter Estimation

An EM algorithm (Dempster et al., 1977) is implemented to find the marginal

maximum likelihood estimates of the latent class mediation model by maximizing the

observed data log-likelihood. Similar to the EM algorithm for the Gaussian mixture model
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in Fraley and Raftery (2002), the class membership variable Zi = (Zi1, ..., ZiL) is

introduced as the unobserved portion of the data, where,

Zil =


1, if Ωi = l,

0, otherwise.

(9)

The conditional distribution of (Yi, Mκ,i, Xi) given Zi is
L∏

l=1
[P (Ωi = l | gi, xi, β0l, β1l, ξl)P (Yi | gi, xi, γ, αl, ζ)P (Mκ,i | µl, Σl)]Zil . (10)

The log-likelihood of the parameters given the complete data U˜ = (Yi, Mκ,i, Xi, Zi)1≤i≤N is,

ℓc(µ˜ , Σ˜ , γ, α, ζ, β0, β1, ξ; U˜)

=
N∑

i=1

L∑
l=1

{
Zil

[
log P (Ωi | gi, xi, β0l, β1l, ξl)

+ log P (Yi | gi, xi, γ, αl, ζ) + log P (Mκ,i | µl, Σl)
]}

.

(11)

The initial class memberships in the EM algorithm are obtained by fitting the hierarchical

agglomeration clustering analysis (Murtagh & Legendre, 2014). The algorithm iterates the

E-step and the M-step described below until a convergence criterion has been reached.

E-step

In the E-step, class membership probabilities, Ẑils, are estimated for i = 1, ..., N and

l = 1, ..., L in the rth iteration by

Ẑil,r = P (Ωi = l | gi, xi, β0l,r−1, β1l,r−1, ξl,r−1)P (Yi, Mκ,i | gi, xi, µl,r−1, Σl,r−1, γr−1, αl,r−1, ζl−1)∑L
d=1 P (Ωi = d | gi, xi, β0d,r−1, β1d,r−1, ξd,r−1)P (Yi, Mκ,i | gi, xi, µd,r−1, Σd,r−1, γr−1, αd,r−1, ζr−1)

.

(12)

M-step

In the M-step, we update the parameters, µ˜ , Σ˜ , λ, γ, α, ζ, β0, β1, and ξ by

maximizing the expected complete data log-likelihood computed with the estimates

Ẑ1,r, ..., Ẑn,r. For updating β and ξ, we set the first latent class as the baseline reference

level for identifiability, and

log P (Ωi = l)
P (Ωi = 1) = β0l + giβ1l + xiξl ∀ l ∈ {2, ..., L}, (13)
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where β11 = ξ1 = 0. The β and the ξ are updated with the estimates from the multinomial

logistic regression model by maximizing
N∑

i=1

L∑
l=1

Ẑil[log P (Ωi = l | gi, xi, β0l, β1l, ξl)]. (14)

Similarly, α, γ, and ζ are updated by maximizing the following term
N∑

i=1

L∑
l=1

Ẑil[log P (Yi, Mκ,i | gi, µl, Σl, γ, αl)] (15)

The closed-form solutions to Equations (14) and (15) are unavailable, so a quasi-Newton

method (BFGS; Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970) was used to

update β, ξ, α, γ, and ζ.

The class-specific means on the process features, µls, have closed-form expressions

from the E-step as

µl =
∑n

i=1 ẐilMκ,i

nl

, (16)

where nl = ∑n
i=1 Ẑil. For updating the covariance matrix Σl = λlB, we use the approach

described in Celeux and Govaert (1995). The scattering matrix Wl of a class is

Wl =
n∑

i=1
Ẑil(Mκ,i − Mκ)(Mκ,i − Mκ)T . (17)

We update λl and B by minimizing
L∑

l=1

1
λl

tr(WlB−1) + d
L∑

l=1
nlln(λl). (18)

The minimization of (18) requires an iterative procedure.

λl = tr(WlB−1)
dnl

,

B =
diag(∑L

l=1
1
λl

Wl)
| ∑L

l=1
1
λl

Wl | 1
d

,

(19)

where d is the dimension of the relevant process features Mκ. The E-step and the M-step

are iterated until a termination criterion has been reached. Parameter estimates from the

last iteration are used as the final estimates. For each examinee, the latent class

memberships can be estimated via the maximum a posteriori probability (MAP).

Ω̂i = arg max
l

Ẑil (20)
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Assessing Direct and Indirect Effect

To quantify the amount of information in the outcome explained by the group

membership through the latent class mediator, we adopt the assessment of direct and

indirect effects with a nominal mediator described in Muthén (2011). Although intended as

an exploratory tool, this model assumes no unmeasured confounding among the predictor,

mediator, and outcome, as is standard in causal inference frameworks. Let Y (g, ω) denote

the potential outcome that would have been observed if the group membership was g and

the latent class membership was ω for an examinee. The conditional expectation of the

outcome Y in group g, when the latent class mediator Ω is held constant at the value it

would obtain for group g′, controlling for the covariate X, is

E[Y (g, Ω(g′))] =
L∑

l=1
{E(Y | G = g, Ω = l) × P (Ω = l | G = g′) | X = 0}. (21)

The direct effect (DE) and the total indirect effect (TIE) are defined as follows.

DE = E[Y (1, Ω(0)) − Y (0, Ω(0)) | X = 0],

T IE = E[Y (1, Ω(1)) − Y (1, Ω(0)) | X = 0].
(22)

The total indirect effect is interpreted as the expectation of the difference between the

outcome in the focal group (G = 1) when the mediator changes from the values it would

obtain in the focal group to the values it would obtain in the reference group (G = 0). For

example, in the context of the NAEP Math Assessment data, the TIE can be interpreted

as the expected difference in the probability of a correct response for LD students when

their latent class membership shifts from the class it would take in the LD group to the

class it would take in the TD group. The TIE and DE can be estimated with the latent

class mediation model parameter estimates. The sum of the direct effect and the total

https://doi.org/10.1017/psy.2025.10038 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2025.10038


LCMA 19

indirect effect is equal to the total effect, TE = E[Y (1, Ω(1)) − Y (0, Ω(0)) | X = 0].

DE =
L∑

l=1
[P (Y = 1 | G = 1, Ω = l)P (Ω = l | G = 0) − P (Y = 1 | G = 0, Ω = l)P (Ω = l | G = 0)]

=
L∑

l=1

{( eαl+γ

1 + eαl+γ
− eαl

1 + eαl

) eβ0ω∑L
d=1 eβ0d

}
,

T IE =
L∑

l=1
[P (Y = 1 | G = 1, Ω = l)P (Ω = l | G = 1) − P (Y = 1 | G = 1, Ω = l)P (Ω = l | G = 0)]

=
L∑

l=1

{
eαl+γ

1 + eαl+γ

( eβ0ω+β1ω∑L
d=1 eβ0d+β1d

− eβ0ω∑L
d=1 eβ0d

)}
.

(23)

Testing of the total indirect effect is available by constructing confidence intervals using the

delta method (Sint et al., 2021) or bootstrap resampling (Muthén, 2011). The

approximation of the standard error of TIE using the delta method is described in

Appendix B.

Headlong Search Algorithm for Feature Selection

The process features are high-dimensional and may contain noisy information

irrelevant to the relationship between the observed group and the final outcome. We

implement a headlong search algorithm to find the optimal subset of process features that

maximizes the total indirect effect of the latent class variable. Let M be the set of all K

process features. The algorithm starts with an initial subset of process features and

iteratively updates the subset (denoted κ ⊆ {1, . . . , K}), to find an optimal subset κ∗ such

that the LCMA model with process features Mκ∗ maximizes the total indirect effect of Ω.

Feature Subset Initialization

We first fit the latent class model using all K process features as indicators from

Equation (2). The number of latent classes Lfull is selected using the Bayesian information

criterion (BIC) in Equation (6). Then, we fit a latent class model with a single indicator for

each feature in M with the fixed Lfull. The average variance of class probability estimates

across individuals is calculated, where the class probability estimates Ẑil are calculated in

the E-step of the EM algorithm from the single indicator LCA model estimates. The larger
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the average class probability variance, the indicator gives a better separation of the classes.

Similar to the approach in Dean and Raftery (2010), we select Lfull − 1 features with the

largest variance of class probabilities as the initial set. Here, L − 1 is the maximum number

of features needed to identify L latent classes by their locations. With the initial set of

features, the latent class mediation model is fit using the current subset, Mκ, the group

membership variable, G, and the outcome, Y . After selecting the initial set of features, we

proceed with the inclusion and exclusion steps of the headlong search algorithm.

Inclusion Step

At any iteration, let Mκ be the subcolumns of M currently included in the model,

and let M−κ be the remaining columns of M not included in the model. The logic of the

inclusion and exclusion steps is that if including a feature in M−κ or excluding a feature

from Mκ increases the TIE significantly, then we can add or exclude that feature. In the

inclusion step, each process feature in M−κ is a candidate feature. For each candidate

feature, the latent class mediation model is fit after adding the feature to Mκ. The number

of latent classes is determined by selecting the LCA model with the highest BIC. We test if

the absolute value of TIE increases significantly after adding the candidate feature by

examining whether the 95% confidence interval includes the TIE estimate from the

previous subset. The feature that increases the TIE most is added to the current set, Mκ,

if the increase in TIE is significant. If none of the features increase the TIE significantly

when added to the current set, we do not add any feature to Mκ.

Exclusion Step

In the exclusion step, the features in Mκ are examined. For each feature in Mκ, the

latent class mediation model is fit after removing that feature from Mκ. The number of

latent classes is determined by selecting the LCA model with the highest BIC. The feature

that leads to the largest increase in TIE when removed is excluded from Mκ if the 95%

confidence interval of the TIE does not contain the TIE estimate from the previous step. If

none of the features contribute to a significant increase in TIE when removed from the
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current set, we do not remove any feature from Mκ. If there is no change after a round of

inclusion and exclusion steps, the feature set is finalized as Mκ∗ , and the finalized latent

class mediation model is fit.

The proposed latent class mediation analysis procedure using process data is

summarized in Algorithm 1.

Simulation Study

Simulation studies are conducted to examine whether the proposed procedure

selects the signal indicators that effectively explain the mediation effect and accurately

estimates the indirect effect of the latent class mediator.

Data Generation

Random samples with N = 500 sample size, L = 4 latent classes, K = 10 indicators,

and binary final outcome Y were generated under a latent class mediation model given the

binary group membership G generated from a Bernoulli distribution with p = .5. The

numbers of signal indicators were S = 5, 3, 1. The noisy indicators were randomly

generated independently of the true latent class membership. Thus, the noisy indicators do

not contribute to the classification of subjects into latent classes, and they are irrelevant to

the relationship between the predictor G and the outcome Y . Figure 3 presents the true

mean structure of the 10 indicators conditioned on the four latent classes, where each

column represents a latent class. The first S rows are the mean vectors of the signal

indicators. In Figure 4, the distributions of latent classes from one of the simulated data

sets are presented on a two-dimensional space using the first two indicators to summarise

the simulation conditions. In the S = 5 condition, at least three of the signal variables need

to be selected to identify the four latent classes by location. In the S = 3 condition, all the

signal variables must be selected to identify the four latent classes correctly. In the S = 1

condition, the first variable (M1) is the only indicator we need to identify the four true

latent classes. Two levels of class-specific variances were considered, V AR = 1 and

V AR = 3, to control the level of overlap, that is, how much the latent classes can intersect.
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Algorithm 1 Headlong Search Algorithm for Feature Selection
1: Input: Mk, Y, G, X

2: — Feature Subset Initialization —

3: Fit the full LCA model using all K features to select the number of latent classes Lfull using BIC

4: Fit single-indicator LCA model with each K feature with fixed Lfull

5: Set the initial feature subset κ by selecting Lfull − 1 features with the largest average class probability variance from

single-indicator LCA models

6: — Fit Initial LCMA Model —

7: Fit LCA model using Mκ to select the number of latent classes Linitial using BIC

8: Fit LCMA model using Mκ, Y, G, and X with Linitial and calculate T̂IEinitial

9: T̂IE← T̂IEinitial

10: (l, u)← lower and upper bound of 95% C.I of TIE

11: — Inclusion and Exclusion Steps —

12: while κ remains the same after inclusion and exclusion steps do

13: — Inclusion Step —

14: for k ∈ κc do

15: κ∗ ← κ ∪ {k}

16: Fit LCA model using Mκ∗ to select the number of latent classes Lκ∗ using BIC

17: Fit LCMA model using Mκ∗ , Y, G, and X with Lκ∗ and calculate T̂IEk

18: end for

19: m← arg maxk |T̂IEk|

20: if |T̂IEm| > |T̂IE| and T̂IEm /∈ (l, u) then

21: κ← κ ∪ {m} {Inclusion}

22: T̂IE← T̂IEm

23: (l, u)← lower and upper bound of 95% C.I of TIE

24: end if

25: — Exclusion Step —

26: for k ∈ κ do

27: κ∗ ← κ \ {k}

28: Fit LCA model using Mκ∗ to select the number of latent classes Lκ∗ using BIC

29: Fit LCMA model using Mκ∗ , Y, G, and X with Lκ∗ and calculate T̂IEk

30: end for

31: m← arg maxk |T̂IEk|

32: if |T̂IEm| > |T̂IE| and T̂IEm /∈ (l, u) then

33: κ← κ \ {m} {Exclusion}

34: T̂IE← T̂IEm

35: (l, u)← lower and upper bound of 95% C.I of TIE

36: end if

37: end while

38: return κ
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Overlapping true latent classes can lead to the misclassification of individuals. In the

V AR = 1 condition, the latent classes do not overlap, whereas in the V AR = 3 condition,

the latent classes do overlap, allowing the misclassification of individuals. The true TIE

and DE were set to −0.125 and 0. The true model parameter values are described in

Appendix C. The number of replications in each condition was R = 100. The R codes used

for the simulation can be found on the Open Science Framework (OSF) at

https://osf.io/a5zem/?view_only=c5b920fee99e4b798006b03880d224ed.

Figure 3

True Mean Structures in the Simulation Study

Note. The columns represent the four latent classes, and the rows represent the ten

indicators. The first S rows are the signal indicators, and the rest are the noisy indicators.

Simulation Results

The bias, RMSE, and the 95% coverage rate of the TIE are given in Table 2. The

bias and RMSE of TIE were calculated as follows.

Bias =
R∑

r=1

T̂ IEr − TIE

R
,

RMSE =

√√√√ R∑
r=1

(T̂ IEr − TIE)2

R
.

(24)

T̂ IEr is the total indirect effect estimate calculated based on the model parameter

estimates in the rth replication, and TIE is the true total indirect effect. The proposed
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Figure 4

Scatter Plots of Simulated Indicators from the Simulation Conditions

latent class mediation analysis procedure recovered the total indirect effect of the latent

class mediator well, although the total indirect effect was slightly overestimated. The

magnitude of the bias slightly increased in the V AR = 3 conditions where the latent classes

were allowed to overlap. However, the bias of TIE is negligible as the relative biases were

less than 0.1 except for conditions 4 and 5. Further, we found that the bias of model

parameter estimates decreased as the sample size increased in an additional simulation

(Table A1). The 95% coverage rate was computed using 95% confidence intervals

constructed from standard error estimates derived via the delta method.

95% C.R.(TIE) =
R∑

r=1

I
T IE∈(T̂ IEL,r,T̂ IEU,r)

R
. (25)
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T̂ IEL,r and T̂ IEU,r are the lower bound and the upper bound of the 95% confidence

interval, and I is the indicator function. The coverage rates of TIE were acceptable,

ranging from .90 to .94 in the non-overlapping classes conditions and from .74 to .93 in the

overlapping classes conditions.

Table 2

Simulation Study Results

Con. VAR S ARI N.Class N.Ind FP TP
TIE

Bias RMSE 95% C.R.
1 1 5 0.91 3.69 3.20 0.06 0.58 0.006 0.024 0.92
2 1 3 0.92 3.72 3.39 0.10 0.91 0.006 0.026 0.90
3 1 1 0.96 4.32 2.37 0.15 1.00 0.003 0.024 0.94
4 3 5 0.80 3.50 3.31 0.07 0.60 0.014 0.027 0.88
5 3 3 0.82 3.65 3.48 0.13 0.86 0.017 0.029 0.74
6 3 1 0.88 4.11 1.89 0.10 1.00 0.003 0.025 0.93

Note. 95% C.R. is the 95% coverage rate.

Throughout the simulation conditions, the selected number of classes was close to

the true number of classes, L = 4, ranging from 3.50 to 4.32 (Table 2). The classification

accuracy of the proposed analysis was evaluated using the average adjusted Rand index

(ARI; Hubert and Arabie, 1985) between the estimated class and the true class. ARI

measures the agreement of the two classifications when the number of classes does not

necessarily match. ARI close to 1 indicates perfect agreement with the true classification,

and ARI close to 0 indicates random classification. The formula of the ARI is given as

follows. Let nij be the number of individuals in class i classified into the jth class. L = 4 is

the number of true classes, and L̂ is the number of classes in the latent class mediation

model. Then,

ARI =
∑L

i=1
∑L̂

j=1

(
nij

2

)
− [∑i

(
ni.

2

)∑
j

(
n.j

2

)
]/
(

n
2

)
1
2 [∑i

(
ni.

2

)∑
j

(
n.j

2

)
] − [∑i

(
ni.

2

)∑
j

(
n.j

2

)
]/
(

n
2

) , (26)

where ni. = ∑L̂
j nij, n.j = ∑L

i nij, and n = ∑L
i

∑L̂
j nij. In the simulation conditions, the

average ARI values were greater than .8, indicating an accurate classification of the

proposed analysis. The ARI values were greater in the non-overlapping (V AR = 1)
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condition (.91 ∼ .96) than the overlapping (V AR = 3) condition (.80 ∼ .88).

The variable selection algorithm performed well under the simulation conditions. In

Table 2, the sixth column shows the average number of indicators selected in each

condition. When three signal indicators were needed to identify the four true latent classes

(i.e., conditions 1, 2, 4, and 5), slightly more than three variables were selected. When the

first indicator was the only signal indicator (i.e., conditions 3 and 6), 2.37 and 1.89

indicators were selected on average in the final model. The seventh and eighth columns in

Table 2 show the false positive rate and the true positive rate of selecting the indicator.

The false positive rate is calculated as the probability of selecting a noisy indicator, and

the true positive rate is calculated as the probability of selecting a signal indicator.

FP =
R∑

r=1

K∑
j=S+1

IMj∈Mr
κ∗

R(K − S) .

TP =
R∑

r=1

S∑
j=1

IMj∈Mr
κ∗

RS
.

(27)

Mr
κ∗ is the set of indicators selected in the final model in the rth replication. The variable

selection algorithm controlled the false positive rate reasonably, ranging from .06 to .15. In

the S = 5 conditions, the true positive rate was .58 and .60, which means about 60% of the

first five signal variables were selected, which suffices to identify the four true latent classes.

In the S = 3 conditions, most of the three signal indicators were selected with the true

positive rates of .91 and .86. In the S = 1 condition, the sole signal indicator was always

selected in the final model with 1.00 true positive rate.

We conducted additional simulations to evaluate the accuracy of parameter

estimates given the true number of latent classes, L. The EM algorithm for the LCMA

model performed well, exhibiting low bias and RMSE in the parameter estimates.

Additionally, we assessed the proposed algorithm’s performance under alternative

data-generating models. The algorithm showed robust performance across various scenarios

in terms of both variable selection and parameter estimation. Further details about the

simulation methods and results are provided in Appendices D and E.
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NAEP Math Assessment Data Analysis Results

The latent class mediation analysis was applied to the empirical data from the

motivating example. To start, we fit a simple logistic regression predicting the final

outcome Y ∈ {0, 1} with the disability group membership G, without any mediator. The

log odds of correct response were 1.25 lower in the LD group than in the TD group,

logitP (Y = 1|G) = −0.05 − 1.25G. (28)

Without any mediators, the total effect of the group membership on the final outcome was

−0.273, calculated as follows:

TE = E(Y |G = 1) − E(Y |G = 0). (29)

Then, the proposed LCMA procedure is applied to the empirical data. Specifically,

in the current context, the latent class mediation analysis aims to address the following

research questions (RQs):

RQ1 What are the latent classes (Ω) of action sequence patterns that explain the

relationship between disability group (G) and outcome (Y )? In other words, we

search for Ω underlying M in Equations 3-4.

RQ2 What subset of action sequence features (Mκ, κ ⊆ {1, . . . , K}) can best account for

the effect of disability group on the outcome? In other words, we search for

κ∗ = arg maxκ TIE in Equations 22-23.

RQ3 How much of the group difference in final outcome can be explained by the latent

class mediator (Ω) underlying problem-solving process features? In other words, we

estimate and evaluate TIE in Equations 22-23.

The headlong search algorithm described previously was implemented to find the subset of

indicators maximizing the total indirect effect of the disability group membership on the

final score through the process features. Out of the K = 15 MDS process features, the
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variable selection algorithm selected 14 indicators in the final model. The data analysis

required approximately 31 hours with a sample size of N = 3090, K = 15 candidate

features, and the maximum number of latent classes set to L = 20. The selected number of

latent classes was L = 18. After incorporating the latent class mediator, the total indirect

effect estimate was T̂ IE = −0.154, controlling for the ELL variable, with a 95% confidence

interval of (−0.183, −0.125). This shows that the latent class variable underlying the

selected process features could substantially explain the final score difference between LD

and TD students, controlling for the ELL status to 0. To evaluate the reproducibility of

our results, we randomly sampled 80% of the data four times and applied the proposed

LCMA procedure to each subsample, examining the stability of both the TIE estimates

and classification of students across the subsamples. Each subsample consisted of 470 LD

students and 2000 TD students. The TIE estimates varied only slightly, from −0.119 to

−0.157, across the four subsamples. While the optimal number of classes was 20 in these

subsamples, the ARIs comparing classification from the total sample to those from the

subsamples ranged from 0.963 to 0.979 indicating high consistency in classification of

students.

To interpret and label the identified latent classes, we propose inspecting common

patterns in the original action sequences of test takers within each class. Although a

common approach involves describing classes based on their indicators (Spurk et al., 2020),

this can be challenging with MDS features, as the extracted feature values are often

difficult to interpret. Analyzing the action sequence offers a clearer and more practical

approach to understanding and labeling the latent classes underlying the process data.

Table 3 presents a descriptive summary of common patterns in the original sequences for

each class, along with their corresponding class labels. Marked in (h) are homogeneous

classes with identical action sequences. For instance, the common action sequence for Class

2, labeled “Revisit for review, 735”, was (Part_1_735, Exit_Item, Enter_Item). This

indicates that every student in this class entered an answer with the numbers 7, 3, and 5
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and revisited the item page once. On the other hand, the common action sequence for

Class 5, labeled “Omission of the first try,” was (Exit_Item, Enter_Item, Part_1_735).

This indicates that every student in this class initially omitted the item and then

submitted an answer with the numbers 7, 3, and 5 during their second visit to the item

page. To interpret the non-homogeneous classes, we examined both the common actions

within each class and the summary statistics provided in Table 3. For example, Class 1 was

labeled as “Multiple revisits, no tools, 735”, and every student in this class revisited the

item page multiple times while submitting an answer with the numbers 7, 3, and 5.

Table 4 shows the model-implied correct response probabilities, P (Y = 1), and class

probabilities, P (Ω = l), for LD and TD students, along with their (log) odds ratios and the

raw differences in class probabilities. These probabilities are calculated based on the model

parameter estimates related to the logistic regression in Equation 4, γ and α, and the

multinomial logistic regression in Equation 3, β0 and β1, controlling for the covariate.

Note that after classifying students into the latent classes, the difference in the correct

response probabilities within each class between LD and TD students has decreased. This

also shows that the latent class variable can explain the performance gap between the two

groups. Behaviors observed in classes 1 to 9 are associated with higher correct response

probabilities compared to the marginal correct response probability, while behaviors

common in classes 10 to 18 are associated with lower correct response probabilities.

From Table 4, we identify the test-taking behaviors that contribute to the

performance gaps between LD and TD students by focusing on the latent classes with

substantial class probability P (Ω = l) differences in both the odds ratio and absolute

difference scales. Since most class probabilities are small except for Classes 6 and 16, some

absolute proportion differences are also small. The classes with higher correct response

probabilities were Class 2 “Revisit for review, 735”, Class 4 “Draw_Clear”, Class 6 “No

tools, 735”, and Class 7 “Single draw”. The class probability odds ratios for these classes

were 0.33, 0.29, 0.44, and 0.69, indicating that LD students were less likely to belong to
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Table 4

Model Implied Response Probabilities and Class Probabilities from the NAEP Math

Assessment Item VH336968

Class Label
P (Y = 1) P (Ω = l)
LD TD LD TD OR LOR DIFF

Marginal probability 0.21 0.49
1 Multiple revisits, no tools, 735 0.75 0.87 0.00 0.02 0.21 -0.67 -0.01
2 Revisit for review, 735 (h) 0.74 0.86 0.02 0.05 0.33 -0.48 -0.04
3 Draw_Erase 0.63 0.79 0.03 0.03 0.82 -0.09 -0.01
4 Draw_Clear 0.60 0.77 0.01 0.02 0.29 -0.53 -0.02
5 Omission of the first try (h) 0.60 0.77 0.01 0.02 0.44 -0.35 -0.01
6 No tools, 735 (h) 0.59 0.75 0.20 0.36 0.44 -0.36 -0.16
7 Single draw (h) 0.57 0.74 0.04 0.05 0.69 -0.16 -0.02
8 Draw and revisit 0.35 0.54 0.03 0.03 1.07 0.03 0.00
9 Draw with clear or erase, revisit 0.34 0.53 0.06 0.06 1.04 0.02 0.00
10 Irrelevant tools (TOS) or reentries 0.20 0.35 0.03 0.02 1.59 0.20 0.01
11 Irrelevant tools (theme) or revisit 0.19 0.34 0.03 0.02 1.41 0.15 0.01
12 Draw with clear or erase 0.01 0.02 0.05 0.04 1.34 0.13 0.01
13 Multiple revisits or reentries 0.00 0.00 0.03 0.01 2.46 0.39 0.02
14 Omission of the first try, non-735 (h) 0.00 0.00 0.02 0.01 1.63 0.21 0.01
15 Draw_Erase or Draw_Clear, non-735 0.00 0.00 0.02 0.00 5.31 0.73 0.02
16 No tools, non-735 (h) 0.00 0.00 0.36 0.20 2.20 0.34 0.16
17 Revisit for review, non-735 (h) 0.00 0.00 0.03 0.02 1.59 0.20 0.01
18 Single draw, non-735 (h) 0.00 0.00 0.03 0.02 1.40 0.15 0.01

Note. P (Y = 1) is the model implied correct response probability. P (Ω = l) is the model implied

probability of belonging to the l-th class. (h) indicates a homogeneous class with the same action

sequence. OR: Model implied odds ratio of class probabilities for LD against TD; LOR: Log odds

ratio; DIFF: Difference in class probabilities.

SOURCE: U.S. Department of Education, National Center for Education Statistics, “Response

Process Data from the NAEP 2017 Grade 8 Mathematics Assessment.”
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these classes. Specifically, LD students were less likely to revisit the item for review and

submit an answer with numbers 7, 3, and 5. Additionally, behaviors such as using

scratchwork with a single draw stroke or clearing the scratchwork immediately after

drawing led to higher correct response probabilities, yet LD students were less likely to

display these behaviors. When using no tools, LD students were less likely to submit an

answer containing 7, 3, and 5, suggesting they were more likely to make non-decimal point

errors and demonstrate misconceptions in their responses. On the other hand, LD students

were more likely to belong to the low-performing classes, Class 13 “Multiple revisits or

reentries”, Class 15 “Draw_Erase or Draw_Clear, non-735”, and Class 16 “No tools,

non-735”. The class probability odds ratios were 2.46, 5.31, and 2.20, respectively. These

results suggest that the behaviors associated with worse performance, and more commonly

observed among LD students, include multiple revisits, a sequence of Draw and Erase or

Clear with non-735 responses, and using no tools with non-735 responses.

These results show key differences in test-taking behaviors between LD and TD

students, particularly in their use of scratchwork, item review, and response patterns for

non-735 answers. TD students were more likely to engage in effective scratchwork

strategies, such as making a single draw stroke, which were associated with higher correct

response probabilities. In contrast, LD students tended to engage in unproductive

behaviors like repeatedly revisiting or re-entering answers, which are associated with lower

performance. Additionally, for students who submitted a non-735 answer, common

incorrect responses such as 4.45, 8.5, and 29.4 suggest deeper misconceptions about decimal

multiplication. These answers could be derived by the following computations:

(4 × 1) + (0.9 × 0.5) = 4.45; (4 × 1) + (9 × 0.5) = 8.5; and (4.9 × 1) + (4.9 × 5) = 29.4. Each

of these errors goes beyond simple misplacement of the decimal point and indicates

fundamental misunderstandings about multiplication rules in the context of decimals.

In Figure 5, the global structure of the selected process features is displayed on a

two-dimensional plot using the t-distributed stochastic neighborhood embedding (t-SNE;
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Van der Maaten and Hinton, 2008). The t-SNE is a popular dimension-reduction method

for visualization that preserves the similarity between observations by considering the

observation’s nearest neighbors. While Figure 5 displays a grouping of the 18 classes into

distinct areas, some classes are less clearly separated. The homogeneous classes are

displayed as single points, as these classes had identical feature values. Classes 11 and 10

were the most dispersed classes in the plot because students in these classes were randomly

browsing the available tools and submitted various responses.

Figure 5

t-SNE Plot of the Selected Process Features from the NAEP Math Assessment Item

VH336968
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SOURCE: U.S. Department of Education, National Center for Education Statistics,

“Response Process Data from the NAEP 2017 Grade 8 Mathematics Assessment.”
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Discussion

Process data collected in computerized testing preserves valuable information

beyond the traditional response data. However, analyzing process data is challenging

because of its unstructured format and noise, which hinders the use of traditional

approaches developed for rectangular data. This study provides an approach to a

traditionally challenging task with new but noisy process data. The proposed LCMA

analysis procedure is a general statistical method that can be applied when the latent class

variable underlying action sequences is assumed as the mediator between an observed

predictor and an outcome. The latent class mediation model and the headlong search

algorithm allow dimension reduction and noise elimination from the process features,

enhancing the interpretability of the results.

The latent class analysis with continuous indicators, often called latent profile

analysis or Gaussian mixture clustering, is extended to a latent class mediation analysis.

To the best of our knowledge, the current study is the first attempt to extend the latent

class analysis assuming multivariate normality of the indicators into a latent class

mediation model including both a covariate and a distill outcome to assess the mediation

effect of the nominal latent class variable. There are few studies using a latent class

mediator with continuous indicators. For example, Sint et al. (2021) proposed a latent class

mediation analysis where the observed continuous indicator was specified as a generalized

linear model, given the latent class. The limitation of such an approach is that the

covariance structure of the indicators was not considered.

Process data from large-scale assessments can help understand why certain students

are struggling, serving as a seminal guide to efforts on evidence-based strategies to improve

educational equity. The proposed analysis can help educators design targeted treatments

for specific subgroups. With the NAEP Math Assessment data, we showed that the

proposed latent class mediation analysis can identify the latent class variable that explains

the performance gap on a multiplication item between the students with learning disability

https://doi.org/10.1017/psy.2025.10038 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2025.10038


LCMA 35

and the typically developing students. Each class was interpreted and labeled based on

summary statistics, such as the tool usage rates of the students classified into each class.

Then, calculating the model-implied correct response probabilities and class probabilities

using the parameter estimates from the proposed model allowed us to attribute the

performance gap between the two groups to the difference in test-taking behaviors. The

key point is that identifying the latent classes underlying the features and examining how

the two groups differ in their probabilities of belonging to each latent class allows us to

explain the performance gap between the two groups.

Practical implications of the NAEP Math Assessment data analysis demonstrate the

importance of identifying specific test-taking behaviors that led to performance gaps

between LD and TD students. By focusing on behaviors such as revisiting questions and

employing effective problem-solving strategies, educators can design targeted interventions

to help LD students develop more effective test-taking habits and improve their overall

performance. Additionally, grouping students based on their specific test-taking behaviors

can allow teachers to provide more focused support and instruction to meet individual

needs, and such strategies can help bridge the gap in academic performance between LD

and TD students.

The current study implemented a simultaneous estimation method for the latent

class mediation model using an EM algorithm. The proposed estimation method is justified

by the simulation results as the model parameters were accurately estimated when the data

was generated from the true model. In addition, Bolck et al. (2004) suggested that

simultaneous estimation is viable in latent class analysis with continuous indicators when a

distal outcome is predicted by the latent class variable. However, in the mediation analysis

with a latent variable, variations of two-step and three-step estimation approaches with

adjustments for classification errors may be available. In the context of latent class

mediation analysis with categorical indicators, Hsiao et al. (2021) compared six different

estimation methods, including variations of one-step, two-step, and three-step approaches.
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There is a demand for an investigation of the estimation in the latent class mediation

analysis with continuous indicators in various conditions.

A headlong search algorithm for feature selection is proposed. The objective of the

feature selection algorithm is to find the subset of process features that maximizes the total

indirect effect of the latent class mediator. In the simulation, the proposed feature selection

algorithm performed well in selecting the signal features while excluding the noisy features

irrelevant to the true clustering. This approach aligns with the idea of the exploratory

mediation analysis (van Kesteren & Oberski, 2019) where a mediation filter was used to

find the subset of many potential mediators to explain the effect of the predictor on the

outcome. There is one caveat to the proposed feature selection algorithm. Each inclusion

and exclusion step requires significance testing. As the number of iterations in the search

algorithm increases, the family-wise type-1 error can be hard to control at a desired

significance level. Therefore, family-wise type-1 error control methods proposed in

step-wise variable selection, such as Bonferroni correction, may be considered. Or,

considering different criteria, such as a decrease in the direct effect for selecting the initial

set of features, may improve the reliability of the search algorithm. Another alternative

could be implementing a search algorithm that does not rely on step-wise decisions.

We adopted the counterfactual approach (Pearl, 2010; Robins & Greenland, 1992)

and the formal definitions of effects involving a latent class mediator described in Muthén

(2011) to assess the total indirect effect of the nominal latent class mediator. The indirect

effects defined in the counterfactual framework rely on several strict assumptions and are

described in Imai, Keele, and Tingley (2010), Valeri and VanderWeele (2013), and

VanderWeele and Vansteelandt (2009). A part of the assumptions can be satisfied when

the predictor is a randomized treatment. Other assumptions require that there is no

unmeasured confounding variable of the predictor-outcome relationship and the

mediator-outcome relationship. The effects of unmeasured confounding variables can be

controlled by including them as covariates, as described previously. In observational
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research, however, including demographic variables such as learning disability status may

still violate the randomized treatment assumption. The indirect effect estimates are biased

when some of the assumptions are violated.

Importantly, we emphasize that the proposed framework is intended as an

exploratory tool for generating hypotheses about causal relationships in complex process

data, rather than for drawing causal claims about test-taking behavior. To advance from

hypothesis generation to more robust causal statements, future work could integrate formal

sensitivity analyses. For example, future studies could adopt bias-adjustment formulas for

unmeasured confounding (VanderWeele & Arah, 2011), sensitivity analysis for causal

mediation effects (Imai, Keele, & Yamamoto, 2010), or statistical methods for examining

and adjusting for assumption violations (MacKinnon & Pirlott, 2015).

Complex latent-class models are susceptible to convergence at local optima, which

can in turn affect BIC-based model selection. We initialize the EM algorithm via

hierarchical agglomeration clustering, as implemented in the mclust R package (Scrucca

et al., 2023), to optimize the chance of arriving at an accurate model solution. Nonetheless,

future extensions could consider incorporating multiple-start EM runs, as implemented in

Mplus (Muthén & Muthén, 2017). It should also be noted that uncertainty in the

BIC-based model selection could propagate to mediation effect estimates. Such

unaddressed model selection variability may lead to underestimation of posterior

uncertainty for indirect effect parameters. To address this, one can adopt fully Bayesian

model approaches treating the number of latent classes as a random variable (see e.g.,

Chen et al., 2021; Richardson and Green, 1997; Stephens, 2000) or apply Bayesian model

averaging over candidate models (see e.g., Hoeting et al., 1999; Russell et al., 2015;

Wasserman, 2000).

Other machine learning techniques can be used to extract process features from the

unstructured action sequence data while preserving the information of the original data.

The type of information kept in the process features will depend on the feature extraction
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method. For example, N-gram-based techniques could extract the frequencies of a sequence

of actions (e.g., He and von Davier, 2016). One potential advantage of using N-gram-based

features in latent class mediation modeling is that the selected features can be more

interpretable. Each feature is related to the frequency of a certain action sequence.

Therefore, the selected features can directly show the test-taking behavior that explains

performance gaps between groups. However, the N-gram features are discrete variables,

and the multivariate normality assumption of the proposed analysis may not hold. A

future extension of this study could involve incorporating discrete features, such as count

or binary data, into the proposed analysis framework. Another possible direction is

extending the model to accommodate a multi-categorical group membership predictor by

introducing C − 1 dummy variables with their corresponding regression coefficients, where

C represents the number of categories.
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Appendix A. Multidimensional Scaling for Action Sequence Data

Multidimensional scaling (Borg & Groenen, 2005) is a dimension reduction method

that extracts latent features based on the pairwise dissimilarity measure between two

observations. MDS is widely used for data visualization and in many areas of

psychometrics (Takane, 2006). The goal of MDS is to locate observations within a vector

space based on their pairwise dissimilarities, ensuring that similar observations are located

closely. In contrast, less similar ones are located farther apart. Tang et al. (2020) proposed

using multidimensional scaling for extracting process features from the problem-solving

process data. In process data analysis, if dissimilarities effectively capture differences

between two processes, the coordinates derived from MDS can serve as features containing

information about the original processes (Tang et al., 2020).

The dissimilarity measure between two action sequences takes into account the

number of unique actions and the order of common actions (Gómez-Alonso & Valls, 2008).

Let si = (si1, ..., siLi
) and sj = (sj1, ..., sjLj

) be two action sequences of examinee i and j.

Li and Lj are the lengths of each action sequence. Cij denotes the set of common actions

that appear in both si and sj. Uij denotes the set of actions that appear in si but not in sj.

Let sa be the number of times that an action a appears in s. sa(k) denotes the kth element

of sa that is, the position of the kth appearance of a in s. Then the dissimilarity among the

common actions in si and sj is quantified as

f(si, sj) =
∑

a∈Cij

∑Ka
ij

k=1 |sa
i (k) − sa

j (k)|
max{Li, Lj}

, (A1)

where Ka
ij = min(La

i , La
j ). The count of unique actions appearing in only one of si and sj is

quantified as

g(si, sj) =
∑

a∈Uij

La
i +

∑
a∈Uji

La
j . (A2)

Then the dissimilarity between two action sequences is defined by

d(si, sj) = f(si, sj) + g(si, sj)
Li + Lj

. (A3)
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Let D = (dij) be the N × N symmetric dissimilarity matrix, where dij measures the

dissimilarity between si and sj. Higher dissimilarities indicate greater disparities, and the

dissimilarity between identical action sequences is zero. MDS assigns each action sequence

to a latent vector m in the K-dimensional Euclidean space such that these vectors dictate

the dissimilarities. The application of MDS to the dissimilarity matrix D minimizes

∑
i<j

(dij − ||mi − mj||)2. (A4)

The stochastic gradient descent (Robbins & Monro, 1951) can be used to solve the

optimization problem. Let M = (m1, ..., mN)T be the set of all process features extracted

from the nation sequence process data. Then M has a standard form with homogeneous

dimension while preserving the information of the original sequences. Hence, it can serve as

a substitute for action sequences in traditional statistical models like generalized linear

models (Tang et al., 2020). The number of process features K can be chosen by

cross-validation and minimizing the loss function in Equation A4.
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Appendix B. Approximation of the Standard Error of TIE by Delta Method

The TIE for the LCMA can be expressed as:

TIE = E[Y (1, Ω(1)) − Y (1, Ω(0))]

=
L∑

l=1
P (Y = 1 | G = 1, Ω = l)

[
P (Ω = l | G = 1) − P (Ω = l | G = 0)

]

=
L∑

l=1
h(αl + γ)

[
P (Ω = l | G = 1) − P (Ω = l | G = 0)

]
,

(A5)

where

h(x) = ex

1 + ex
. (A6)

Let’s denote Pω|g as,

Pω|g = P (Ω = ω | G = g) = exp(β0ω + β1ωg)∑L
l=1 exp(β0l + β1lg)

. (A7)

Then the partial derivative of Pω|g with respect to β0l and β1l are

∂Pω|g

∂β0l

= Dl and ∂Pω|g

∂β1l

= gDl, for ω = l, (A8)

with

Dl =
exp(β0l + β1lg)

(∑L
d=1,d ̸=l exp(β0d + β1dg)

)
(∑L

d=1 exp(β0d + β1dg)
)2 , (A9)

and
∂Pω|g

∂β0l

= −Pω|gPl|g and ∂Pω|g

∂β1l

= −gPω|gPl|g, for ω ̸= l. (A10)

The partial derivatives of the TIE with respect to the parameters are:

∂TIE

∂βil

=
L∑

d=1
h(αd + γ)

(
∂Pd|1

∂βil

−
∂Pd|0

∂βil

)
. (A11)

∂TIE

∂αl

= h′(αl + γ)
[
Pl|1 − Pl|0

]
, (A12)

where

h′(x) = ex

(1 + ex)2 . (A13)
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∂TIE

∂γ
=

L∑
d=1

h′(αd + γ)
[
Pd|1 − Pd|0

]
. (A14)

The gradient of the TIE with respect to the parameters is:

Γ =
(

∂TIE

∂β02
, ...,

∂TIE

∂β0L

,
∂TIE

∂β12
, ...,

∂TIE

∂β1L

,
∂TIE

∂γ
,
∂TIE

∂α1
, ...,

∂TIE

∂αL

)
(A15)

The approximation for the SE of the T̂ IE is then
√

ΓΣΓ′, where Σ is the covariance

matrix of the parameters. The (1 − α)% confidence interval of TIE is constructed as

T̂ IE ± zα/2 × SE, where zα/2 is the critical value from the standard normal distribution.
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Appendix C. True Model Parameter Values in the Simulation Study

In the simulation study, the true model parameter values are set as follows. The

true γ, α, β1, and β0 values were fixed in all simulation conditions.

γ = 0,

α = (−1, −1/3, 1/3, 1),

β1 = (0, −2/3, −4/3, −2),

β0 = (0, 1/3, 2/3, 1).

(A16)

The true class-specific mean structure, µ˜ is given in Figure 3. The true class-specific

covariance matrix is composed of λ = (λ1, ..., λL) that controls the volume and a diagonal

matrix B where the class-specific covariance matrix is Σl = λlB. In V ar = 1 conditions, λ

was set as

λ = (1, 1, 1, 1), (A17)

so that the volume of the four classes is equal, and small enough to yield no between-class

overlap. In V ar = 3 conditions, λ was set as

λ = (3, 5, 7, 9). (A18)

The classes were allowed to vary in their volumes and have overlapping observations

between classes as demonstrated in Figure 4. The diagonal elements of B,

diag(B) = (B1,1, ..., BK,K) were generated as follows. Let B∗ = (B∗1 , B∗2 , ..., B∗K), where K is

the number of items.

B∗i = 1 + i − 1
45 , i = 1, ..., K. (A19)

The variance of the 10th item is 1.2 times the variance of the first item within a class.

Then B∗ was normalized by the geometric mean to satisfy |B| = 1.

Bi,i = B∗i
(∏K

j=1 B∗i )1/K
, i = 1, ..., K. (A20)
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Appendix D. Model Parameter Recovery Check

In this section, we evaluate the accuracy of parameter estimates of the LCMA

model. The LCMA model was fitted using all indicators Mκ, with the number of latent

classes L fixed at its true value, to assess the parameter estimation accuracy of the EM

algorithm. Random samples were generated under a latent class mediation model with

L = 4 latent classes and K = 10 signal indicators. The sample sizes considered were

N = 500 and N = 1000. The true parameter values are specified as Equations A16-A17

and A19-A20. The additional parameters related to the covariate X were set as follows.

ξ = (0, −2/3, −4/3, −2)

ζ = 0.5
(A21)

The true mean structure was specified as in Equation A22. Simulation results based on 100

replications are summarized in Table A1. The bias ranged from −0.058 to 0.033 in the

N = 500 condition, and it decreased as the sample size increased to N = 1000, ranging

from −0.026 to 0.032. The RMSE also decreased from (0.187, 0.332) to (0.127, 0.223) as

the sample size increased.



10 20 30 40
10 20 30 40
10 20 30 40
10 20 30 40
10 20 30 40
10 20 30 40
10 20 30 40
10 20 30 40
10 20 30 40
10 20 30 40



(A22)
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Table A1

Parameter Recovery with Fixed L and Mκ.

Parameter True Value
N = 500 N = 1, 000

Bias RMSE Bias RMSE
β02 0.333 0.033 0.206 0.009 0.169
β03 0.667 0.014 0.249 0.013 0.172
β04 1 0.033 0.249 -0.01 0.164
β12 -0.667 0.009 0.226 0.014 0.183
β13 -1.333 -0.018 0.304 -0.011 0.164
β14 -2 -0.041 0.281 0.029 0.223
ξ12 -0.667 -0.056 0.233 -0.026 0.171
ξ13 -1.333 0.008 0.282 -0.013 0.201
ξ14 -2 -0.058 0.332 -0.017 0.210
α1 -1 -0.006 0.267 -0.013 0.154
α2 -0.333 -0.002 0.215 -0.008 0.152
α3 0.333 0.022 0.243 0.002 0.146
α4 1 -0.024 0.252 0.032 0.199
γ 0 -0.017 0.187 -0.012 0.127
ζ 0.5 -0.005 0.206 0.025 0.128
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Appendix E. Simulation Under Alternative Data Generating Models

In this section, we evaluate the performance of the LCMA procedure under four

alternative data generating models in terms of the variable selection and the parameter

estimation accuracy. The alternative models include:

Condition 1 Confounder X and a non-zero γ

Condition 2 Noisy latent class underlying a noisy feature

Condition 3 Unmeasured mediator θ

Condition 4 Mixture Poisson distribution

In each condition, 100 random samples were generated with sample size N = 500 and true

number of latent classes L = 4.

In Condition 1, the effect of a predictor-mediator and mediator-outcome confounder

X is included in the data-generating model and is estimated. The true parameter values

are specified as Equations A16-A17 and A19-A20. The parameters related to the

confounder effect were set as follows.

ξ = (0, −2/3, −4/3, −2)

ζ = 0.5
(A23)

The number of signal indicators was S = 5, and the true mean structure was specified as in

the S = 5 condition in Figure 3. In addition, we included a non-zero γ = 0.2 value, a

non-zero direct effect of the predictor given the latent class mediator and the confounder.

In Condition 2, a noisy latent class variable underlying a noisy feature was

generated. This noisy latent class variable was unrelated to both the predictor and the

outcome in the generating model. In this condition, we evaluated whether the proposed

algorithm correctly selects the signal features despite the presence of a clustering structure

underlying a noisy feature. More specifically, the signal latent class variable Ω was
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generated as a function of the predictor G,

P (Ωi = ω | Gi = g) = eβ0ω+β1ωg∑L
l=1 eβ0l+β1lg

. (A24)

Then the signal features Mk∗ were generated as

Mk∗ | Ω = ω ∼ MV N(µω, Σω). (A25)

Then the final outcome Y was generated as a function of the predictor G and the signal

latent class variable Ω, similar to Equation 4. The true parameter values are specified as

Equations A16-A17 and A19-A20. The number of signal indicators was S = 5 and the true

mean structure was specified as in the S = 5 condition in Figure 3. The noisy latent class

variable Ω∗ was generated independently from a Bernoulli distribution.

Ω∗ ∼ Bernoulli(0.5). (A26)

Then one of the noisy features was generated given the noisy latent class membership as,

M6 | Ω∗ ∼ MV N(µω∗ , Σω∗). (A27)

In Condition 3, an unmeasured mediator θ was considered where θ was generated as

a function of the predictor G,

θ | G ∼ N(µg, σ2
g), (A28)

where µg = g, σ2
g = 0.01. Then the outcome variable Y was generated as a function of G,

Ω, and θ.

P (Yi = 1 | Gi = g, Ωi = ω, θi = θ) = eγg+αω+θ

1 + eγg+αω+θ
. (A29)

The true parameter values are specified as Equations A16-A17 and A19-A20. The number

of signal indicators was S = 5, and the true mean structure was specified as in the S = 5

condition in Figure 3.

In Condition 4, we evaluate the performance of the proposed algorithm under the

non-normality assumption. The features were generated under a mixture Poisson
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distribution with class-specific rate λω given in Equation A30. Each column represents a

latent class. The first five rows represent the signal indicators, and the last five rows are

the noisy indicators. All the other true parameter values were set as Equation A16.

Λ =



10 2 10 10
10 10 2 10
10 10 10 2
2 10 10 10
2 10 10 10
10 10 10 10
10 10 10 10
10 10 10 10
10 10 10 10
10 10 10 10



(A30)

The results from the additional simulation with alternative data-generating models

are presented in Table A2. The classification accuracy remained reasonably high, with the

ARI ranging from 0.79 to 0.91. The false positive rate for selecting noisy indicators ranged

from 0.03 to 0.14. The bias in the TIE was small, with relative bias less than 0.1, except in

Condition 3 with an unmeasured mediator. When the unmeasured mediator θ was not

included in the model, the TIE was overestimated. Similarly, the RMSE of the TIE was

highest in Condition 3.

Table A2

Results from the Additional Simulation with Alternative Data Generating Models

Con ARI N.Class N.Ind FP TP
TIE

Bias RMSE 95% C.R.
1 0.89 3.34 3.36 0.03 0.64 0.011 0.025 0.92
2 0.79 4.53 3.43 0.14 0.55 0.008 0.024 0.89
3 0.91 3.70 3.15 0.05 0.58 0.026 0.033 0.65
4 0.79 5.15 3.27 0.05 0.61 0.006 0.026 0.88
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